On Optimal
Interconnections
for VLSI

Andrew B. Kahng
Gabriel Robins

Springer Science+Business Media, LLC

ON OPTIMAL
INTERCONNECTIONS
FOR VLSI

THE KLUWER INTERNATIONAL SERIES
IN ENGINEERING AND COMPUTER SCIENCE

VLSI, COMPUTER ARCHITECTURE AND
DIGITAL SIGNAL PROCESSING
Consulting Editor
Jonathan Allen

Other books in the series:

MIXED-MODE SIMULATION AND ANALOG MULTILEVEL SIMULATION, Resve
Saleh, Shyh-Jou, A. Richard Newton
ISBN: 0-7923-9473-9
CAD FRAMEWORKS: Principles and Architectures, Pieter van der Wolf
ISBN: 0-7923-9501-8
PIPELINED ADAPTIVE DIGITAL FILTERS, Naresh R. Shanbhag, Keshab K. Parhi
ISBN: 0-7923-9463-1
TIMED BOOLEAN FUNCTIONS: A Unified Formalism for Exact Timing Analysis, William
K.C. Lam, Robert K. Brayton
ISBN: 0-7923-9454-2
AN ANALOG VLSI SYSTEM FOR STEREOSCIPIC VISION, Misha Mahowald
ISBN: 0-7923-944-5
ANALOG DEVICE-LEVEL LAYOUT AUTOMATION, John M. Cohn, David J. Garrod,
Rob A. Rutenbar, L. Richard Carley
ISBN: 0-7923-9431-3
VLSI DESIGN METHODOLOGIES FOR DIGITAL SIGNAL PROCESSING
ARCHITECTURES, Magdy A. Bayoumi
ISBN: 0-7923-9428-3
CIRCUIT SYNTHESIS WITH VHDL, Roland Airiau, Jean-Michel Berge, Vincent Olive
ISBN: 0-7923-9429-1
ASYMPTOTIC WAVEFORM EVALUATION, Eli Chiprout, Michel S. Nakhla
ISBN: 0-7923-9413-5
WAVE PIPELINING: THEORY AND CMOS IMPLEMENTATION,
C. Thomas Gray, Wentai Liu, Ralph K. Cavin, III
ISBN: 0-7923-9398-8
CONNECTIONIST SPEECH RECOGNITION: A Hybrid Appoach, H. Bourlard, N. Morgan
ISBN: 0-7923-9396-1

BiCMOS '{'ggrgil\(l)OIéOaGgY?, E;&NgD APPLICATIONS, SECOND EDITION, A.R. Alvarez
: 0-7923-9384-
TECHNOLOGY CAD-COMPUTER SIMULATION OF IC PROCESSES AND DEVICES,
R. Dutton, Z. Yu
ISBN: 0-7923-9379
VHDL ’92, THE NEW FEATURES OF THE VHDL HARDWARE DESCRIPTION
LANGUAGE, J. Bergé, A. Fonkoua, S. Maginot, J. Rouillard
ISBN: 0-7923-9356-2
APPLICATION DRIVEN SYNTHESIS, F. Catthoor, L. Svenson
ISBN:0-7923-9355-4
ALGORITHMS FOR SYNTHESIS AND TESTING OF ASYNCHRONOUS CIRCUITS,
L. Lavagno, A. Sangiovanni-Vincentelli
ISBN: 0-7923-9364-3
HOT-CARRIER RELIABILITY OF MOS VLSI CIRCUITS, Y. Leblebici, S. Kang
ISBN: 0-7923-9352-X

ON OPTIMAL
INTERCONNECTIONS
FOR VLSI

Andrew B. Kahng
University of California/Los Angeles

Gabriel Robins
University of Virginia

SPRINGER SCIENCE+BUSINESS MEDIA, LLC

Library of Congress Cataloging-in-Publication

A C.I.P. Catalogue record for this book is available
from the Library of Congress.

ISBN 978-1-4419-5145-8 ISBN 978-1-4757-2363-2 (eBook)
DOI 10.1007/978-1-4757-2363-2

Copyright © 1995 by Springer Science+Business Media New York
Originally published by Kluwer Academic Publishers in 1995
Softcover reprint of the hardcover 1st edition 1995

Fourth Printing 2001

This printing is a digital duplication of the original edition.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system or transmitted in any form or by any means, mechanical, photo-copying, recording,
or otherwise, without the prior written permission of the publisher, Springer

Science+Business Media, LLC.

Printed on acid-free paper.

To the field of VLSI CAD

CONTENTS

LIST OF FIGURES

LIST OF TABLES

1

PRELIMINARIES

1.1
1.2
1.3

1.4

Preface

The Domain of Discourse: Routing in VLSI Physical Design
Overview of the Book

1.3.1 Minimum Area: The Steiner Minimal Tree Problem
1.3.2 Minimum Delay: Toward Optimal-Delay Routing Trees
1.3.3 Minimum Skew: The Zero-Skew Clock Routing Problem
1.3.4 Multiple Objectives

Acknowledgments

AREA

2.1
2.2

2.3

2.4

Introduction

Performance Bounds for MST-Based Strategies
2.2.1 Counterexamples in Two Dimensions
2.2.2 Counterexamples in Higher Dimensions
Iterated 1-Steiner (I1S)

2.3.1 Finding 1-Steiner Points Efficiently
2.3.2 The I1S Performance Ratio

2.3.3 The Method of Zelikovsky

Enhancing I1S Performance

2.4.1 A Batched Variant

2.4.2 A Perturbative Variant

2.4.3 Parallel Implementation

Xi

XV

= O 00 00 N =

13

16
17
25
25
30
31
33
34
41
43
43
46
48

Contents viil

2.5 Practical Implementation Options for I1S 48
2.5.1 Incremental MST Updates in Batched 1-Steiner 48

2.5.2 MST Degree Bounds 50

2.6 On The Maximum MST Degree 54
2.7 Steiner Trees in Graphs 56
2.8 Experimental Results 59
3 DELAY 64
3.1 Preliminaries 65
3.1.1 Definitions 66

3.1.2 The Linear and Elmore Delay Approximations 67

3.2 Geometric Approaches to Delay Minimization 69
3.2.1 Early Cost-Radius Tradeoffs 70

The Bounded-Prim (BPRIM) Algorithm 72
Extensions of BPRIM 74

3.2.2 Shallow-Light Constructions 76

The BRBC Algorithm 79
Bounded-Radius Steiner Trees 81
Improvements in Geometry 83
Sink-Dependent Bounds and the Shallow-Light Result 84

The KRY Algorithm 86

3.2.3 The Prim-Dijkstra Tradeoff 88

The PD1 Tradeoff 88

The PD2 Tradeoff 90

3.2.4 Rectilinear Steiner Arborescences 91

3.2.5 Experimental Results and Discussion 96
Comparison of Cost-Radius Tradeoffs 96
Comparison of Signal Delays 98

Steiner Routing 100

3.3 Minimization of Actual Delay 103
3.3.1 Greedy Optimization of Elmore Delay 103
3.3.2 The Critical-Sink Routing Tree Problem 105
Geometric CSRT Heuristics 108

CSRT Heuristics That Optimize Elmore Delay Directly 113

3.3.3 Experimental Results 115

CS-Steiner Trees 115

ix

3.4

ON OPTIMAL INTERCONNECTIONS FOR VLSI

Elmore Routing Trees
3.3.4 Optimal-Delay Routing Trees
Spanning Trees and BBORT
Toward Elmore Delay-Optimal Steiner Trees
Steiner Trees and BB-SORT-C
3.3.5 Remarks
New Directions
3.4.1 Wiresizing
3.4.2 Non-Tree Routing

4 SKEW

4.1
4.2

4.3

4.4

Preliminaries
An Early Matching-Based Approach
4.2.1 Pathlength-Balanced Trees
4.2.2 The Iterated Matching Approach
4.2.3 Extension to Building-Block Design
4.2.4 Empirical Tests
Results for Cell-Based Designs
Results for Building-Block Designs
Remarks
DME: Exact Zero Skew With Minimum Wirelength
4.3.1 Bottom-Up Phase: The Tree of Merging Segments
4.3.2 Top-Down Phase: Embedding of Nodes
4.3.3 Application of DME to Linear Delay
Calculating Edge Lengths
Optimality of DME for Linear Delay
4.3.4 Application to Elmore Delay
Calculating Edge Lengths in the Elmore Delay Model
Suboptimality of DME for Elmore Delay
4.3.5 Experimental Results and Discussion
Results for the Linear Delay Model
Results for the Elmore Delay Model
Remarks
Planar-Embeddable Trees
4.4.1 Single-Pass DME
4.4.2 The Planar-DME Algorithm

118
120
121
123
126
127
128
129
134

140
141
145
146
147
152
155
155
159
161
163
165
169
170
170
172
176
176
178
179
180
180
183
184
187
188

Contents X

4.4.3 Experimental Results and Discussion 192

4.5 Remarks 193
5 MULTIPLE OBJECTIVES 197
5.1 Minimum Density Trees 198
5.1.1 Heuristics for Minimum Density Trees 200

The COMB Construction 200

A Chain-Peeling Method 202

5.1.2 Performance Bounds 204
Density Bounds 204

Cost Bounds 208

5.1.3 Triple Optimization 210
Minimizing Skew, Density, and Total Wirelength 210
Minimizing Radius, Density, and Total Wirelength 212

5.1.4 Experimental Results 213

5.2 Multi-Weighted Graphs 215
5.3 Prescribed-Width Routing 223
5.3.1 Prescribed-Width Routing by Network Flows 224
Problem Formulation 225

A Network Flow Based Approach 229

A Test Implementation 234

5.3.2 Simulation Results 235

A APPENDIX: SIGNAL DELAY ESTIMATORS 239

A.1 Basics 239
A.1.1 Elmore Delay 241

A.1.2 Two-Pole Analysis 242

A.2 Accuracy and Fidelity 246
A.2.1 Accuracy 247

A.2.2 Fidelity 248
REFERENCES 252
AUTHOR INDEX 275

TERM INDEX 281

Chapter 1
1.1 The VLSI design process.
1.2 A channel intersection graph.
Chapter 2
2.1 An MST and an SMT for the same pointset.
2.2 Hanan’s theorem.
2.3 Two types of SMTs.
2.4 Cost of the tour is equal to the bounding box perimeter.
2.5 Optimal overlap of MST edges within their bounding boxes.
2.6 Example with co’“gi{;ﬁ%“"”) = %
2.7 A separable MST where cosmgftfs_ A?;’;”ap) is close to g
2.8 The class C of greedy Steiner tree heuristics.
2.9 Example forcing a performance ratio arbitrarily close to g
2.10 The Iterated 1-Steiner (I1S) algorithm.
2.11 Execution of Iterated 1-Steiner.
2.12 Dirichlet cells with respect to directions ¢; and #5.
2.13 Locally replacing each plus with an MST.
2.14 I1S achieves % of the maximum possible savings.
2.15 The two possible Steiner tree topologies on 4 points.
2.16 Example where the I1S performance ratio is %
2.17 Example where the I1S performance ratio is %
2.18 Example where 11S outperforms MST-Overlap.
2.19 The construction of Berman et al..
2.20 Batching computations within the 1-Steiner approach.
2.21 The Batched 1-Steiner (B1S) algorithm.
2.22 The Perturbative Iterated k-Steiner (P1kS) method.

LIST OF FIGURES

Xi

18
19
20
22
26
27

28
29
31
32
32
33
37
38
38
38
39
39
40
45
45
47

List of Figures

2.23
2.24
2.25
2.26
2.27
2.28
2.29
2.30
2.31

Dynamic MST maintenance.

Linear-time dynamic MST maintenance.

The diagonal partition of the plane.

A truncated cube induces a cuboctahedral space partition.
The KMB heuristic for the GSMT problem.

The Graph Iterated 1-Steiner algorithm.

Example of the output of B1S on 300 points.

Average performance and speed of B18S.

Average performance of PI2S, B1S, and OPT.

Chapter 3

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21
3.22
3.23
3.24

Example with SPT cost Q(|N|) times the MST cost.
Increasing € may decrease tree cost but increase the radius.
The BPRIM algorithm.

BPRIM radius can be arbitrarily large.

BPRIM has unbounded cost performance ratio for any e.
A more general BPRIM template.

Unbounded cost performance ratio for H2 and H3.

Example for which BPRIM outperforms variants H2 and H3.

A spanning tree and its depth-first tour.

The BRBC algorithm.

The BRBC construction.

The KRY algorithm.

Sample executions for PD1 and PD2.

A minimum-cost rectilinear Steiner arborescence.
Illustration of the RSA heuristic of Rao et al.

Safe moves in the heuristic RSA construction.

A pathological instance for existing RSA heuristics.

The BPRIM and BRBC cost-radius tradeoffs.

Graph of radius ratio (TL((%%) versus cost ratio (;;—Z’t%%)
Execution of PD1 with ¢ = 0.5.

The ERT Algorithm.

Example of the progressive SERT Steiner tree construction.
Effect of the CSRT formulation on the optimal solution.

The CSRT problem is NP-hard for any technology parameters.

Xii

49
50
51
53
57
58
60
62
63

=1 =1 ~] =] =] =}
-1 & Ov U b o e

80
81
87
89
92
93
94
95
97
99
101
104
106
109
110

Xiii

3.25
3.26
3.27
3.28
3.29
3.30
3.31
3.32
3.33
3.34
3.35
3.36
3.37
3.38

ON OPTIMAL INTERCONNECTIONS FOR VLSI

The CS-Steiner heuristic.

Removal of V' and U configurations by GSR..
Pseudo-code for Global Slack Removal.

The SERT-C Algorithm.

SERT-C tree constructions for an 8-sink net.
Branch-and-Bound Optimal Routing Tree algorithm.
Maximal segment M and its four branches.
Counterexample to the separability property.

The Static Greedy Wiresizing algorithm.

The DWSERT algorithm.

Comparison of different wiresizing constructions.
Adding an edge to the MST reduces maximum sink delay.
The Low Delay Routing Graph algorithm.
Empirical results for the LDRG heuristic.

Chapter 4

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19

Two bad clock trees.

An optimal geometric matching over four terminals.
CLOCK]1: pathlength-balanced tree heuristic.

An example execution of CLOCK]1 on a set of 16 terminals.
H-flipping to reduce pathlength skew.

An edge belongs to at most one shortest path in a matching.
CLOCK2: pathlength-balanced tree heuristic.

An example execution of CLOCK2.

Output of variant GR+E+H on the Primary?2 layout.
Further optimizations can use loci of balance points.

A TRR with core and radius as indicated.

Construction of a merging segment: two cases.

Example of a tree of merging segments.

Intersecting two TRRs after 45-degree rotation.
Construction of the tree of merging segments.

Procedure Find.Exact_Placements.

Construction of the ZST by top-down embedding.

Optimal placement of siblings must satisfy distance constraint.

ZST which would be constructed by the DME algorithm.

110
111
112
114
116
121
125
131
132
133
135
136
137
138

147
148
149
150
151
153
155
156
161
163
166
167
167
168
169
170
171
175
178

List of Figures

4.20 Output of KCR+DME on the Primary2 benchmark layout.

4.21

Edges of an optimal planar ZST may overlap.

4.22 Contrast between the H-tree and Zhu-Dai solutions.

4.23

Rules to choose embedding point and splitting line.

4.24 The Planar-DME Algorithm.

4.25
4.26

An example of Planar-DME execution.
Planar-DME and Zhu-Dai ZSTs for Primary2 benchmark.

Chapter 5

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19
5.20
5.21
5.22
5.23
5.24
5.25
5.26

A four-terminal signal net.

A minimum density tree for a signal net.

Execution of the COMB construction.

Algorithm COMB for minimum-density spanning trees.
Execution of the COMB_ST Steiner tree construction.
Algorithm COMB_ST: for minimum-density Steiner trees.
Algorithm PEEL for low-density trees.

A class of worst-case examples for PEEL.

Expected minimum density of a net.

Computing a non-uniform lower bound on density.
Combining chains into a low-density tree.

Partitioning a net into strips/chains.

A 2-weighted graph and its induced graphs.

MST cost on multi-weighted graphs has no upper bound.
An upper bound for metric multi-weighted graphs.

A tighter upper bound for 3-terminal nets.

Topology of the three spanning trees.

A path P between two points s € Sandt € T.

A d-separating path P.

A discretized representation of a region.

A node and its d-neighborhood.

Transformation of PWP into network flow.
Transformation into an arc-capacitated flow network.
Finding a minimum cost prescribed-width path.
Prescribed-width paths among polygonal obstacles.
Prescribed-width path in a random smooth region.

Xiv

182
185
186
190
193
194
196

199
200
201
201
202
202
203
203
206
206
208
211
217
219
220
221
222
226
227
228
231
232
233
234
237
238

LIST OF TABLES

Chapter 1
Chapter 2

Chapter 3

3.1 Interconnect technology parameters.

3.2 Equivalences of algorithm parameters.

3.3 Average source-sink delay in spanning constructions.
3.4 Average source-sink delay in Steiner constructions.

3.5 CS-Steiner results.

3.6 ERT, SERT and SERT-C results for 5-terminal nets.
3.7 ERT, SERT and SERT-C results for 9-terminal nets.
3.8 Near-optimality of ERT delay and tree cost.

3.9 Near-optimality of SERT-C delay and tree cost.

3.10 Performance comparisons for the DWSERT algorithm.

Chapter 4

4.1 Average clock tree cost for the various heuristics.
4.2 Average clock tree cost for the various heuristics (continued).
4.3 Average pathlength skew for the various heuristics.

4.4 Average pathlength skew for the various heuristics (continued).

4.5 Min, ave, and max tree cost for MMM and GR+E-+H.

4.6 Min, ave, and max pathlength skew for MMM and GR+E+H.
4.7 Average tree costs and skews of KMB and CLOCK2 trees.
4.8 Delay and capacitance at each internal node.

4.9 Effect of DME on KCR and BB using linear delay.

4.10 Comparison of algorithms for the Elmore delay model.

Xv

69

98
100
102
117
118
119
122
127
134

158
158
159
159
160
160
162
180
181
181

List of Tables

4.11 Comparison of Planar-DME with other algorithms.

Chapter 5

5.1 Tree density statistics.
5.2 'Tree cost statistics.

Appendix A

A.1 Accuracy of the Linear, Elmore and Two-Pole estimates.

A.2 TFidelity: average difference in rankings of topologies.
A.3 Average SPICE delay ratios for the top 19 topologies.
A.4 SPICE suboptimality of Elmore delay (percent).

XVi

195

214
215

248
249
251
251

ON OPTIMAL
INTERCONNECTIONS
FOR VLSI

PRELIMINARIES

1.1 PREFACE

This book discusses problems of “optimal interconnection” and describes effi-
cient algorithms for several basic formulations. Our domain of application is
the computer-aided design (CAD) of very large-scale integrated (VLSI) circuits,
wherein interconnection design is now one of the most actively studied areas.
However, much of what we develop can be applied to other domains ranging
from urban planning to the design of communication networks. Because most
formulations that we study are intractable, the term “optimal” in some sense
is a misnomer: rather, our focus is on the reasoned and principled development
of good heuristics.

This book is an outgrowth of the 1992 Ph.D. dissertation of Gabriel Robins
[203] at the UCLA Computer Science Department. As such, it retains a highly
personal perspective: it gives a retrospective of our own research, and it is col-
ored by our research interests and our background in discrete algorithms and
optimization. Qur treatment also attempts to convey a sense of history — how
our field has co-evolved with an emerging “science of VLSI design”. With recent
years having seen VLSI designs become increasingly performance-dominated,
and thus interconnect-dominated, VLSI interconnections are indeed a rich do-
main for this historical view. In particular, our research on interconnection
design has spanned the field’s rapid transition from purely geometric formula-
tions to more “physically-motivated” formulations.

Although we do not attempt an encyclopedic treatment, we do describe key
relevant works, and the discussion is largely self-contained. We envision that
this book will be useful as a reference for researchers and CAD algorithm de-

2 CHAPTER 1

velopers, or as reading for a seminar on VLSI CAD, heuristic algorithms, or
geometric optimization. Our own codes, which are cited throughout the book,
are freely available to interested parties; see our contact information below.

1.2 THE DOMAIN OF DISCOURSE: ROUTING IN VLSI
PHYSICAL DESIGN

Let us first outline the context for our particular subfield of VLSI CAD, namely,
the global routing phase of physical design. For more complete reviews of VLSI
design, and physical design in particular, the reader is referred to [168, 182, 194,
216).

The goal of VLSI CAD is to transform a high-level system description into a
set of mask geometries for fabrication. This is typically accomplished by the
following sequence of stages (see Figure 1.1).

= Design Specification: Starting from a real-world requirement (e.g. “se-
cure communication”), a high-level system description (e.g., the “DES”
data encryption standard) is developed which includes such parameters as
architecture, performance, area, power, cost and technology.

s Functional Design: The design is transformed into a behavioral specifi-
cation which captures the system I/O behavior using mathematical equa-
tions, timing diagrams, instruction sets and other devices.

s Logic Design: The functional design is represented in logical form, typ-
ically via Boolean expressions which may be subsequently optimized to
reduce the complexity of the system description.

® Structural Design: The logic design is represented as a circuit using
components from an available library of modules (e.g., NAND and NOR
gates, standard cells, or building-block macros); this may also involve tech-
nology mapping steps.

® Physical Design: The structural design is transformed into the mask
geometry for fabrication while adhering to underlying design rules for the
chosen technology.

The last stage in this process, physical design, contains our area of interest.
Physical design consists of two major steps. First, the placement step maps

Preliminaries

Requirements

Design
Specification

'

Functional Design

7

Logic Design

Y

Structural Design

'

Physical Design

'

Fabrication

Figure 1.1

Secure
Communication

Data Encryption
Standard

c(m) = mP mod n

P ‘*"'_

The VLSI design process.

functional units (modules) onto portions of a layout region, e.g., the surface of
a chip. Second, the routing step interconnects specified sets of terminals, i.e.,
the signal nets of the design, by wiring within routing regions that lie between
or over the functional units. (A signal net consists of a module output terminal

4 CHAPTER 1

together with the various module input terminals to which the output signal
must be delivered.)

Within the field of physical design, prevailing objectives have evolved over the
years in response to advances in VLSI technology. When system operating
frequencies were dominated by device switching speeds, placement and routing
optimizations centered on reduction of total routing area. Subsequent advances
in fabrication technology have increased packing densities, allowing more and
faster devices to be placed on larger ICs. Leading-edge fabrication technology
now goes well into submicron feature sizes, and circuit speeds are approaching
gigahertz frequencies. The reduced feature size implies more resistive inter-
connects, and increased system complexity implies larger layout regions. Thus,
minimization of interconnection delay has become the major concern in physical
design.

In light of this trend, performance-driven physical design has seen much re-
search activity within the past five years. Early works focused on performance-
driven placement, with the standard objective being the close placement of
modules belonging to timing-critical paths. However, performance-driven place-
ment algorithms will achieve their intended effect only when the associated
routing algorithms can realize the full potential of a high-quality placement.
Thus, the emphasis in routing objectives has shifted from area minimization
to delay minimization, and more recently to the control of interconnect delay
(e.g., by limiting skews or delays at particular terminals). This range of routing
objectives — area, delay, skew and beyond — defines the scope of this book.

Once an objective has been established, the actual routing of a given signal
net can be decomposed into global and detailed routing. The global routing
phase is a higher-level process during which the routing topologies of signal
nets are defined over the available routing regions. Then, the detailed routing
phase produces the actual geometries which realize the required connectivity
on the {abricated chip. Our work applies to the global routing phase of physical
design.

We assume that during the global routing phase, all module and terminal lo-
cations have already been fixed in the plane, so that we need only ensure

1 This traditional taxonomy may seem ambiguous. We do not address standard “detailed
routing” topics such as switchbox routing or river routing. However, optimizing routing
area and performance requires a concern with the specific geometry of the routing. In our
discussion, we will define a routing topology by specifying for each edge its length and width,
and the location of its endpoints; our work addresses “global routing” in that the particular
detailed embedding of an edge between its endpoints does not matter.

Preliminaries 5

electrical connectivity of the signal nets. With standard-cell or gate-array de-
sign methodologies, which have many small functional modules, global rout-
ing may be viewed as taking place in Manhattan geometry, i.e., distances be-
tween terminals are given by rectilinear distance. In other words, these design
methodologies possess sufficiently high porosity that the routing problem can
be formulated in the geometric plane. On the other hand, building-block design
methodologies involve larger functional blocks or macro cells. Since these are
often treated as obstacles, the routing problem is formulated with respect to a
weighted routing graph that represents the available routing area. A standard
model is the channel intersection graph (CIG), where each edge represents a
channel(i.e., the empty rectangular space between adjacent modules) and each
vertex corresponds to the intersection of two orthogonal channels [193] (see
Figure 1.2). The edge weights of the CIG can be used to model channel width
or congestion.

Figure 1.2 A channel intersection graph induced by a set of mod-
ules, and a routing tree that connects the highlighted terminals.
The source is shown by a hollow dot.

6 CHAPTER 1

A “true” global router processes multiple signal nets simultaneously using such
techniques as simulated annealing, multicommodity flow or mathematical pro-
gramming. However, many existing codes are sequential, or “net-at-a-time”, in
that they establish a heuristic ordering of nets for routing and use ripup-and-
retry techniques when the routing fails. (There are also even more fine-grain
methods which route individual two-terminal subnets of signal nets.) With
either type of global router, the key operation is to compute a good routing
topology over a single signal net: hence, this book deals exclusively with meth-
ods that route a single net at a time.

As with previous routing constructions that have formed the basis of new global
routers (e.g., “Steiner min-max trees”), each method that we develop can be
transparently integrated into existing global routing approaches. In the math-
ematical programming approach, finding a routing solution for a given net
generates a new entering basis column within a primal-dual iteration. In the
sequential approach, routing solutions are found for the highest-priority nets
first, leaving lower-priority nets to encounter more congestion and blockage.
After each net is routed, the routing region costs (e.g., CIG edge weights) can
be updated before the next net is processed.

We conclude this section with a review of basic conventions and terminology
used throughout the book. We define a terminal to be a given location in the
layout region. A signal net S = {s¢, 51,52,...,5n} is a set of n 4+ 1 terminals,
with one terminal sq € S a designated source and the remaining terminals sinks.
A routing solution is a set of wires that connects, i.e., spans, the terminals of a
net so that a signal generated at the source will be propagated to all the sinks.

The rectilinear wiring technology implies an underlying “Manhattan” geome-
try, where the distance between points a and b is d(a, b) = |az — bz | + |ay — by,
i.e., the sum of the differences in their z- and y-coordinates. A segment is
an uninterrupted horizontal or vertical wire, and any connection between two
terminals will consist of one or more wire segments. VLSI and printed circuit
board technologies admit multiple routing layers, where a preferred-direction
routing methodology is used to facilitate design, manufacturability and reliabil-
ity. In other words, the available wiring layers are partitioned, with horizontal
wire segments preferentially routed on certain layers, and vertical wire seg-
ments routed on the other layers. A connection between two wire segments
from different layers is called a via.

Sometimes it is convenient to embed S in an underlying routing graph G =
(V,E), consisting of a set of vertices V and a set of edges E C V x V. Thus,
the set of terminals is some S C V. A subgraph of G is a graph G’ = (V') E')

Preliminaries 7

with V! C V and E' C F, and E' C V' x V'. A routing solution is a subgraph
of G that spans S. A path between two vertices z,y € V is a sequence of k
edges of the form (z,v;,), (vi,, vi,), - . -, (viy, y), where (v;,v;,,,) € E for all
1< m < k—1. A graph is connected if there exists a path between each pair
of vertices. A graph is a tree if it is connected but the removal of any edge
will disconnect it. Since a tree topology uses the fewest edges of any spanning
graph over the signal net, i.e., [S| — 1 = n edges, routing formulations typically
seek a tree topology.

A weighted graph has a non-negative real weight assigned to each of its edges.
The cost of a weighted graph is the sum of its edge weights. A shortest path in
G between two vertices z,y € V, denoted by minpathg(z,y), is a minimum-
cost path connecting x and y. In a tree T', minpathy(z,y) is simply the unique
path between z and y. For a weighted graph G we use distg(z,y) to denote
the cost of minpathg(z,y). The distance from the source to a given sink s; in
a tree is denoted as l; = distr(so, s;).

Because a signal net is inherently oriented from its source to its sinks, we use
the special notation R; to denote the cost of the shortest sg-s; path in G, i.e.,
R; = distg(so,s;). We use R to denote the maximum R; value over all sinks
s;, and say that R is the radius of the signal net. The radius of a routing tree
Tisr(T) = Jnax l;. Additional terminology will be developed throughout the

following chapters, as needed. The reader is referred to, e.g., [67] or [92] for a
more rigorous development of basic graph-theoretic concepts.

As noted at the outset, most problems encountered in VLSI CAD, including
all of the interconnection formulations that we address, are intractable. While
we resort to heuristic solutions, a basic precept in our work is to prove that our
proposed heuristics perform well. For example, we often strive to show that
the heuristic solution cost in the worst case (or average case) is no more than a
constant factor from optimal. Since the practical relevance of a heuristic may
hinge on issues beyond asymptotic time and space complexity, we also augment
our performance bounds with empirical simulations using standard test cases
from the literature, e.g., those maintained by ACM SIGDA (currently available
by anonymous ftp to <menc.org>).

8 CHAPTER 1

1.3 OVERVIEW OF THE BOOK

Beyond its sketch of our application domain of VLSI routing, the present chap-
ter also surveys the main results contained in this book. Chapters 2, 3 and 4
are respectively entitled Area, Delay, and Skew. These form the core of the
book, and address three fundamental routing objectives: (i) minimization of
total wirelength, (ii) minimization of signal delay, and (iii) minimization of
skew among signal arrival times. Chapter 5 provides new frameworks for the
simultaneous optimization of multiple competing objectives; one such frame-
work allows various unifications of the techniques developed in the preceding
three chapters. The following subsections summarize the key developments of
each chapter.

1.3.1 Minimum Area: The Steiner Minimal Tree Problem

VLSI design rules dictate a minimum separation between wires, and therefore
the area occupied by the routing on a chip is roughly proportional to the total
wirelength of the routing. Added wirelength generally increases signal delay
and power consumption due to increased resistance and capacitance. Other
system cost measures, e.g., those based on fabrication cost, yield and reliability,
also increase with chip area. Thus, a fundamental objective is to minimize the
total wirelength required to connect a prescribed set of points in the plane, i.e.,
the terminals of a given signal net. The subject of Chapter 2 is the Steiner
minimal tree (SMT) problem, which for a given net S asks for a set S’ of Steiner
points such that the total edgelength of the minimum spanning tree (MST)
over SU S’ is minimized. The main insight is that the points of S’ will serve
as internal nodes of the tree — “intermediate junction points” — which reduce
the interconnection cost. Without introducing such points, the minimum-cost
solution would simply be a minimum spanning tree over S.

The SMT problem is well-studied in combinatorial optimization and network
design; see the monographs [138] and [139]. The geometry of VLSI, which
usually allows only vertical and horizontal wiring directions, has motivated
studies of the rectilinear version of the problem, typically for the wirelength
estimation and global routing phases of layout design. With only a few highly
constrained exceptions, existing variants of the SMT problem are NP-complete.
Most SMT heuristics in the literature have analogies to classic minimum span-
ning tree constructions; this is in part due to the MST being a constant-factor
approximation to the SMT, with performance ratio % in the rectilinear metric.
However, the first result of Chapter 2 defines a general class of “MST-based”

Preliminaries ' 9

SMT heuristics, and shows that such methods cannot have performance ratio
better than that of the simple MST approximation.

The focus of Chapter 2 lies in developing the Iterated 1-Steiner (I1S) heuris-
tic, which iteratively finds optimal Steiner points that are added directly into
the set S. The I1S construction thus avoids traditional analogies to minimum
spanning tree solutions, and in practice achieves good performance even on
inputs that are pathological for previous heuristics. For random 8-point planar
instances, 11S solution costs are optimal for 90% of all instances, and average
within 0.25% of optimal overall. (The I1S approach also applies to graph in-
stances and higher-dimensional geometric instances.) The chapter describes a
straightforward, efficient implementation of I1S, along with such enhancements
as a parallel implementation that achieves near-linear speedup. Similarities
between I1S and the recent method of Zelikovsky are also discussed.

Finally, Chapter 2 develops the result that any pointset in the Manhattan plane
has an MST with maximum degree 4, and that in three-dimensional Manhattan
space the maximum MST degree is 14 (the best previous bounds were 6 and 26,
respectively); this improves I1S runtimes and is also of independent theoretical
interest. The chapter concludes with a discussion of the Steiner problem in
graphs.

1.3.2 Minimum Delay: Toward Optimal-Delay Routing Trees

Chapter 3 considers minimization of signal delay, which is synonymous with
“performance-driven” system design. As VLSI technology scales to smaller fea-
ture sizes and larger layout areas, signal delays become interconnect-dominated,
i.e., signal delay through interconnects increasingly dominates delay through
devices. In leading-edge technologies, minimum-delay wiring topologies can
differ substantially from minimum-area (SMT) wiring topologies.

The signal delay objective takes us from the unoriented pointset of the Steiner
minimal tree problem to an oriented collection of terminals in the layout plane.
Such a collection of terminals, which we call a signal net, has one identified
source terminal; the remaining terminals are sinks. Typically, the source ter-
minal is the output of a gate, and the sinks are the fanins for that output signal
at inputs of other gates.

The discussion of Chapter 3 centers on four issues which have guided re-
cent progress in minimum-delay routing heuristics. First, there is the issue

10 CHAPTER 1

of technology-dependence in the routing construction, e.g., a simple analysis of
‘Elmore delay in distributed RC trees shows that routing objectives should be
dependent on parameters of the prevailing interconnect technology. We thus
give a taxonomy of methods based on their tunability to specific technology
parameters and signal net criticalities, and demonstrate the advantages of such
tunable methods as the “Elmore routing tree” approach and the Prim-Dijkstra
tradeoft.

Second, the chapter compares “actual delay”, versus geometric, routing objec-
tives. To a first-order approximation, signal delay from the source to a given
sink is proportional to the source-sink pathlength in the routing tree. This lin-
ear delay approximation suggests minimizing the maximum source-sink path-
length in the routing tree (i.e., a geometric “minimum-radius” criterion). On
the other hand, reducing the total cost of the routing tree will reduce its lumped
capacitance (i.e., a geometric “minimum-cost” criterion). We review how early
works employed geometric criteria to achieve tractability in both the design
and the analysis of routing heuristics. Of particular interest is a “bounded-
radius, bounded-cost” (BRBC) approach which seeks a minimum-cost routing
tree subject to a given bound on tree radius; we describe an algorithm which
simultaneously minimizes both tree cost and tree radius to within constant
factors of optimal. The BRBC approach and its analysis generalize to Steiner
routing and to routing in arbitrary weighted graphs that capture the variation
of routing costs over the layout region. The chapter gives details of recent meth-
ods, notably the “Elmore routing tree” variants which obtain reduced signal
delays by optimizing higher-order delay estimates directly.

Third, we discuss minimization of sink-dependent delay, as opposed to net-
dependent delay. Here, the key observation is that timing-driven placement and
routing are typically iterated with static timing estimation, so that critical-path
information is available during the routing tree construction. With this in mind,
the traditional objective of minimizing maximum sink delay is “net-dependent”
in that it ignores available path-dependent information. An approach which
optimizes delay to identified critical sinks, such as that given in 1993 by Boese,
Kahng and Robins [34], seems better matched to modern design methodologies.
More recent work of Boese et al. provides an interesting addendum to the
earlier SMT discussion: it generalizes Hanan’s theorem to Elmore delay-optimal
Steiner trees and gives a new “peeling” decomposition for optimal Steiner trees.

Finally, Chapter 3 addresses the issue of demonstrable quality for minimum-
delay routing heuristics. Analogous to the empirical studies of the I11S SMT
heuristic in Chapter 2, we present empirical studies showing near-optimality of
a construction for minimum Elmore delay at prescribed critical sinks. The chap-

Preliminaries 11

ter concludes with a review of two other recent advances in performance-driven
interconnect design; these involve wiresizing and non-tree routing techniques.
An Appendix provides the basic theory behind several efficient delay estimates,
and also discusses measures of accuracy and fidelity for the linear, Elmore, and
two-pole delay approximations.

1.3.3 Minimum Skew: The Zero-Skew Clock Routing Problem

In a high-performance VLSI design, circuit speed is limited not only by the
signal propagation within and between circuit elements, but also by the skew
between signal arrival times. The form of skew most often studied is clock
skew, i.e., the difference between longest and shortest arrival times of a clock
signal at synchronizing elements of the circuit. Clock skew minimization, and
in particular the “zero-skew clock routing” problem, has become a central issue
in the design of leading-edge systems. However, it should be noted that skew
control for arbitrary signal nets is also of increasing importance, as are related
problems of prescribed-skew or bounded-skew routing.

Chapter 4 discusses clock tree construction to minimize skew and wirelength as
a combination of two processes: topology generation, and geometric embedding
of the topology. We present methods which accomplish each of these processes
using either the linear or Elmore delay model to guide the construction. Our
discussion focuses on so-called “exact zero skew” clock routing constructions.

The first part of Chapter 4 uses the linear delay model to motivate a pathlength-
balanced tree problem formulation, which seeks a minimum-cost tree with all
source-sink pathlengths of equal length. We describe a simple approach, based
on iterative geometric matching, for generating a clock tree topology while
simultaneously embedding it in the layout region.

The second part of the chapter describes the Deferred-Merge Embedding (DME)
algorithm, which embeds any prescribed connection topology (i.e., a binary tree
with the clock sinks at the leaves), so as to create a clock tree with zero skew
while minimizing total wirelength. The algorithm runs in linear time, and
always yields ezact zero skew trees with respect to a given monotone delay
model such as linear or Elmore delay. The DME method achieves substantial
cost reductions over earlier constructions, and can be combined with previous
methods that concentrate on generation of the clock tree topology.

12 CHAPTER 1

Finally, the third part of the chapter unifies the topology generation and geo-
metric embedding of exact zero-skew clock trees. Under the linear delay model,
the two phases of the DME algorithm (bottom-up identification of loci for “zero-
skew balance points”, followed by top-down selection of these balance points
within a minimum-delay zero-skew embedding) can be replaced by a single top-
down phase. Where DME would nominally require a prescribed topology as
input, this top-down construction allows the clock tree topology to be deter-
mined dynamically and flexibly while being optimally embedded at the same
time. A natural outgrowth is a DME-like algorithm for single-layer, exact
zero-skew clock routing; such a construction is increasingly sought to minimize
signal attenuation through vias, simplify buffering optimizations, and maximize
process-variation independence.

Chapter 4 also describes extensions of these clock routing methods to “min-
max” delay constraints and bounded-skew routing for general signal nets. The
chapter concludes by noting additional issues and problem formulations, includ-
ing optimal buffering hierarchies for minimum phase delay, and multiple-level
clock trees for multi-chip module packaging.

1.3.4 Multiple Objectives

The last chapter of the book, Chapter 5, discusses frameworks and techniques
which enable the simultaneous optimization of multiple competing objectives.
Section 5.1 notes that beyond the nominal total wirelength, the grid-based
structure of VLSI routing resources provides additional information for deter-
mining the impact of a given routing solution on layout area. The discussion
explores a new minimum density objective for spanning and Steiner tree con-
structions, which seeks to balance the use of horizontal and vertical routing
resources. We describe two heuristic constructions for low-density spanning
trees whose outputs are within small constants of optimal with respect to both
tree cost and density. (The proof techniques suggest a constructive lower bound
scheme which affords tighter estimates of solution quality for a given problem
instance.) Of particular interest is that the minimum density objective can
be transparently combined with, e.g., minimum radius or minimum skew —
without affecting asymptotic solution quality with respect to these competing
objectives.

While previous chapters each focus on a fundamental routing criterion (i.e.,
area, delay or skew), many secondary objectives may exist, including con-
gestion avoidance, jog minimization, reliability, etc. Section 5.2 develops a

Preliminaries 13

general framework of multi-weighted graphs, in which multiple competing ob-
jectives can be simultaneously optimized. This is accomplished by assigning
to each edge a vector of weights, corresponding to the various optimization
criteria; graph searches are then guided by the weighted average of the edge
weights according to designer-specified tradeoff parameters. This framework is
applicable to graph-based routing regimes, such as building-block design and
field-programmable gate array layout.

Finally, we describe optimization within the framework of a continuously-
weighted layout region, which can be induced by the simultaneous consideration
of multiple criteria (e.g., reliability, thermal density, and routing congestion).
Within this framework, we consider a problem which has applications ranging
from circuit board routing to vehicle navigation, namely, finding a minimum-
cost prescribed-width path connecting a given source and destination [131].
Previous path routing approaches such as Dijkstra’s algorithm implicitly as-
sume that the path is of zero width, but this assumption is usually not realistic
(e.g., consider routing a wide bus, or traces on a circuit board). Section 5.3
develops a network-flow based approach to prescribed-width routing in a con-
tinuously weighted region. Interestingly, the extension to higher dimensions
can solve a discrete version of Plateau’s problem, which seeks a minimum-area
surface that spans a given closed curve [130)].

1.4 ACKNOWLEDGMENTS

This book is the product of the research, suggestions, and technical assistance
of many individuals. We first thank the students who have been so dedicated to
the research that forms the basis of this book. In alphabetical order?, they are:
Mike Alexander, Charles J. Alpert, Kenneth D. Boese, Dennis Jen-Hsin Huang,
Berni A. McCoy, Chung-Wen Albert Tsao and Tongtong Zhang. Any list of
specific debts must begin with Ken Boese, who developed much of the core
material in Chapters 3 and 4, including the characterization of delay-optimal
routing trees and the results concerning the DME clock routing algorithm. The
precise exposition in these sections is a product of Ken'’s efforts. Berni McCoy
dedicated well over a year to investigations of accuracy and fidelity of delay
estimates, near-optimality of the ERT construction, dynamic wiresizing and
non-tree routing — these results appear throughout Chapter 3. Mike Alexander
developed the graph generalization of I1S in Chapter 2, as well as the multi-

2Since early 1991, listing names in alphabetical order has been the “official” policy on all
our publications as well.

14 CHAPTER 1

weighted graphs framework of Chapter 5. Chuck Alpert and Dennis Huang
pursued the Prim-Dijkstra tradeoff of Chapter 3 through its many incarna-
tions; Chuck also contributed to the study of minimum-density routing trees in
Section 5.1. Albert Tsao developed the Planar-DME algorithm which forms the
capstone of Chapter 4. Ken and Chuck, along with Lars Hagen, provided many
critical comments as this book took shape. Brett Coryell and Brian Robinson
provided invaluable help throughout the final stages of writing. Certainly, it is
our students who have always been our best critics, motivators, and colleagues.

The various research collaborations that form the basis of this book list a num-
ber of other coauthors: Tim Barrera, Ting-Hai Chao, Jim Cohoon, Jason Cong,
Todd Hodes, Joseph Ganley, Jeff Griffith, Jan-Ming Ho, Yu-Chin Hsu, T. C.
Hu, David Karger, Kwok-Shing Hardy Leung, Sally McKee, Sudhakar Muddu,
Jeff Salowe, Majid Sarrafzadeh, C. K. Wong and Dian Zhou. David Karger
suggested the second Prim-Dijkstra tradeoff of Chapter 3. Dian Zhou provided
us with the original “Two-Pole” simulator code, while Sudhakar Muddu pro-
vided invaluable amendments to this code and the totality of our knowledge
concerning delay analysis of interconnects. Jason Cong provided the geometric
analysis of H-flipping cited in Chapter 4, as well as the bounded-radius min-
imum routing tree problem formulation in Chapter 3. Since 1990, Jason and
his students have brought much energy to VLSI CAD at UCLA.

Others who have over the years provided advice, feedback, and/or use of their
codes include: Jim Aylor, Marshall Bern, Stephen Brown, John Canny, Pak
Chan, Kamal Chaudhary, Brett Coryell, Erik Cota-Robles, Wayne Wei-Ming
Dai, Milos Ercegovac, Eli Gafni, Basil Gordon, Sheila Greibach, Lars Hagen,
Rajeev Jain, Kevin Karplus, Samir Khuller, Ernest S. Kuh, C. L. Liu, John
Pfaltz, Sinai Robins, Brian Robinson, Jonathan Rose, Andy Schwab, Michael
Shur, Ashok Vittal and Neal Young. Eli Gafni provided the key pointer to
the shallow-light construction of Awerbuch, Baratz and Peleg that led to the
BRBC algorithm in Chapter 3.

The dedication of this book, “To the field of VLSI CAD”, requires some elabo-
ration. As newcomers to the field, we are grateful for the inspiration provided by
the leading researchers who preceded us. Above all, Professor T. C. Hu of U.C.
San Diego has been the one constant source of guidance, wisdom and research
interaction in our academic careers. His influence predates our studies in VLSI
CAD, and goes much deeper; he has truly shaped us both. Professor Ernest
S. Kuh of U.C. Berkeley has profoundly influenced how the field of VLSI CAD
is defined today. There is an ethic of quiet excellence in “kuhsgroup” alumni:
Professors Chung-Kuan Cheng, Kwang-Ting (Tim) Cheng, Wayne Wei-Ming
Dai and Malgorzata Marek-Sadowska, as well as Professor Kuh himself, will

Preliminaries 15

long remain our models of collegiality, activity and impact. Professor C. L. Liu
of the University of Illinois has for several years given wholeheartedly of his
experience, advice, and support. He is a gifted teacher, scholar and raconteur,
and it is always a rare pleasure to be in his company. His former students —
Jason Cong and Martin Wong in particular - are of course models for all young
faculty in the field. Further inspirations have derived from Majid Sarrafzadeh
at Northwestern University; Daniel Gajski and his group at U.C. Irvine; Robert
Brayton at U.C. Berkeley; Thomas Lengauer at GMD Bonn; Ralph Otten at
Delft; and many others. The field that brings such individuals together truly
deserves to flourish.

On a more personal level, Gabriel Robins would like to thank Bill Wulf and
Anita Jones for all their support and sage advice, and for inspiring and nur-
turing so much of the shared vision that is unique to computer science at the
University of Virginia. Randy Pausch has been a continuing source of inspira-
tion, and a firm advocate of “the right culture”. Together, the UVa Department
of Computer Science and its Chair Jim Ortega deserve much credit for their
support of young faculty development.

Our work was supported by National Science Foundation Young Investigator
Awards MIP-9257982 and MIP-9457412, by National Science Foundation Re-
search Initiation Award MIP-9110696, by Army Research Office grants DAAK-
70-92-K-0001 and DAAL-03-92-G-0050, by setup funds provided by the UCLA
School of Engineering and Applied Science during 1989-1991, by research initi-
ation funds provided by the University of Virginia School of Engineering during
1992-1993, and by an IBM Graduate Fellowship. Part of this book was written
during a Spring 1993 sabbatical that was hosted by Professor Ernest S. Kuh
and his research group. Finally, this book would not exist without the incredi-
ble patience of Carl Harris at Kluwer Academic Publishers — a debt that goes
beyond any possible statement of thanks.

Andrew B. Kahng Gabriel Robins

Department of Computer Science Department of Computer Science
University of California, Los Angeles University of Virginia

Los Angeles, CA 90024-1596 Charlottesville, VA 22903-2442

<abk@cs.ucla.edu> <robins@cs.virginia.edu>

AREA

Overview

To achieve a minimum-area layout, circuit interconnections should in general
be realized with minimum total wirelength. This chapter discusses the cor-
responding Steiner minimal tree (SMT) problem, which seeks to connect a
given set of points in the plane using the minimum amount of wiring. The
SMT problem is central to VLSI global routing and wiring estimation; it also
arises in such non-VLSI applications as communication network design. Re-
cent reference books treat the Steiner problem in detail [138, 139]. Thus, in
this chapter we will limit our discussion to the rectilinear SMT formulation,
which reflects the Manhattan geometry of VLSI layout. The discussion focuses
on an iterative construction, called Iterated 1-Steiner, that eschews traditional
analogies to minimum spanning tree solutions. Practical implementation issues
are discussed as well.

Our development will be as follows. We first demonstrate that many existing
SMT heuristics have a performance ratio of % in the Manhattan plane, which is
the same bound achieved by the minimum spanning tree (MST) construction.
We then develop the Iterated 1-Steiner (I1S) heuristic, an iterative construc-
tion that can achieve good performance even on inputs that are pathological for
previous methods. For uniform distributions of 8-point instances in the plane,
I1S obtains solution costs that are optimal for 90% of uniformly distributed
instances, and average within 0.25% of optimal overall. (The I1S approach
also applies to graph instances and higher-dimensional geometric instances.)
We present a straightforward implementation of I1S, along with a parallel im-
plementation that achieves near-linear speedup. Similarities between I1S and
the recent method of Zelikovsky are also discussed. Finally, we show that any

16

Area 17

pointset in the Manhattan plane has an MST with maximum degree 4, and
that in three-dimensional Manhattan space the maximum MST degree is 14
(the best previous bounds were 6 and 26, respectively): this result improves
I1S runtimes and is of independent theoretical interest. The chapter concludes
with a discussion of the Steiner problem in graphs.

2.1 INTRODUCTION

In the Manhattan, or Ly, plane, the distance between points (a5, ay) and (b, by)
is given by |a; — b;| + |ay — by|. This is also known as rectilinear distance, and
reflects the cost of wiring between two points in a VLSI layout.! Given a set
P of n points in the plane, we often wish to connect these points using as
little wire as possible. This objective arises in minimum-area VLSI global rout-
ing (since minimum-spacing design rules imply a roughly linear relationship
between wirelength and wiring area), with P corresponding to the set of termi-
nals in a signal net. In succeeding chapters, each terminal in the signal net will
be distinguished as either a “source” or “sink”, i.e., the interconnecting wire
will have an implicit orientation. However, in this chapter we cast our descrip-
tion in terms of generic points in the plane since a solution to the problem of
minimum-wirelength interconnection is inherently unoriented.

When all wires are “point-to-point”, with no intermediate junctions other than
points of P, the optimum solution is a minimum spanning tree (MST) over
P, denoted as M ST(P). However, in VLSI routing it is possible to introduce
intermediate junctions — called Steiner points ~ in connecting the points of P.
The resulting planar Steiner minimal tree (SMT) problem is the subject of this
chapter. .

The Steiner Minimal Tree (SMT) Problem: Given a set P of n points in
the plane, determine a set S of Steiner points such that the MST over PU S
has minimum cost.

An optimal solution to this problem is referred to as an SMT over P, or
SMT(P). Here, an edge in a tree T has cost equal to the distance between its
endpoints; the cost of T itself is the sum of its edge costs, and is denoted by
cost(T).

IMore generally, the distance between two points in the L, plane is given by
(Az)P + (Ay)P. Thus, p = 1, p = 2 and p = ~o define the Manhattan, Euclidean and
Chebyshev norms.

18 CHAPTER 2

We will focus on the rectilinear Steiner minimal tree problem, where every edge
is embedded in the plane using a path of one or more alternating horizontal and
vertical segments between its endpoints. Where no confusion is possible, we
will overload the two concepts of a graph edge and a “physical” (i.e., embedded
in the plane) edge, for example, when we speak of “connecting a point to an
edge”. Implicitly, we also assume that only a shortest-possible path of segments
can be used to embed a given edge. Thus, an edge is embedded using some
monotone, or “staircase”, path between its endpoints. The bounding bozx of
a pointset P denotes the minimum rectangle which contains all points of P
and whose sides are oriented parallel to the coordinate axes. If an edge is
embedded with minimum cost, its routing will remain within the bounding box
of its endpoints.

Beyond its application to VLSI global routing, the rectilinear SMT problem
also arises in wirelength estimation for circuit layout. Figure 2.1 shows an
MST and an SMT for the same pointset in the Manhattan plane.

Figure 2.1 An MST (left) and an SMT (right) for a pointset with
n = 4; hollow dots represent the original pointset P, and solid dots
represent the set S of Steiner points.

Three results have greatly influenced the progress of research on the SMT
problem. First, consider the set H(P) of intersection points that are obtained
when horizontal and vertical gridlines are drawn through every point of P.
Hanan [116] showed that there exists an SMT whose Steiner points S are all
chosen from H(P), which we call the Steiner candidate set or the set of Hanan
points (see Figure 2.2).2 Snyder [222] has generalized Hanan’s result to all
higher-dimensional Manhattan geometries, and extensions to certain allowed-
angle geometries {210] seem possible.

2Hanan's proof relies on a perturbative argument: if an edge of an SMT does not lie in
the “Hanan grid”, it can always be shifted onto a gridline without increasing the tree cost.
Similar arguments have been applied by Chiang et al. [53] to prove a Hanan-like result for
the SMT problem in a planar layout with varying routing region costs.

Area 19

O

F
A
J

o— O

Figure 2.2 Hanan’s theorem: there exists an SMT with all Steiner
points chosen from the intersection points of horizontal and vertical
lines drawn through points of P.

Second, Garey and Johnson showed that despite this restriction on the set of
possible Steiner points, the rectilinear SMT problem is NP-complete [106]. Only
a very few special cases have been solved optimally, e.g., a linear-time solution
exists when all points of P lie on the boundary of a rectangle [2, 59], and
pseudopolynomial algorithms have been proposed for the case when there are a
limited number of rectilinear obstacles in the plane [52, 184]. Many heuristics
have been proposed for the general problem, as surveyed in [138, 139].

In attacking intractable problems, a standard goal is to achieve a “provably
good” heuristic, typically in the sense of having constant-factor performance
ratio.3 In light of the intractability of the rectilinear SMT problem, a third
fundamental result is that of Hwang [135], who showed that the MST over
P is a fairly good approximation to the SMT, with performance ratio %, Le.,

cost(M ST (P < cost(SMT(P)) >

cost(MST(P)) . 3 i 2 i
cost(SMT(P)) S g (or equivalently, cosi(MET(P)) 2 :23) for any pointset P. Be-
cause the proof of this result is not trivial, and because several details will later
prove useful, we first digress to sketch Hwang’s proof.

Theorem 2.1.1 (Hwang, 1976) For any pointset P, %;‘:{%‘% > %

Proof: The proof is by induction on the size of P. Given pointset P =
{po,p1,-..,Pn-1}, let M be the set of all SMTs over P. Partition M into M,
and M,, where an SMT m is in M, exactly when all nodes of P have degree

3The performance ratio of a heuristic is its asymptotic worst-case error from optimal. Let
I denote an instance of a problem with optimal solution cost opt(I), and let H(I) denote the
cost of the solution returned by heuristic H on instance /. Then, the performance ratio of H

. . —i—)—H I
is limp e oo SUP|1|=n opt(1)’

20 CHAPTER 2

= 1in m (i.e., each node of P is a leaf in m; such a topology has been termed
a full Steiner topology in the literature). All other SMTs are in M,. For any
m € Mj, we can split m into two components at a node having degree > 2,
and apply the induction hypothesis to each component separately. Thus, we
need only prove the theorem for m € M;. For any SMT m € M,, observe that
all Steiner points of m lie on a straight line, except perhaps the last one (see
Figure 2.3).

oPo
h h, ¥
p°°_°_v X P, o._'__J.s‘
1
S, $———o p, vV h, b
v, S, °n

Sp.p 0P, Sng <P, ;
2 Va2
hn! hn‘z
Pp.y O—"1—9 501 e
Vo Vot
h, P, S n P,
pn-|
TYPE 1 TYPE 2

Figure 2.3 Two types of SMTs in M;: Type 1 has all of its Steiner
points on a line; Type 2 has all but one of its Steiner points on a
line.

The strategy is to split m at some Steiner point s, to yield subtrees m; and
mg, with m; being the induced subgraph over {po,p1,...,pq-1} plus the edge
(sg=1,84). Consider the subtree m;. Assume that we can construct a path X,
which visits the points {po,p1,...,p—1} in sorted order such that

g - cost(X1) < cost(my).

Referring to Figure 2.3, this is equivalent to the existence of some k, 1 < k <
n — 2, for which

Area 21

k k

k=1 k k
%.(Zhi.{.z i + v,-) < Zhi+zvi (2.1)
i=0 =1 i=0 i=1

i=1)

Note that the terms on the left side of (2.1) represent the “zig-zag” path X,
from po to pr-1, and that this path is one possible spanning tree. Then, we are
done since 2 - cost(M ST(m;)) < cost(m;) by the induction hypothesis.

If there is no such Steiner point s, then (2.1) does not hold for any k,1 < k <
n — 2. Manipulating the sum of the resulting inequalities yields

k k
Sovi <> hit(hi—ho), 1<k<n-2 (2.2)
i=1 i=1

Next, observe that we can assume the existence of some index j such that h; >
hi—gforalli=2,...,j—1,and hj < hj_3. In other words, the splitting point of
the tree can be chosen so that some initial portion of m looks like a “Christmas
tree”, as shown in Figure 2.4. This special structure of the h; values, 0 < i < j—
1, allows us to set ¢ = j and connect (p;,pj-2,Pj-4,---,P0, .-+, Pj-3,Pj—1, ;)
in that order to yield a new tour t. The cost of tour ¢ is equal to the perimeter
R of the bounding box of points pqg, ..., p;.

A path over py, ..., pj can be obtained by deleting an edge of the tour ¢. Observe
that the four edges p;_4 — pj—2 — p; — pj—1 — p;j-3 int have total cost given

by

ji-4 ji=3
R—hj_z—hj_a=Y vi—=> wu,
i=1 i=1

where the negative terms represent the cost of the subtour from p;_3 to po and
from po to pj_4. By (2.2), this quantity is

j-3 j—4
> R—-hj_3—hj_4— (Z hi + (hj-3 — h0)> - (Z hi + (hj-q — ho))
i=1

i=1
j-3
> R—4-Zh.’
=0
= R-(1-40)

where § = (Zf;g h;)/R. If we delete from t the edge with maximum cost
among these four edges, we obtain a path (i.e., a spanning tree) X3 over the

CHAPTER 2

22
bounding box
FUNS MU AL
;s e, S
D ' hz 9 l‘ : OL'S :
2:° 'W Sy I“ :pz 2 :
' ; \ : :
' [h ! : he
' h__L‘._.q p’.4] ,__.L.o :pj.4
3] 1
," Sy2 p—— Pi2 ' Si2p—°P,
1
|3.'0]_1 b-:-—_—_::(-_sjn : pi_1 ?—_'51-1 :
::‘_.n pi | I, ____elpj
(a) (b)
Figure 2.4 Cost of tour t in (a) is equal to the perimeter R of the
bounding box of points pg, ..., p; in (b).
points pg, ..., p; with
1 3
cost(Xs) < R-— ZR (1-40)=R- (Z +6).
The cost of the SMT m, is
Jj-1 J j-3 1 1
§hi+;vi=§hi+§R:R'(§+9)

and we conclude that

3cost(X2) < cost(my)

a

Hwang’s result implies that any approach which improves upon an initial MST
solution will have performance ratio at most % Thus, many SMT heuristics
in the literature resemble, or are otherwise based on, classic MST construc-
tions [138]; we call such heuristics MST-based strategies. A leading example
is the SMT heuristic of Ho, Vijayan and Wong [124], which exploits flexibil-
ity in the embedding of each rectilinear MST edge. Recall that in general, an
edge between two points in the Manhattan plane will have many minimum-cost

Area 23

embeddings; in the example of Figure 2.1, simply choosing the alternate “L”
embedding for two of the three MST edges will cause the maximum possible
overlapping of edges, and result in the SMT solution when redundant (over-
lapped) wire is removed. The authors of [124] give a linear-time construction
for the optimal rectilinear Steiner tree derivable from a given MST in the sense
of being embedded within the union of the bounding boxes of the MST edges.
A second MST-based strategy due to Hasan, Vijayan and Wong [118] also be-
gins with an MST topology, and iteratively adds as many “locally independent”
Steiner points as possible to reduce the tree cost.

For over 15 years after the publication of [135], the fundamental open problem
was to find a heuristic with (worst-case) performance ratio strictly less than :23
A complementary research goal has been to find new heuristics with improved
average-case performance. In practice, most SMT heuristics - including MST-
based strategies — exhibit very similar performance. The standard experimental
testbed consists of uniformly random instances (n points chosen from a uniform
distribution in the unit square), which reflects observed terminal distributions
from actual VLSI placements.* On such instances, heuristic Steiner tree costs
usually average between 7% and 9% less than corresponding MST costs [138].
Results of Steele [229] establish the theoretical result that the average ratio

cost(SMT) : 5
cost(AT5T) for random pointsets should converge to a constant as n grows large.
cost(SMT

Bern and de Carvalho [27] estimated the average value of the ratio W(W%
to be 0.88; more recently, Salowe [208] has given an empirical estimate of this
average ratio for n up to 100, using the most efficient known branch-and-bound
code currently available (see Section 2.8 below).

4 At least, such has been the claim throughout the literature. Optimization of abutments,
vertical cell alignments, use of feedthroughs, and other criteria in module placement can result
in highly non-random terminal placements for signal nets. For example, vertical alignment
and feedthrough reduction will often cause the bounding box of a signal net to have very
large aspect ratio, that is to say, ratio of the length of the larger side to the length of the
smaller side.

5 A more oblique motivation for MST-based approaches follows from asymptotic behavior
of subadditive functionals of uniformly random pointsets in the Manhattan plane (23, 229].
Such functionals include the MST cost and the SMT cost, as well as the optimal traveling
salesman tour cost, the optimal matching cost, etc. Steele [229) has shown that optimal
solutions to random n-point instances of these problems have expected cost 3\/n, where
the constant 8 depends on both the problem, e.g., SMT versus MST, and the underlying
Ly norm. Thus, we expect the average MST cost and the average SMT cost to differ by a
constant factor. (Of course, this result does not apply on an instance-by-instance basis.) The
theory of subadditive functionals can have other implications for VLSI CAD optimizations.
For example, VLSI layout engines (e.g., TimberWolfSC [212]) often use the semiperimeter
of the pointset bounding box as a fast estimate of SMT cost. The \/n growth rate implies
that this estimate can be refined by using a @(y/n) scaling factor at negligible added CPU
cost; see the related work of Chung and Graham [55].

24 CHAPTER 2

The worst-case bound of Hwang and the average-case analysis of Steele [229]
together provide strong motivation for MST-based strategies. However, there
are also reasons to consider alternative approaches. Section 2.2 shows that the
2 bound is tight for any of a wide range of MST-based strategies [152], i.e.,
the MST for such instances is essentially unimprovable. This suggests that
MST-based heuristics are unlikely to achieve performance ratio strictly less
than % Section 2.3 introduces the focal point of the chapter — the Iterated
1-Steiner (I1S) heuristic - whose simple iterative scheme avoids analogies to
classic minimum spanning tree solutions. Key developments in the remainder
of the chapter include:

= Bounds on the I1S performance ratio. In particular, the method has per-
formance ratio # on all “difficult” instances for which %&?—J% =3 We
also contrast I1S with the recent breakthrough due to Zelikovsky, Berman
and coauthors, namely, a heuristic which achieves performance ratio of 18—1

for the rectilinear SMT problem.

m Performance enhancements to the I1S method, including a “batched” strat-
egy, a perturbative strategy, and a randomization scheme for tie-breaking.
Together, these bring I1S performance to within a small fraction of one
percent from optimal for typical instance sizes. Tradeoffs between runtime
and solution quality are also discussed.

® Practical implementation options, notably an implementation of the batched
11S variant that runs within time O(n3) per “round”. This method is based
on a dynamic MST update scheme, and is simple to code and considerably
faster than the naive implementation. We also describe a parallel ver-
sion of I1S that achieves near-linear speedup within a prototypical CAD
environment consisting of a network of workstations.

= Extensions of I1S and its variants to three dimensions, and to the “two
and one-half dimensional” case where all the terminals lie on L parallel
planes (see, e.g., three-dimensional VLSI technology [117] and the design
of buildings [221]).

8 Two new bounds on the maximum node degree in an MST under the
Manhattan metric. Specifically: (i) every two-dimensional pointset has an
MST with maximum degree at most 4; and (ii) every three-dimensional
pointset has an MST with maximum degree at most 14. (The best previous
bounds were 6 and 26, respectively.) These degree bounds allow speedup
of the I1S implementation and are of independent interest in algorithmic
complexity theory.

Area 25

®m Extension of the I1S construction to arbitrary weighted graphs. A general
methodology for increasing the power of heuristics using iterated construc-
tions is described.

m Experimental results for I1S and its variants.

2.2 PERFORMANCE BOUNDS FOR MST-BASED
STRATEGIES

Recall that the -‘3 performance ratio of the MST approximation motivates MST-
based strategies, which improve an initial MST solution by various means. Such
strategies are enhanced by the efficiency of the MST computation for a planar
pointset [114].

Trivially, an MST-based Steiner tree construction which has cost no greater
than the MST cost will have performance ratio at most % However, the actual
performance ratio for many MST-based methods has remained unknown. It was
believed that certain methods might be provably better than the simple MST
approximation (cf. [137]), with the algorithms of Bern [26] and Ho, Vijayan

and Wong [124] being two examples.

This section shows that any Steiner tree heuristic in a general class C of greedy
MST-based methods will have worst-case performance ratio arbitrarily close to
%, i.e., the same bound as the MST approximation. By “arbitrarily close”, we
mean performance ratio > %— € Ve > 0. Performance ratios are thus resolved
for a number of heuristics in the literature with previously unknown worst-case
behavior [26, 27, 103, 118, 124, 137, 202, 215] since they can be shown to belong
to the class C. The enabling construction also serves to correct a claim in [124]
and establish a lower bound of % on performance ratios for some heuristics not
in C,e.g., [137, 164, 220]. Analogous constructions in d-dimensional Manhattan
geometry, with d > 2, show that all of these heuristics have performance ratio
at least 241 [97).

2.2.1 Counterexamples in Two Dimensions

We now describe two prototypical heuristic approaches, called MST-Ouverlap
and Kruskal-Steiner, for the rectilinear SMT problem. We then unify these
approaches under a general template for greedy MST-based strategies. The

26 CHAPTER 2

first approach starts with a rectilinear MST and obtains a Steiner tree by over-
lapping edge embeddings. In other words, a monotone (staircase) embedding is
selected for each MST edge, and then all superposed segments are merged since
they represent redundant wiring. Alternatively, we may view this approach as
starting with an MST over P, then determining the minimum-cost Steiner tree
which lies completely within the union of bounding boxes of the MST edges.
Figure 2.5 illustrates this strategy with respect to the original example from
Figure 2.1. The resulting Steiner tree has cost no greater than the MST cost.

Figure 2.5 Optimal overlap of MST edges within their bounding
boxes.

This approach has been studied by Hasan, Vijayan and Wong [118], Ho, Vi-
jayan and Wong [124], Hwang [136], Lee, Bose and Hwang [164], and Lee and
Sechen [165). Ho, Vijayan and Wong [124] have given the best-possible result,
namely, a linear-time algorithm for computing the optimal rectilinear Steiner
tree derivable in this fashion. Their construction requires that no two edge
bounding boxes of the MST intersect or overlap, unless the edges are adjacent.
This property of the MST, known as separability, enables a dynamic program-
ming approach. A method which determines a separable MST for any pointset
P was given in [124].

Since the algorithm of Ho et al. dominates all other algorithms that share
the goal of overlapping MST edges within the union of bounding boxes, we will
treat it synonymously with the general approach itself, and use the name MST-
Overlap to indicate either. It was conjectured that the worst-case performance
ratio of MST-Overlap is less than %

The example of Figure 2.6 results in an MST-Overlap performance ratio of

exactly % However, this example is not separable. If the starting MST is
separable, a performance ratio arbitrarily close to % can still result: Figure
2.7(a) shows a separable MST over a pointset for which the strict equality

%:%%—MS—;’% = % holds; Figure 2.7(b) shows a perturbation of the point loca-

Area 27

|
o4 4|
&

Figure 2.6 Example with strict equality co”(gfggﬁ;‘;”“”) =3

On the left is the SMT (cost = 20); any Steiner tree derived from
the MST on the right will have cost = 30.

tions such that the MST is unique; and Figure 2.7(c) shows the optimal SMT
topology for both cases.

The second type of MST-based strategy builds a Steiner tree by emulating the
standard MST constructions of Kruskal [160] or Prim [196], with connections to
new Steiner points replacing direct connections between points in P. Examples
of this strategy are discussed by Bern [26], Bern and Carvalho [27], Richards
[202] and Servit [215]. Typically, embeddings of edges within their bounding
boxes are left unresolved for as long as possible during the construction, which
allows the greatest possible freedom to make a short connection.

We call this second MST-based strategy the Kruskal-Steiner approach. It
begins with a spanning forest of n isolated components (the points of P) and
repeatedly connects the closest pair of components in the spanning forest until
only one component (the Steiner tree) remains. Richards [202] characterizes
Kruskal-Steiner and its variants as a “folklore” heuristic; the method has also
been ascribed to Thomborson by Bern [26, 27). Variants in the literature differ
primarily in their definition of the “closest pair” of components, but the ex-
arfiple of Figure 2.7(b) is immune to these distinctions. When any variant of
Kruskal-Steiner is executed on the pointset of Figure 2.7(b), it will start at the
leftmost points and alternate among the middle, top, and bottom rows, adding
a single horizontal to each in turn. The € perturbations in Figure 2.7(b) force
the alternation between rows and make the construction completely determin-
istic. The resulting Steiner tree will consist entirely of horizontal segments
except at the left end, and its cost will be arbitrarily close to % times optimal.
Hwang et al. [138] note that for random instances, results are similar to those

28 CHAPTER 2

2
+ Q=0
2
o OQm—O (a)
. OO
1 2+ 244 2+7e 2+(k-1)e
2+(k+1)e
(b
"+ Ol
()
O O O -O——O0
(@)
O O -O——O
Figure 2.7 A separable MST for which c""(fii(T;A?;‘;”am is arbi-
trarily close to 32- For n points, any Steiner tree derivable from

the separable MSTs of (a) or (b) will have cost 2(n — 2), while the
SMT (c) has cost #(n — 1), yielding a performance ratio arbitrarily
close to % for large enough n. In (d), we show the best possible
rectilinear Steiner tree that can be produced by any MST-Overlap
or Kruskal-Steiner heuristic.

obtained by MST-Overlap variants, i.e., the heuristic Steiner tree cost averages
between 7% and 9% less than the MST cost.

An algorithm is said to be greedy if it constructs a solution by iteratively se-
lecting the best among all remaining alternatives [189]. We now show that
MST-Overlap and Kruskal-Steiner belong to a general class of greedy Steiner
tree heuristics, and that the example of Figure 2.7 is pathological for this class.
Recall that without loss of generality, a Steiner tree may be viewed as a min-
imum spanning tree over P U S, where P is the input pointset and S is the
added set of Steiner points. We are interested in Steiner tree constructions

Area 29

which induce new edges, and possibly new Steiner points, using the following
types of connections within an existing spanning forest over P U S: (i) point-
point connections between two points of P; (ii) point-edge connections between
a point of P and an edge, which may induce up to one new Steiner point in
S; and (iii) edge-edge connections between two edges, which may induce up to
two new Steiner points in S. To reflect the fact that the embedding of a given
edge is indeterminate, we say that any edge between two points of P U S can
be arbitrarily re-embedded by the Steiner tree construction. Figure 2.8 defines
a class of Steiner tree heuristics which we call C. All heuristics H € C are
greedy with respect to Manhattan edge length.

Heuristic H € C: greedy Steiner tree construction

Input: n isolated components (points of P)

Output: Rectilinear Steiner tree over P

While there is more than one connected component Do
Select a connection type r € { point-point, point-edge, edge-edge }
Connect the closest pair of components greedily with respect to
Optionally at any time, Re-embed any edge within its bounding box
Optionally at any time, Remove redundant (overlapped) edge segments

Output the single remaining component

Figure 2.8 The class C of greedy Steiner tree heuristics.

Theorem 2.2.1 Every H € C has performance ratio arbitrariy close to g—

Proof: The MST of the pointset depicted in Figure 2.7(b) is unique since
all interpoint distances < 3 are unique. Thus, all connections in the MST are
horizontal point-point connections except for exactly two connections, one from
the top row to the middle row and one from the middle row to the bottom row.
The greedy routing of every edge but these two is unique since all edges except
these two have degenerate bounding boxes. No improvement is possible by edge
re-embedding within these degenerate bounding boxes. Therefore, no heuristic
in C can do better than the result in Figure 2.7(d). The optional re-embedding
within the two non-degenerate bounding boxes is negligible as n grows large,

hence the performance ratio is arbitrarily close to % O

There are many heuristics in the literature with previously unknown perfor-
mance ratio, which by Theorem 2.2.1 have performance ratio arbitrarily close
to 2. Greedy Kruskal-like constructions include the methods of [136] and (165],

30 CHAPTER 2

in addition to the methods described by Bern [26, 27], Gadre et al. [103],
Richards [202] and Servit [215]. Algorithms which start with an initial MST
and then overlap edges within their bounding boxes, such as those of [118] and
[124], also belong to C: an MST can be constructed using only point-point
connections, and the optional re-embedding is then used to induce edge over-
laps. Exponential-time methods can also belong to the class C, notably the
suboptimal branch-and-bound method of Yang and Wing [250]. Theorem 2.2.1
implies that all of these methods have the same worst-case error bound as the
simple MST.

The counterexample of Figure 2.7 also establishes lower bounds arbitrarily close
to g— for the performance ratios of several heuristics not in C, such as the three-
point connection methods of Hwang [137], Lee, Bose and Hwang [164], and the
Delaunay triangulation-based method of Smith, Lee and Liebman [220]. This
is easy to verify using the pointset in Figure 2.7(b): as with the heuristics in
C, these latter methods are severely constrained by the nature of the unique
minimum spanning tree. Finally, we note that De Souza and Ribiero [72] con-
struct an instance similar to that of Figure 2.7 and also discuss the worst-case
performance of several rectilinear Steiner tree heuristics. Shute [218] gives a
somewhat less general construction, also with the goal of showing a % perfor-
mance ratio for MST-like heuristics.

2.2.2 Counterexamples in Higher Dimensions

The rectilinear SMT problem remains well-defined when the points of P are
located in d-dimensional Manhattan space with d > 2. Most heuristics, includ-
ing those in the class C defined above, readily extend to higher dimensions.
However, the construction of Figure 2.7 also extends to d dimensions, where
it again provides a lower bound for the performance ratio of heuristics in C.
In d dimensions, the Figure 2.7 construction generalizes to n = k(2d — 1) + 1
points, for any given k. As Figure 2.9 illustrates for d = 3, the cost of the op-
timal Steiner tree is at most 3%%_19; the cost of the (unique, separable) MST
is 2(n — 1); and the cost of the best Steiner tree obtainable from the MST by
edge-overlapping is 2(n — d). Thus, in d dimensions the performance ratio of

a heuristic in class C' will be arbitrarily close to 3‘%‘-1-. This slightly improves

on the previous lower bound of &2——12 given by Foulds {97] for the performance
ratio of the MST approximation in d dimensions.

Area 31

Figure 2.9 For d = 3, the SMT (top) has cost -g(n — 1), while
any Steiner tree derivable from the MST by re-embedding edges

(bottom) has cost 2(n — 3), yielding performance ratio arbitrarily

5
close to 3 as n grows large.

2.3 ITERATED 1-STEINER (I1S)

We now develop an effective SMT heuristic that avoids analogies to traditional
MST constructions. The approach is greedy: we iteratively find optimum single
Steiner points for inclusion into the pointset.

Given two pointsets A and B, we define the MST savings of B with respect to
A as
AMST(A, B) = cost(MST(A)) — cost(MST(AU B)).

Recall that H(P) denotes the Steiner candidate set, i.e., the set of intersection
points of all horizontal and vertical lines passing through points of P. For
any pointset P, a I1-Steiner point of P is a point £ € H(P) which maximizes
AMST(P,{z}) > 0. Starting with a pointset P and a set S = @ of Steiner
points, the Iterated 1-Steiner (I1S) method repeatedly finds a 1-Steiner point
z of PUS and sets S — SU{z}. Note that the stated initial conditions of the
algorithm imply that the Steiner candidate set H(P U S) at each iteration will
be identical to H(P). The cost of MST(P U S) will decrease with each added
point, and the construction terminates when there no longer exists any point
z with AMST(PUS, {z}) > 0.

While there is always an optimal Steiner tree with at most n — 2 Steiner points
(this follows from simple degree arguments [109]), 11S can add more than n—2
Steiner points. Therefore, at each step we eliminate any extraneous Steiner
points which have degree < 2 in the MST over PU S. Figure 2.10 describes
the algorithm formally, and Figure 2.11 illustrates a sample execution. This

32 CHAPTER 2

method was first described in 150, 151, 203]. Minoux [183] has independently
described an algorithm similar to I1S for the Steiner problem in graphs.

Algorithm Iterated 1-Steiner (I1S)

Input: A set P of n points

Output: A rectilinear Steiner tree over P

S=0

While Cand_set = {z € H(PUS)|]AMST(P U S, {z}) >0} # 0 Do
Find z € Cand-set which maximizes AMST(P U S, {z})
S=5U{z}
Remove points in S which have degree < 2 in MST(P U S)

Output MST(P U S)

Figure 2.10 The Iterated 1-Steiner (I1S) algorithm.

o—?c}%écm}—_‘jo—l}_&

Figure 2.11 Example of the execution of Iterated 1-Steiner (I1S).
Note that in step (d) a degree-2 Steiner point results; I1S will elim-
inate this point from the topology.

To find a 1-Steiner point, it suffices to construct an MST over |PUS|+1 points
for each of the O(n?) members of the Steiner candidate set, and then pick a
candidate which minimizes the MST cost. This follows from a perturbative
argument similar to that used by Hanan. Each MST computation can be
performed in O(nlogn) time [195], yielding an O(n®logn) time method to find
a single 1-Steiner point. A more efficient algorithm presented in the next section
finds a new 1-Steiner point in O(n?) time. A linear number of Steiner points
can therefore be found in O(n?) time, and solutions with a bounded number of
< k Steiner points require O(kn?) time.

Area 33

2.3.1 Finding 1-Steiner Points Efficiently

Georgakopoulos and Papadimitriou [107] give an O(n?) method for computing
a 1-Steiner point in the Euclidean plane. Their method can be adapted to
Manhattan geometry, via the following sequence of observations (see [107] for
a more detailed account).

m Observe that a point p € P cannot have two neighbors in M ST(P) which
lie in the same octant of the plane with respect to p. (The octants of the
plane with respect to p are defined by passing lines through p with slope
0,1, co and —1.)

® Observe that two directions #; and 65 in the plane, together with a point
location z, define a cone C(z,0;,6;). For any p € P, the set of all z such
that p is the closest point to z in the set PNC(z,6;,0,) forms a (possibly
unbounded) polygon known as an oriented Dirichlet cell. For fixed 6, and
64, the oriented Dirichlet cells over all points of P will partition the region
of the plane that lies “in front of” the pointset P with respect to the
directions #; and , (see Figure 2.12). The eight pairs of directions 61, 8
that define the octants of the plane will define eight plane partitions.

0
62

(unbounded regions)

Figure 2.12 The oriented Dirichlet cells with respect to directions
6, and 8, for three points. In this example, all three regions of the
planar partition are unbounded.

34 CHAPTER 2

® These eight plane partitions can be computed and superposed to yield a
“common partition” of the plane within O(n?) time. It can be shown that
the O(n?) regions of the common partition possess the so-called isodendral
property: the topology of MST(PU{z}) is constant for all points z within
any given region. However, we need only know that for z in any given
region, the common partition indicates the set of (< 8) possible neighbors
of z in MST(P U {z}).

®m MST(P) can be constructed in O(n?) time, and by performing O(n?)
preprocessing we can update the MST to include any new point z ¢ P
in constant time. This is accomplished by precomputing, for every edge
e € {P x P} not in MST(P), the shortest edge in the unique cycle formed
when e is added into the tree. When z is added into the spanning tree, it
will effectively introduce an “edge” between each pair of its neighbors; the
precomputation allows edges to be deleted from M ST(P) as appropriate.

® Finally, the essence of the method is as follows. (1) If we know that the new
Steiner point z is to be located in a given region of the common partition,
we already know the (< 8) possible neighbors of £ in MST(P U {z}).
(2) Notice that some subset of these possible neighbors will actually be
adjacent to z in MST(P U {z}), and there are O(1) such subsets. (3)
We simply try every subset of possible neighbors: for each, we can find
the optimal location of z in O(1) time (since this is a Steiner instance
of bounded size), and we can also check the resulting cost savings when
x is added to the MST in O(1) time by virtue of the preprocessing. (4)
Recalling that there are only O(n?) regions in the common partition, we
can return the lowest-cost MST over the points in P U {z}, using a total
of O(n?) time. Thus, the total time for all phases is O(n?).

A linear number of iterations will imply O(n3) overall time complexity. In
practice, for uniformly random pointsets the number of iterations performed
n

by I1S averages less than Z.

2.3.2 The I1S Performance Ratio

In this section, we first completely characterize the class of instances having

%% = %, and then show that 11S will always find a 1-Steiner point for

such instances. Thus, the output of I1S can never be as bad as % times optimal.
We also show that for this class of “difficult” instances, I1S has performance

ratio < %.

Area 35

Lemma 2.3.1 Any pointset P with |P| < 3 has z—;’%(-%}q—% <%

Proof: For |P| = 2, %g%ﬁ—g%% = 1. For |P| = 3 we have cost(SMT(P)) =
%, where R is the perimeter of the bounding box of P. On the other hand,
the pigeonhole principle implies cost(MST(P)) < 2R. If two points of P
lie on the rectangle that defines the bounding box, then cost(MST(P)) =
cost(SMT(P)). If three points of P lie on this rectangle, then removing the
largest segment of the bounding box perimeter that lies between two points of
P will leave a spanning tree over P having cost at most %R. It follows that

cost(MST(P)) 2R __ 4
cost(SMT(P)) < j@_‘ =3 O

Definition: A plusis an SMT over 4 points {(z—r,y), (z+r,v), (z,y—7), (z,y+
r)} with exactly one Steiner point at the center (z,y) of the plus.

Lemma 2.3.2 For |P| = 4 and |S| = 1, a plus is the only configuration that

. . cost(MST) 3
achieves a performance ratio cost(SMT) of exactly 3.

Proof: If SMT(P) has one degree-three Steiner point, then we have the per-
formance ratio cost(MST(P))/cost(SMT(P)) < 3/2. Thus, SMT(P) must
have the same topology as a plus. Since the possibility of overlapping wire
would imply at least two Steiner points, the pointset must have coordinates of
form P = {(z — h1,y), (z + h2,9), (2, — v1), (2, ¥ + v2)}. Let R again denote
the perimeter of P’s bounding box. SMT(P) has cost -’21, while a pigeonhole
argument implies that M.ST(P) has cost < R ~ ;R (we obtain a spanning
tree by deleting the longest of the four edges comprising the bounding box).
This implies that %%%; < % with equality holding only when the longest
edge length around the bounding box is not greater than %R, i.e., all four edges
around the bounding box have equal length. Therefore, hy = hg and v, = vs.
We write h = hy = hy and v = v; = vs, and without loss of generality assume
that A < v. Then:

cost(MST(P)) _2(v+h)+2h _ 14 h < 3
cost(SMT(P)) ~ 2(v+h) v+h ~ 2
with equality holding when h = v. a

Definition: A union of pluses is a Steiner tree with |S| = k and [P| =3k +1,
and with exactly four edges of equal length incident to any Steiner point.

36 CHAPTER 2

Theorem 2.3.3 Any planar pointset having %g:—:%—"%% = % has an SMT which

is a union of pluses.

Proof: Recall from the proof of Theorem 2.1.1 that any pointset P has an SMT
that is composed of connected components, each of which has all its Steiner
points forming a chain. Recall also that all the Steiner points on any such
chain are collinear, with the possible exception of the Steiner point at the end
of the chain (Figure 2.3). Using the same upper bound for MST cost and the
exact expression for SMT cost as in the Theorem 2.1.1 proof, we can equate
expressions for % - cost(M ST) and cost(SMT) for the points of any chain:

1 2 1
R-(2+3 -®)=R (2+®)
where R is the perimeter of the bounding box of the points in the chain, and ©
is defined such that R - © is equal to the sum of the distances from all (except
the last) points of P to their adjacent Steiner points in the chain. The above
equality implies that @ = 0, and hence all but one of the original points have
the same coordinates as their adjacent Steiner points, a contradiction unless
there is only one Steiner point (i.e., the last) in this chain. From Lemma 2.3.2,
any chain which has only one Steiner point and which exactly achieves the 5._3—
ratio must be a plus. Therefore, any SMT which exactly achieves the % ratio

is decomposable as a union of pluses. O

(1)

Theorem 2.3.3 completely characterizes the pointsets for which —z%:%% is

ezactly equal to %

Theorem 2.3.4 The performance ratio of 115 is < %

Proof: If z—z%%’%%%% < %, then even if I1S does not find any Steiner points,

it will have performance ratio < % From Theorem 2.3.3, any P for which

%::%’I;—;%% = g— will have SMT(P) that is a union of pluses; in such a case

I1S will select and add the center of some plus at the first iteration, yield-
ing performance ratio strictly less than % To see this, note that a spanning
tree with cost 2 - cost(SMT(P)) is obtained simply by replacing each plus in
SMT(P) by an arbitrary spanning tree over the four points of P in the plus

(see Figure 2.13).

(The center of the plus is one of the Steiner candidates considered during the
first iteration of 11S. Even if there are other Steiner candidates within the

Area 37

O—

Figure 2.13 Locally replacing each plus (left) with an MST over
the four points in P (right).

convex hull of the four points of the plus, the center gives the greatest possible
cost savings of exactly one-third.) 0

Theorem 2.3.5 For pointsets P with SMT(P) a union of pluses, the perfor-
mance ratio of I1S < 4.

Proof: When I1S selects the center of a plus as a 1-Steiner point, at most
three centers of other pluses are excluded from future selection. By the greedy
selection rule of I1S, any center that is excluded belongs to a plus that induces
less cost savings than the selected plus.® Thus, even if I1S selects a plus that
is not in SMT(P), the cost savings will be at least as great as the savings that
would have been realized by selecting the largest of the (up to three) pluses
that are now excluded due to topological constraints (see Figure 2.14).

Each plus represents a savings of :1; of the MST cost over the points of P
in the plus, so even if we use simple MST edges to connect the remaining
affected points to the selected plus, the total heuristic cost is no more than
cost(MST) — L -1 . cost(MST) = £ - cost(MST). Therefore, the performance
8.

ratio of 118 is no greater than ;3——2—2—3%%% =3 O
This bound can likely be tightened by more exhaustive case analysis. Since
most signal nets in VLSI designs have six or fewer terminals, we briefly discuss
known I1S performance bounds for small values of |P|.

Theorem 2.3.6 1S is optimal for |P| < 4 points.

8The cost savings of a plus are with respect to the MST over the four points in the plus.
These savings are proportional to the “size” of the plus: larger pluses induce greater savings.

38 CHAPTER 2

Figure 2.14 FEach selected 1-Steiner point may exclude at most
three potential 1-Steiner points from future selection; thus at least
% of the maximum possible savings is achieved.

1 =

Figure 2.15 The two possible Steiner tree topologies on 4 points.

Aol [T

Figure 2.16 A 5-point example where the I1S performance ratio is
Z. The optimal SMT (left) has cost 6, while the (possible) heuristic
output (right) has cost 7.

Proof: When SMT(P) has less than two Steiner points, I1S is optimal since
it examines all candidates. For |P| = 3, there can be at most one Steiner point.
For |P| = 4 and |S| = 2, Hwang [135] showed that an SMT must have one of
the two topologies shown in Figure 2.15. A case analysis shows that 11S always
selects both Steiner points. 0

Area 39

O

e
Figure 2.17 A 9-point example where the I1S performance ratio is
13 the optimal SMT (left) has cost 11, while the (possible) heuristic

11
output (right) has cost 13.

€ 2 O 68 1-¢ 1+€ O

Figure 2.18 A 4-point instance on which MST-based heuristics per-
form arbitrarily close to 3 times optimal (left); the (optimal) I1S
solution is also shown (right).

In contrast to I1S, MST-based methods are generally not optimal for [P| = 4;
Figure 2.18 shows that performance ratios approaching g— are possible. As
shown in Figure 2.16, the worst-case performance ratio of 11S for |P| < 5 is
conjectured to be L. Figure 2.17 shows a 9-point instance on which the 11S

8
tree cost is % times optimal.

Finally, an elegant iterated construction due to Berman, Fossmeier Karpinski,
Kaufmann and Zelikovsky (24, 255] shows that the performance ratio of I1S
has a lower bound of 1.3. Figure 2.19 reproduces the construction, which has
point coordinates as follows:

o og;=(4-4,0),i=0,..,k
m q/=(0,4-4),i=0,..,k

40 CHAPTER 2

|
h=ad

=24, -4 i=1,..k
m b= (—4"1,2.4Y)i=1,..k
n =344 i=1,..k
L=(443-4Y),i=1,..,k

|]
0

For any value of k, this construction yields an instance whose SMT consists of
conjoined Steiner minimal trees over the sets {a;_1, b;, ¢i, a;} and {a}_,, b}, ¢}, a;}

along with the edge (ag,a(); this SMT has cost 10511..;'—1 + 2. I1S will return
1-Steiner points that are adjacent to triples of points {a;_1, ¢i, c;}, which im-
plies cost 134—)—“.3:-l + 2. Thus, the construction establishes the lower bound on

performance ratio of

k
1341 42
k=0 104521 4 9
,aY
az“
————wc;
LT
4 1
. t
l
’, - !
b —— :
. '
. b
. '
#,a’ e C2
o . I
el I
Ml 3 . .ox
® 3. .
. . a,
b,

Figure 2.19 The construction of Berman et al. which establishes
a lower bound of 1.3 on the I1S performance ratio.

Area ' 41

2.3.3 The Method of Zelikovsky

Berman and Ramaiyer [25], and Zelikovsky and coauthors [24, 95, 253, 255],
have recently developed several SMT heuristics that are similar to I1S, and
have performance ratios substantially less than % These methods derive from
a breakthrough technique developed by Zelikovsky for the SMT problem in
graphs [254]. The results of [25, 253] in 1992 settled in the affirmative the long-
standing open question of whether there exists a polynomial-time rectilinear
SMT heuristic with performance ratio < %.7 Here, we briefly review key ideas
in this sequence of works, following the discussion of [24].

Given a Steiner tree T over pointset P, any subtree T’ is a full Steiner compo-
nent if every point of P in T” has degree one. As noted in the earlier discussion
of Hwang’s theorem, any Steiner tree T' can be partitioned into edge-disjoint
full Steiner components. (Recall that Figure 2.3 showed the two possible types
of full Steiner components.) A Steiner tree T is k-restricted if each of its full
Steiner components has at most k leaves. Thus, for example, an optimal 2-
restricted tree over P is exactly an MST over P. We may use {; to denote
the cost of the minimum-cost k-restricted Steiner tree over P; thus, for exam-
ple, to = cost(MST(P)) and t, = cost(SMT(P)). Hwang's theorem states
that 5 < %in; Zelikovsky [253] showed that {3 < %tn; and Berman and Ra-
maiyer [25] showed that ¢} < %f:—étn. Zelikovsky pioneered the approach of
approximating the optimal k-restricted Steiner tree for some small value of k,
as opposed to approximating the SMT itself.

For expository reasons, we will begin by describing the heuristic of Berman
and Ramaiyer, which is called A; the time complexity and performance ratio
of Ay depends on the value of k. For k = 3, Ay has performance ratio 4
and time complexity O(n®%). The heuristic A begins with some MST(P),
then considers all optimal Steiner trees over subsets of P of size k or less.
A 1s similar to 118, in that it will consider adding Steiner points one at a
time from the Hanan candidate set, and in that it uses some measure of cost
improvement to evaluate the utility of each candidate Steiner point. However,
instead of adding a new Steiner point into the tree, A3 replaces two edges from
the current MST with two “abstract edges” having the same endpoints but
reduced cost. The cost of each new abstract edge is equal to the cost of the

"Interestingly, we conjectured in (150, 151] that I1S has performance ratio strictly less
than %, but could not prove this. There are clear similarities between the “batched” I1S
variant that we discuss below and the method of [253], suggesting that “batched” I1S has

performance ratio at most -18—1 = 1.375. Recently, Zelikovsky [252] has stated that I1S

actually has performance ratio upper-bounded by 1.3125 (and lower-bounded by 1.3 per the
construction of Figure 2.19).

42 CHAPTER 2

edge it replaces, minus the cost improvement, or “gain”, that would be achieved
by inserting the new Steiner node.

Conceptually, Az merges the current M ST(P) with the optimal Steiner tree
over the k = 3 points of P, and updates the MST over P within the resulting
graph. More specifically, let 7 be the optimal Steiner tree over a given three
points of P, and consider the graph formed by the union of edges in 7 and
M ST(P). This graph will contain two cycles Cy and C3, with the longest edge
in each cycle respectively being ¢; and ¢;. Removing ¢; and ¢y yields a new
minimum spanning tree 7" over the graph. The “gain” associated with 7 is
given by gain(r) = cost(MST(P)) — cost(T"). For ¢ = 1,2 an abstract edge is
inserted between the two leaves of 7 through which cycle C; passed; the cost
of the abstract edge is cost(c;) — gain(r).

In Berman and Ramaiyer’s algorithm, the new abstract edges are added only
if the gain value is greater than zero. Because the gain is subtracted from both
new edges, however, the cost of the new MST is optimistically small. Beyond
the consideration of candidate Steiner points in arbitrary order, this concept of
“optimistic gain” is the main difference between A3 and I1S.

A3z works in two main phases: in the “evaluation” phase all (”3)‘) triples of

points from P are considered in arbitrary order. If adding the Steiner node for
a triple 7 would reduce the cost of the current MST (i.e., gain(7) is positive),
then two abstract edges are added as we have described. In the “selection”
phase, triples with positive gain are considered in reverse order. If the abstract
edges of a triple are still used in an MST over P in which abstract edges from
all triples with positive gain are considered, then the Steiner point for that
triple is included in the output construction.

Berman and Ramaiyer prove that in algorithm A, the MST containing abstract
edges has cost less than the optimal k-restricted tree. In Aj, the cost reduction
from the abstract edges is at most twice the cost reduction obtained by actually
adding the new Steiner points. Hence, the performance improvement for As
versus MST is at least one-half the performance improvement of the optimal
3-restricted tree. Berman and Ramaiyer establish a performance ratio r for
the optimal k-restricted Steiner tree: ry, < 141/(2k—2). (To prove this bound,
they show how to construct 2k — 2 k-restricted Steiner trees over S such that
their total cost is at most 2k — 1 times that of the minimum-cost Steiner tree.)
This gives a 5/4 performance ratio for the optimal 3-restricted tree, and an %1-

performance ratio for As.

Area 43

Zelikovsky’s method [253] is greedier than that of Berman and Ramaiyer, and
is extremely similar to the “batched” variant of I1S that we discuss below.
Zelikovsky’s method finds and incorporates the triple = with largest gain(r),
adding three zero-cost edges between pairs of leaves of 7 into the graph noted
above. The largest-gain triple is found in the new graph, and the process
terminates when there is no remaining triple with positive gain. A performance
ratio of 3 was shown in [253].

Subsequent work has improved on the O(n®%) time complexity of A3. An &
performance bound with an O(n!%) implementation was achieved by Fossmeier
et al. [95], who show that only a linear number of triples need to be considered
in A3. More recently, the five authors of [24] and [255] have together shown
that Zelikovsky’s algorithm has performance ratio between 1.3 and 1.3125, and
that Berman and Ramaiyer’s algorithm has performance ratio at most 1.271;
the latter algorithm can also be implemented to run in O(nlog” n) time.

2.4 ENHANCING I11S PERFORMANCE

In this section, we discuss variations of the I1S approach that can yield lower-
cost solutions or runtime reductions in practice. These variations include an
amortization of the 1-Steiner point computation via addition of an entire set
of “independent” or “non-interfering” 1-Steiner points in a single iteration, as
well as a perturbative variant.

2.4.1 A Batched Variant

Although a single 1-Steiner point may be found in O(n?) time, the required
computational geometry techniques have large hidden constants in their time
complexities and are difficult to implement. We now describe a batched I1S
variant which amortizes some of the computational expense by adding an entire
set of “independent” Steiner points in a single round.

The Batched 1-Steiner (B1S) variant computes AMST (P, {z}) for each can-
didate Steiner point z € H(P). Two candidate Steiner points = and y are
independent if

AMST(P,{z}) + AMST(P,{y}) < AMST(P,{z,y}),

44

CHAPTER 2

i.e., introducing one does not reduce the potential MST cost savings of the
other. Given pointset P and a set of Steiner points S, each round of B1S
greedily selects a maximal independent set of Steiner points, then adds this set
to S. The algorithm terminates when a round fails to produce a new Steiner
point. A single round of B1S is described as follows:

In O(nlogn) time, compute both M ST(P) and the Delaunay triangula-
tion [219] over P (the Delaunay triangulation is the geometric dual of the
Voronoi tesselation of the plane).

Compute the O(n?) isodendral regions over P, and for each region deter-
mine the O(1) potential neighboring points in the MST as in [107]. This
requires a total of O(n?) time.

Using O(n?logn) time and O(n?logn) space, preprocess the O(n?) iso-
dendral regions, now treated as a planar subdivision, so that determining
the region in which a given point lies may be performed in O(logn) time.
This is the problem of planar subdivision search [195].

For each candidate Steiner point z, compute AMST(P, {z}). Determine
the isodendral region to which = belongs via O(logn) time planar subdivi-
sion search, and let X be the set of potential MST neighbors of z. For each
subset Y C X, add the weighted edge set {(z,y) | y € Y} to the graph
G. The MST of a planar weighted graph can be maintained dynamically
using O(logn) time per addition/insertion of a point or edge [88]. Since
IX| = O(1) and therefore |Y| = O(1), we can determine in O(logn) time
the MST cost savings for each candidate Steiner point. Since there are
O(n?) candidate Steiner points, the total time for this step is O(n? logn).

Sort the O(n?) Hanan candidates in order of decreasing MST cost savings;
this requires O(n? log n) time using any efficient sorting algorithm.

Determine a maximal set S of independent candidate Steiner points to
be added during this round, by greedily adding candidates in order of
decreasing MST cost savings as long as each added Steiner point is inde-
pendent of all Steiner points previously added during this round. In other
words, for an original pointset P, a set of already added candidate points
S, and a new candidate z, add z to S if and only if AMST(P,{z}) <
AMST(PUS,{z}). Again, MST cost savings due to the addition or dele-
tion of a single point can be determined in time O(logn) [88], bringing the
total time for this entire step to O(n? logn).

Area 45

The total time required for each round is O(n?logn). The resulting B1S algo-
rithm is summarized in Figure 2.21. Empirical data indicates that the number
of rounds required grows much more slowly than the number of Steiner points
produced. For example, on pointsets of size 300, B1S produces an average
of 138 Steiner points (with a maximum of 145), while the average number of
rounds is only 2.5 (with a maximum of 4); see Section 2.8 for more details. We
conjecture that the number of rounds grows sub-linearly with the number of
points.

Figure 2.20 The Batched 1-Steiner heuristic: selecting a maximal
independent set of candidate Steiner points in one round.

Algorithm Batched 1-Steiner (B1S)
Input: A set P of n points
Output: A rectilinear Steiner tree over P
While T = {z € H(P)|[AMST(P,{z}) > 0} # 0 Do
S=90
For z € {T in order of non-increasing AM ST} Do
IfAMST(PUS, {z}) > AMST(P, {z}) Then S =S5U {z}
P=PUS
Remove from P Steiner points with degree < 2 in MST(P)
Output MST(P)

Figure 2.21 The Batched 1-Steiner (B1S) algorithm.

Empirical studies indicate that only a small fraction of the Hanan candidates
have positive MST savings in a given B1S round. Furthermore, candidates with
positive MST savings in an earlier round are more likely to produce positive
MST savings in subsequent rounds. Therefore, rather than examine the MST

46 CHAPTER 2

savings of all Hanan candidates in a given round, subsequent rounds may con-
sider only the candidates that produced positive savings in the previous round.
In practice, this strategy significantly reduces the time spent during each round
without substantially affecting the solution quality.

2.4.2 A Perturbative Variant

At each iteration, I1S selects a 1-Steiner point greedily. This may preclude
additional savings in subsequent iterations. Suboptimalities may also occur due
to tie-breaking among 1-Steiner points that induce equal savings. The examples
of Figures 2.16 and 2.17 show that an unfortunate choice of a 1-Steiner point
can result in a suboptimal solution.

Empirical tests indicate that multiple 1-Steiner points (i.e., points in H(P) with
equal MST savings) occur quite often. To avoid a deterministic tie-breaking
rule that could preclude possible future savings, we may randomly select one
of the 1-Steiner candidates and proceed with the algorithm execution. It is
reasonable to then run this randomized I1S variant m times on a given input,
where m is a user-defined parameter, and select the best of the m solutions.

To further avoid possible shortcomings of a deterministic greedy strategy, we
also propose a mechanism that allows I1S to select as the 1-Steiner point any
z € H(P) whose MST cost savings is within & of the best candidate’s cost
savings; again, é is a user-supplied parameter. This strategy would enable a
slightly suboptimal choice which could perhaps enable greater overall savings
in future iterations.

Finally, performance may be improved if instead of looking for 1-Steiner points,
we search for pairs of Steiner candidates that offer maximum savings with re-
spect to other candidates or pairs of candidates. Such a 2-Steiner algorithm
would optimally solve the pointset of Figure 2.16. In general, a k-Steiner al-
gorithm will search for sets of k candidate Steiner points which maximize the
MST cost savings.

Combining the three techniques of (i) non-deterministic tie-breaking, (ii) near-
greedy search, and (iii) k-Steiner selection, we obtain a Perturbative Iterated
k-Steiner algorithm (PIkS), as detailed in Figure 2.22. Note that I1S is equiv-
alent to PIkS with k = 1, m = 1, and é§ = 0. The PIkS scheme can be further
extended using an “independence” criterion as in Section 2.4.1 to yield a Per-

Area 47

turbative Batched k-Steiner algorithm (PBkS), where a maximal number of
Steiner points are added during each round.

Algorithm Perturbative Iterated k-Steiner (PIkS)
Input: A set P of n points, integer parameters § > 0, k> 1, and m > 1
Output: A rectilinear Steiner tree over P
T = MST(P)
Do m times
S=40
WhileC = {X CH(P)||X|<k,AMST(PUS,X)>0}#0 Do
Find Y € C with maximum AMST(PUS,Y)
Randomly select Z € C with AMST(PUS,Z2) > AMST(PUS,Y)~6
S=85uU2
Remove from S points with degree < 2 in MST(P U S)
If cost(MST(PUS)) < cost(T) Then T = MST(PUS)
Output T

Figure 2.22 The Perturbative Iterated k-Steiner (PIkS) method.

For applications to multi-layer routing and three-dimensional VLSI structures,
PIkS extends to the case of points lying on L parallel planes. The general three-
dimensional SMT problem corresponds to L — oo, and the planar formulation
corresponds to L = 1. The different costs of routing between layers and routing
on a given fixed layer may be modeled by varying the distance between the
parallel planes.

In three dimensions, PIkS exploits the generalization of Hanan’s theorem to
higher dimensions [223], namely, that there always exists an optimal Steiner
tree whose Steiner points are chosen from the O(n®) intersections of all planes
that are orthogonal to some coordinate axis and pass through a point of P.
The three-dimensional analog of Hwang’s result suggests that the Steiner ratio,
i.e. the maximum E_Z:—ig% ratio for three dimensions is at most %; however,
there is no known proof of this. An example consisting of six points located in
the middle of the faces of a rectilinear cube establishes that % is a lower bound
for the Steiner ratio in three dimensions.

48 CHAPTER 2

2.4.3 Parallel Implementation

The I15 and B1S algorithms are highly parallelizable since each one of p pro-
cessors can compute the MST savings of O(ﬂi) candidate Steiner points. We
have undertaken a parallel implementation of 11S, where all processors send
their best candidate to a master processor, which selects the best of these
candidates for inclusion into the pointset. This procedure is iterated until no
improving candidates can be found. The Parallel Virtual Machine (PVM) sys-
tem [230] was used for initiating processes on other machines and for controlling
synchronization and communication among processes.®

2.5 PRACTICAL IMPLEMENTATION OPTIONS FOR I1S

This section describes practical ways to reduce the time complexity of an I1S
implementation. We present three techniques: (i) an incremental MST update
scheme, (ii) distribution of the computation over, e.g., a network of worksta-
tions, and (iii) use of tighter bounds on the maximum rectilinear MST degree
in both two and three dimensions.

2.5.1 Incremental MST Updates in Batched 1-Steiner

In computing the MST savings of each of the O(n?) Steiner candidates, a key
fact is that once we have computed an MST over the pointset P, the addition
of a single new point z into P induces only a constant number of changes
between the topologies of M ST(P) and MST(P U {z}). This follows from the
observation that each point can have at most eight neighbors in a rectilinear
planar MST, i.e. at most one per octant [124]. Thus, to update an MST with
respect to a newly added point z, it suffices to consider only the closest point
to z in each of the eight plane octants with respect to z (below, we refine this
result and show that for each point it suffices to examine at most four potential
candidates for connection in the MST).

8Initially, the “master” processor sends equal-sized subsets of the Steiner candidate set to
the available processors, and the computation/response time of each processor is tracked. If
any individual processor is determined to be considerably slower than the rest, it is henceforth
given smaller tasks to perform. If a processor does not complete its task within a reasonable
time, it is sent an abort message, and the task is reassigned to the fastest idle processor
available. This prevents individual slow (or crashed) processors from seriously impeding the
overall computation. Empirical result on this parallel implementation are given in Section
2.8.

Area 49

These observations suggest the following linear-time algorithm for dynamic
MST maintenance: connect the new point z to each of its O(1) potential neigh-
bors (i.e, the closest point to z in each of the octants around), and delete
the longest edge on any resulting cycle. Using this dynamic MST maintenance
scheme, the MST savings of each Hanan candidate can be computed in linear
time, and therefore the MST savings of all O(n?) Hanan candidates may be
computed in time O(n3). This method was first described in [20].

(d)

Figure 2.23 Dynamic MST maintenance: adding a point to an
existing MST entails connecting the point to its closest neighbor in
each octant, and deleting the longest edge on each resulting cycle.
The Euclidean metric has been used for clarity in this example.

During each round of B1S we: (1) compute in O(n®) time the MST savings
of all Hanan candidates, (2) sort them by decreasing MST savings in time
O(n?logn), and (3) march down the sorted list and add into the pointset those
candidates with “non-interfering” MST savings (at linear time per candidate
according to our dynamic MST maintenance scheme described above). Thus,
an entire round of B1S can be implemented in this straight-forward manner in
time O(n®). An execution example is shown in Figure 2.23, and Figure 2.24
describes the algorithm formally. A similar method was used in [251] to obtain
a sub-quadratic MST algorithm in higher dimensions, but no attempt was made
to optimize the number of necessary regions.’

9 Frederickson [98] has given a sublinear-time algorithm for dynamic MST maintenance,
but we prefer the linear-time scheme above due to its simplicity and ease of implementation.

50 CHAPTER 2

Dynamic MST Maintenance
Input: A set P of n points, MST(P), a new point z
Output: MST(P U {z})
T = MST(P)
For i =1 to #regions Do
Find in region R;(x) the point p € P closest to z
Add edge (p,z) to T
If T contains a cycle Then remove from T the longest edge on the cycle
Output T

Figure 2.24¢ Linear-time dynamic MST maintenance.

2.5.2 MST Degree Bounds

The complexity of dynamic MST maintenance, and thus the complexity of
B1S, improves when we observe that only four regions suffice for dynamic MST
maintenance in the Manhattan plane. These four regions are defined by the
two lines oriented at +45 and -45 degrees (Figure 2.25(a)); we call this division
of the plane the diagonal partition. A key property for regions and partitions
in dynamic MST maintenance is the uniqueness property [113] [204]:

The Uniqueness Property: Given a point p in d-dimensional space, a region
R has the uniqueness property with respect to p if for every pair of points
u,w € R, either d(w,u) < d(w,p) or d{u,w) < d(u,p), where d(u,w) is the
distance between u and w.

A partition is said to satisfy the uniqueness property if each of its regions
satisfies the uniqueness property. Any partition having the uniqueness property
is useful for dynamic MST maintenance, since each region will contain at most
one candidate for connection in the MST (recall the earlier use of “oriented
Dirichlet cells” in the construction of Georgeakopoulos and Papadimitriou).
We can show that the diagonal partition enjoys the uniqueness property.

Lemma 2.5.1 For any point p in the Manhattan plane, the diagonal partition
with respect to p has the unigueness property.

Proof: The two diagonal lines through p partition the plane into four disjoint
regions R, through R4 (Figure 2.25(a)). Points on the boundary between two

Area ' 51

neighboring regions may be arbitrarily assigned to either region. Consider any
of the four regions, say Ry, and points u,w € R; (Figure 2.25(b)). Without
loss of generality assume that d(u, p) < d(w, p). Consider the diamond D in R;
with one corner at p, and with u on the boundary of D (see Figure 2.25(c)). Let
¢ be the center of D, so that ¢ is equidistant from all points of D, and let the ray
from p through w intersect the boundary of D at b. By the triangle inequality,
d(w,u) < d(w,b)+d(b,c)+ d(c,u) = d(w, b)+ d(b, ¢) + d(e, p) = d(w, p). Thus,
w is not closer to p than to u, and the region has the uniqueness property. It
follows that the diagonal partition has the uniqueness property. 01

() (b) (c)

Figure 2.25 The diagonal partition of the plane (a) into four regions
with respect to a point p has the uniqueness property: for every
two points u and w that lie in the same region (b), either d(w, u) <
d(w, p) or else d(u,w) < d(u,p) ().

For any given dimension and metric, it is natural to seek an optimal partitioning
scheme, i.e., one with the smallest possible number of regions. The set of five
points consisting of the origin and the four corners of the diamond forces the
MST to have degree four in the Manhattan plane. Thus, the diagonal partition
is optimal.

Even in three dimensions, the addition of a single new point p into P can
induce at most a constant number of topological changes between M ST(P) and
MST(P U {p}). This follows from the fact that in any fixed dimension, each
point can have at most O(1) neighbors in a rectilinear MST. Therefore, the MST
savings in three dimensions can be efficiently calculated by partitioning the
space into O(1) mutually disjoint regions R; such that each has the uniqueness
property. This would enable a linear-time procedure to compute the MST
savings of a given Steiner candidate.

Using insights similar to those which led to Lemma 2.5.1, we can exhibit a
partition of three-dimensional Manhattan space into 14 regions, with each re-

52 CHAPTER 2

gion having the uniqueness property. This partition corresponds to the faces
of the solid that is obtained by chopping off the corners of a cube to yield
six square faces and eight equilateral triangular faces (Figure 2.26(a-b)). This
solid is known as a “cuboctahedron” [177]. The 14 regions of this partition
are induced by the 14 faces of the cuboctahedron, and consist of six pyramids
with square cross-section (Figure 2.26(c)) and eight pyramids with triangular
cross-section (Figure 2.26(d)). Again, points located on region boundaries may
be arbitrarily assigned to either adjacent region. We call this partition the
cuboctahedral partition, and refer to the two types of induced regions as square
pyramids and triangular pyramids. The following theorem implies that for any
given pointset P and new point p in three-dimensional Manhattan space, there
exists some MST over PU {p} in which p has degree < 14.

Theorem 2.5.2 Given a point p in three-dimensional Manhattan space, each
of the 14 regions in the cuboctahedral partition with respect to p has the unique-
ness property.

- Proof: Consider any of the square pyramids R with respect to p (Figure
2.26(c)), and let u,w € R. Assume without loss of generality that d(u,p) <
d(w, p). Consider the locus of points D C R at distance d(u, p) from p (Figure
2.26(e)); D is the upper half of the boundary of an octahedron. Let ¢ be the
center of the octahedron determined by D, so that ¢ is equidistant from all
points of D. Let b be the intersection of the surface of D with a ray from p
that passes through w. By the triangle inequality, d(w, u) < d(w, b) + d(b,¢) +
d(e,u) = d(w, b) + d(b,¢) + d(c,p) = d(w, p). Thus, w is not closer to p than to
u, and the region R has the uniqueness property.

Next, consider any of the triangular pyramids R with respect to p (Figure
2.26(d)), and let u,w € R. Assume without loss of generality that d(u,p) <
d(w,p). Consider the set of points D C R at distance d(u, p) from p (Figure
2.26(f)). Let b be the intersection of D with the ray from p that passes through
w. By the triangle inequality, d(w, v) < d(w, b) + d(b, u) < d(w,b) + d(b,p) =
d(w, p). Thus, wis not closer to p than to u, and the region R has the uniqueness

property. O

Theorem 2.5.3 There are three-dimensional pointsets for which the mazimum
degree of any MST is at least 13.

Proof: Consider the pointset P= {(0,0,0), (£100,0,0), (0, 100,0), (0,0,100),
(47,-4,49), (-6,-49,45), (-49,8,43), (-4,47,-49), (-49,-6,-45), (8,-49,-43), (49,49,2)}.

Area 53

) ®

Figure 2.26 A truncated cube (a-b) induces a three-dimensional
cuboctahedral space partition where each region has the uniqueness
property. The 14 regions consist of six square pyramids (c), and
eight triangular pyramids (d). Using the triangle inequality, the
uniqueness property may be shown to hold for each region (e-f).

The distance between every point and the origin is exactly 100 units, but the
distance between any two non-origin points is strictly greater than 100 units.

54 CHAPTER 2

Therefore, the MST over P is unique (i.e., all 13 points must connect to the
origin in the MST) and the origin point will have degree 13 in the MST.

Given that each point can connect to at most 14 neighbors in the MST, linear-
time dynamic MST maintenance in three dimensions is accomplished by con-
necting the new point in turn to each of < 14 potential neighbors, then deleting
the longest edge on each resulting cycle. This method was first described in
[21]. It is still an open question whether for three dimensions the cuboctahe-
dral partition is optimal (i.e., whether there exists a partition of space into 13
regions having the uniqueness property).

2.6 ON THE MAXIMUM MST DEGREE

Although the I1S algorithm described in Section 2.3.1 runs within time O(n3),
the constant hidden in this asymptotic notation is exponential in the maximum
MST degree. In this section we show that every pointset in the Manhattan
plane has an MST with maximum degree < 4. This result reduces the running
time of the I1S implementation, and is of independent theoretical interest [204].

Even though the degree of any single node in a rectilinear MST can be made
< 4, Theorem 2.5.1 does not imply that the degrees of allnodes can be made < 4
simultaneously. For example, decreasing the degree of one node may increase
the degree of neighboring nodes. It turns out, however, that ties for connection
during MST construction can always be broken appropriately so as to keep
the maximum MST degree low. We begin by defining a strict version of the
uniqueness property:

The Strict Uniqueness Property: Given a point p in d-dimensional space,
a region R has the strict uniqueness property with respect to p if for every pair
of points u, w € R, either d(w, u) < d(w, p) or d(u, w) < d(u, p).

Each d-dimensional region that satisfies the strict uniqueness property may
contribute at most one to the MST degree at p. Using a perturbative argument,
we can prove that by breaking ties judiciously, the maximum MST degree is
no larger than the number of d-dimensional regions in a partition having the
strict uniqueness property.

Area 55

Theorem 2.6.1 If there exists a partition of d-dimensional space into r re-
gions, with ' < r of these regions being d-dimensional and satisfying the strict
uniqueness property (the rest of the r — v’ regions are lower-dimensional, and
are not required to satisfy the uniqueness property), then the mazimum MST
degree of any pointset in this space is r' or less.

Proof: Given a pointset P, perturb the coordinates of each point by a tiny
amount so that the lower-dimensional regions with respect to each point do
not contain any other points. This is always possible to do, and yields a new
perturbed pointset P’. Because interpoint distances in P’ differ by only a tiny
amount from the corresponding interpoint distances in P, the cost of the MSTs
over P’ and P will differ by only a similarly tiny amount which we can make
arbitrarily small. But the MST over P’ has maximum degree »/, since only
the r’ d-dimensional regions of the partition are nonempty with respect to the
points of P’, and these regions satisfy the strict uniqueness property. We now
use the topology of the MST for P’ to connect the corresponding points of P,
inducing an MST over P having maximum degree r'. 0

Applications of this technique to two and three dimensions are immediate:

Corollary 2.6.2 Every pointset P in the Manhattan plane has an MST with
mazimum degree < 4.

Proof: Modify the diagonal partition into a strict diagonal partition hav-
ing a total of eight regions incident to each point of P: four two-dimensional
open wedges (i.e., not containing any of their own boundary points), and four
one-dimensional rays (i.e., the boundaries between the wedges). By arguments
similar to those of Theorem 2.5.1, each of the open wedges possesses the strict
uniqueness property, and thus by Theorem 2.6.1 points lying on the boundaries
between wedges can be perturbed into the interiors of the wedges themselves,
leaving the one-dimensional regions empty of points. The maximum MST de-
gree given such a partitioning scheme is < 4. 0

This bound is tight, e.g., for the center and vertices of a diamond. The best
previous bound was that the maximum MST degree in the Manhattan plane is
< 6 [124].

Corollary 2.6.3 Every pointset in three-dimensional Manhattan space has an
MST with mazimum degree < 14.

56 CHAPTER 2

Proof: Modify the cuboctahedral partition into a strict cuboctahedral par-
tition having a total of 38 regions incident to each point of P: 14 three-
dimensional open pyramids (i.e., eight triangular pyramids and six square
pyramids, each not containing any of their own boundary points), and 24
two-dimensional regions (i.e., corresponding to all the boundaries between the
pyramids). By arguments identical to those of Theorem 2.5.2, each of the open
pyramids possesses the strict uniqueness property, and thus by Theorem 2.6.1,
points lying on the boundaries between the 14 pyramids can be perturbed into
the interiors of these pyramids. The maximum MST degree given such a par-
titioning scheme is < 14. O

The best previous bound for the maximum MST degree in three-dimensional
Manhattan space was 26 [69, 238]. it is still open whether there exists an
example which forces a node in the MST to have degree 14. Interestingly,
Corollaries 2.6.2 and 2.6.3 also settle some open questions in complexity theory.
It is known that the problem of finding a degree-bounded MST is NP-complete,
even when the degree bound is fixed at two (yielding the Traveling Salesman
Problem), or at three [190]. Corollary 2.6.2 implies that the degree-bounded
MST problem in the Manhattan plane is solvable in polynomial time when the
degree bound is fixed at five or at four, since we have shown how to find an
MST that meets these maximum degree constraints. Similarly, Corollary 2.6.3
implies that the degree-bounded MST problem in three-dimensional Manhattan
space is solvable in polynomial time when the degree bound is > 14. The work
of Robins and Salowe [204] investigates the maximum MST degree for higher
dimensions and other L, norms, and relates the maximum MST degree to the
so-called “Hadwiger” numbers.

2.7 STEINER TREES IN GRAPHS

Given a weighted graph G = (V,E), E C V x V, and N C V, the graph
version of the SMT problem seeks a minimum-cost tree in G that spans N
[48, 91, 166]. Any node in V — N is a potential Steiner point. Each graph edge
e;; has a weight w;;, and the cost of a tree (or any subgraph) is the sum of the
weights of its edges. The graph Steiner problem arises when we wish to route a
signal net in the presence of obstacles and congestion [104], or in the presence
of variable-cost routing resources, as are present in field-programmable gate
arrays [5, 7, 8).

Area 57

The Graph Steiner Minimal Tree (GSMT) problem: Given a weighted
graph G = (V,E), and a set of nodes N C V, find a minimum-cost tree
T=(V",E)withNCV'CVand E'CE.

The GSMT problem is NP-complete, since the geometric SMT problem is a
special case. The heuristic of Kou, Markowsky and Berman (KMB) [159] solves
the GSMT problem in polynomial time with performance ratio < 2, using the
following three basic steps (see Figure 2.27).

® Construct the complete graph G’ over N with the weight of each edge
ei; equal to the cost of the corresponding shortest path in G between n;
and nj. We call this shortest path path(n;,n;), and its cost is denoted
distg(n;, nj).

& Compute MST(G'), the minimum spanning tree of G’, and expand each
edge e;; of MST(G’) into the corresponding path(n;, n;) to yield subgraph
G" that spans N.

®» Finally, compute the minimum spanning tree MST(G"'), and delete pen-
dant edges from MST(G") until all leaves are members of N.

The resulting tree is an approximation to the GSMT that has cost no more
than 2 - (1 — }) times optimal, where L is the minimum number of leaves in
any optimal Steiner tree solution [159].

The Kou, Markowsky and Berman (KMB) Algorithm

Input: A graph G = (V, E) with edge weights w; and aset N CV
Output: A low-cost tree T’ = (V’, E') spanning N (i.e. N C V' and E' C E)
G' = (N,N x N), with edge weights w; = distc(ni,n;)

Compute T'= (N, E") = MST(G")

G" = U, epr pathg(ni, n;)

Compute 7' = MST(G")

Delete pendant edges from 7" until all leaf nodes are in N

Qutput 7"

Figure 2.27 The KMB heuristic for the GSMT problem.

The Iterated 1-Steiner approach can be generalized to solve the Steiner problem
in arbitrary weighted graphs, by combining the geometric I1S heuristic with
the KMB graph algorithm. The resulting hybrid method inherits the good

58 CHAPTER 2

average performance of the Iterated 1-Steiner method, while also enjoying the
error-bounded performance of the KMB algorithm. We refer to this hybrid
method as the Graph Iterated 1-Steiner (GI1S) algorithm. The GI1S method is
essentially an adaptation of I1S to graphs, where the “MST” in the inner loop
is replaced with the KMB construction. That is, instead of using an “MST”
subroutine to determine the “savings” of a candidate Steiner point/node, we
use the KMB algorithm for this purpose. Thus, given a graph G = (V, F), a
set N C V, and a set S of potential Steiner points, we define the following:

AKMB(N, S) = cost(KMB(N)) — cost(KMB(N U S))

The GI1S algorithm (Figure 2.28) repeatedly finds Steiner node candidates
that reduce the overall KMB cost and includes them into the growing set of
Steiner nodes S. The cost of the KMB tree over N U S will decrease with
each added node, and the construction terminates when there is no ¢ € V' with
AKMB(N U S, {z}) > 0.

Graph Iterated 1-Steiner (GI1S) Algorithm

Input: A weighted graph G = (V,F) and aset NCV
Output: A low-cost tree T' = (V’, E') spanning N (i.e. NC V' CV and E' C E)

S=0

WhileT ={ze€ V- N | AKMB(NuUS, {z}) > 0} # 0 Do
Find z € T with maximum AKMB(N U S, {z})
S =Su{z}

Return KMB(N U S)

Figure 2.28 The Graph Iterated 1-Steiner algorithm (GI1S).

Given a weighted graph and an arbitrary set of nodes N, a performance ratio
for GI1S of 2- (1 1) follows from the KMB bound and the fact that the cost of
the GI1S construction cannot exceed that of the KMB construction. If |[N| < 3
(e.g., a VLSI signal net with three or fewer terminals), GI1S is guaranteed to
find an optimal solution. Although the worst-case performance ratio of GI1S
is the same as that of KMB, in practice GI1S significantly outperforms KMB
[7, 8]. Given a faster implementation of the KMB method [249], the GI1S
algorithm can be implemented within time O(|N| - |G|+ |N|*log|N]), where
[N| < |V] is the number of nodes to be spanned and |G| = |V| + |E}| is the
size of the graph. Other works that address Steiner routing in a graph include
[48, 104, 166].

Area 59

Note that the GI1S template above can be viewed as an Iterated KMB (IKMB)
construction, and that KMB inside the inner loop may be replaced with any
other graph Steiner heuristic, such as that of Zelikovsky (ZEL) {254}, yield-
ing an [terated Zelikovsky (IZEL) heuristic. IZEL enjoys the same theoretical
performance bound as ZEL, namely l_el‘ Experiments have shown that these
heuristics in order of increasing empirical average performance are: KMB, ZEL,
IKMB, and IZEL [9]. Thus, iterating a given Steiner heuristic is an effective
general mechanism to improve empirical performance without sacrificing theo-
retical performance bounds.

2.8 EXPERIMENTAL RESULTS

We have implemented both serial and parallel versions of the I1S, B1S, and
PI2S algorithms, using C in the Sun workstation environment. We compared
these with the fastest known optimal Steiner tree algorithm (OPT) of Salowe
and Warme [208] on up to 10000 pointsets of various cardinalities. Random
instances were generated by choosing the coordinates of each point indepen-
dently from a uniform distribution in a 10000 x 10000 grid; such instances are
statistically similar to the terminal locations of actual VLSI nets and are a
standard testbed for Steiner tree heuristics [138]. Both I1S and BI1S have very
similar average performance, approaching 11% improvement over MST cost
(Figure 2.30(a)).! The average number of rounds for B1S is 2.5 for sets of
300 points, and was never observed to be more than 5 on any instance (Figure
2.30(b)); over 95% of the total improvement occurs in the first round, and over
99% of the improvement occurs in the first two rounds. The average number
of Steiner points generated by B1S grows linearly with the number of points
(Figure 2.30(c)). An example of the output of B1S on a random 300-point set
is shown in Figure 2.29.

Figure 2.31(a) shows the performance comparison of B1S, PI2S, and OPT on
small pointsets. We observe that the average performance of PI2S is nearly
optimal: for n = 8, PI2S is on average only about 0.11% away from optimal,
and solutions are optimal in about 90% of the cases (Figure 2.31(b)). Even
for n = 30, BI1S is only about 0.30% away from optimal, and yields optimal
solutions in about one quarter of the cases.

10Recently, other Steiner heuristics with performance approaching that of I1S were pro-
posed by Borah et al. [36], Chao and Hsu [43], and Lewis et al. [171].

60 CHAPTER 2

Figure 2.29 An example of the output of B1S on a random set of
300 points (hollow dots). The Steiner points produced by B1S are
denoted by solid dots.

We timed the execution of the serial and parallel versions of B1S, using both a
naive O(n*logn) implementation and the O(n®) implementation which incor-
porates the efficient, dynamic MST maintenance as described in Section 2.5.
The parallel implementation (see 2.4.3used nine Sun 4/40 SPARC1 worksta-
tions, with a Sun 4/75 SPARC2 as the master processor. For n = 100, the
fast serial implementation is 247 times faster than the naive implementation,
and the parallel implementation running on 10 processors is 1163 times faster
(Figure 2.30(d)). Even for small pointsets, the enhanced implementation is
considerably faster than the naive one: for n = 5, the serial B1S is on average
more than twice as fast as the naive implementation, while for n = 10 the se-
rial speedup factor approaches 7. Notice that the serial speedup increases with

Area 61

problem size; the parallel speedup (defined as the parallel time divided by the
serial time) also increases with problem size, reaching about 7.2 for n = 250
using 10 processors.

The average running times of the algorithms for various pointset cardinalities
are compared in Figure 2.30(d). The most time-efficient of the heuristics is
B1S, requiring an average of 0.009 CPU seconds for n = 8, and an average
of 0.375 seconds for n = 30. Using PIkS (or PBkS) with & > 2 improves
the performance, but slows down the algorithm. Recall that for arbitrary k,
PIkS (PBkS) always yields optimal solutions for < k + 2 points, but has time
complexity greater by a factor of n2(*~1) than PI1S (PB1S). While this enables
a smooth tradeoff between performance and efficiency, the performance of the
PBKS algorithm with £ = 2 is already so close to optimal that use of k > 2 is
not likely to justify the resulting time penalty in most applications.

In three dimensions, we observed that the limit when the number of planes I,
approaches 0o, the average performance of PB1S approaches 15% improvement
over MST cost, and the performance increases with L (Figure 2.31(c)). Recall
that the average savings over MST cost in three dimensions is expected to
be higher than in two dimensions, since the worst-case performance ratio is
higher also (i.e., 2 for three dimensions vs. for two dimensions). The number
of added Steiner points in three dimensions grows linearly with the pointset
cardinality (Figure 2.31(d)). In all cases, the L parallel planes were uniformly
spaced in the unit cube (i.e., they were separated by % units apart, where
G = 10000 is the gridsize). The OPT algorithm of Salowe and Warme [208]
does not generalize to higher dimensions, and thus we were not able to compare
the three-dimensional version of PB1S against optimal solutions. As in two
dimensions, the average number of rounds for B1S is very small.

62

CHAPTER 2

B1S: Ave Savings (% Improvement over MST)

B1S: Min/Ave/Max # of Steiner Points Added

3.0+
38
11.0-
g
& g5
105 =
2
E 204
10.0 E
g
> 1.5
9.5 &
Py
-y
=
9.0 T T T T T 1 1.0) : < ! 7 1
50 100 150 200 250 300 50 100 150 200 250 300
Pointset Size Pointset Size
(a) (b)
- 3000-L) ;
150 3 PF
‘N
] i Naive BIS
B 20004 1§ i (serial)
100 3 P
E
B o0 |
50- £ 1 FastB1S
g § (serial) Fast BIS
{ (parallel)
& P
0 = | 1 ¥
0 T y 7 y T y 0 100 200 300
SO 100 150 200 250 300 Pointset Size

Pointset Size

©) (d)

Figure 2.30 (a) Average performance of B1S, shown as percent
improvement over MST cost. (b) Average number of rounds for
B1S. (c) Average number of Steiner points induced by B1S (verti-
cal bars indicate the range of the minimum and maximum number
of Steiner points added) (d) Average execution times (in CPU sec-
onds) for B1S, for both the naive implementation, as well as the
“fast” B1S which uses the incremental MST maintenance scheme
(also shown are OPT and the parallel version of B1S).

Area

63

2D Ave Savings (% Improvement over MST)

3D Ave Savings (% Improvement over MST)

110+

10.8 1

10.0

10 15 20
Pointset Size

(a)

PI2S
10.6 4
BI1S
10.4
10.2
T

5 10 15 2
Pointset Size
(c)

T
25

Percent of Cases Equal to Optimal

3D B1S: Min/Ave/Max # of Steiner Points

100 4
804
604 PI2S
1S
40 4
T T U 1
5 10 15 20 25
Pointset Size
(b)
30
204
104
0 T T T T \J
10 20 30 40 50
Pointset Size
(d)

Figure 2.31 (a) Average performance in two dimensions of PI2S,
B1S, and OPT; note that PI2S is only 0.25% (or less) away from
optimal. (b) Percentage of all cases when the heuristics find the
optimal solution (note that PI2S yields optimal solutions a large
percentage of the time). (c) Average performance of PB1S in three
dimensions for various values of L = number of parallel planes. (d)
Average number of Steiner points added by B1S in three dimensions

for L = co.

DELAY

Overview of the Chapter

This chapter considers the problem of minimizing signal delay for performance-
driven system design. The signal delay objective moves us from the unoriented
pointset P of the Steiner problem to an oriented signal net S which has an
identified source. Optimal-delay wiring geometries can differ substantially from
those of optimal-area (Steiner minimal tree) solutions, particularly as technol-
ogy moves into submicron regimes and layout dimensions continue to increase.
Our discussion reflects the history of our recent research, which has addressed
four major issues.

First, there is the issue of technology-dependent methodologies versus technology-
independent methodologies. Analysis of the Elmore delay formula for dis-
tributed RC trees motivates a cost-radius tradeoff that is clearly dependent
on technology, as has been discussed in [13, 16, 17, 62, 63, 156]. Thus, routing
tree constructions that are based on aspects of technology, net criticality, or
other factors can potentially improve over static, “oblivious” methods.

Second, there is the issue of “actual delay” versus geometric objectives. Many
early works used geometric objectives, e.g., tree cost or tree radius, essentially
for algorithmic convenience and tractability of analysis. By contrast, the class
of objectives proposed by Boese et al. [32, 34] leads to improved performance by
optimizing Elmore delay directly. A review of the various delay estimates, along
with data establishing their respective fidelities to SPICE-computed delay, is
given in the Appendix.

64

Delay 65

Third, there is the issue of minimizing net-dependent delays versus sink-
dependent delays. Because timing-driven placement and routing will usually be
iterated with static timing estimation, critical-path information is often avail-
able during the routing tree construction. Thus, a formulation which optimizes
delay to a set of critical sinks, as in the work of Boese, Kahng and Robins [34],
is of interest.

Finally, the fourth issue involves quantifying the the near-optimality of minimum-
delay routing heuristics. Just as empirical studies showed that I1S averages

within a fraction of one percent from optimal for the rectilinear SMT problem,

the “SERT-C” heuristic proposed in [34] is actually very close to optimal in

terms of weighted critical sink delays. Boese and coauthors [32] established

a basis for this assessment by showing how to construct Steiner trees with

optimal Elmore delay. Their proof of correctness uses (i) a generalization of

Hanan’s theorem to Elmore delay-optimal Steiner trees, and (ii) a “peeling”

decomposition for optimal Steiner trees.

In addition to these issues and their solutions, we will describe a number of
confirming experimental results. The chapter concludes with a survey of other
recent advances in performance-driven interconnect design, notably the ap-
plication of non-tree topologies and wiresizing techniques to improve circuit
performance.

3.1 PRELIMINARIES

With the scaling of device technology and die size, interconnection delay now
contributes up to 70% of the clock cycle in dense, high performance circuits
[18, 77, 234]. As a result, performance-driven layout design has been studied ac-
tively since the late 1980°s. Because module placement has a significant effect on
the space of achievable signal delays, initial research centered on timing-driven
placement, in which the objective is for adjacent modules on critical paths to be
placed close together. Examples of timing-driven placement algorithms include
a “zero-slack” algorithm proposed by Hauge et al. [119]; the fictitious-facilities
and floating-anchors methods of Marek-Sadowska and Lin [178]; and a linear
programming approach by Jackson et al. [140]. Several other timing-driven
placement approaches, including methods based on simulated annealing, have
been proposed in [77, 173, 234]. Since in general no global routing solution is
available at the placement step, each of these methods uses a simple estimate
of interconnection delay, such as those discussed below.

66 CHAPTER 3

Given a timing-driven module placement, the corresponding timing-driven rout-
ing algorithm minimizes average or maximum signal delay from the source ter-
minal to the sink terminals of a signal net. An example method is that Dunlop
et al. [79], which determines net priorities based on static timing analysis; nets
with high priorities are processed earlier using fewer feedthroughs. Jackson et
al. [142] outlined a hierarchical approach, and Prasitjutrakul and Kubitz [192]
proposed a router for building-block design based on the A* search algorithm.
These results have had great influence on succeeding works, but fall short of
providing general, well-motivated solutions to the problem of optimal-delay
routing. In what follows, all of our methods will be motivated by a simple,
recurring question: what is the proper objective for optimal-delay routing tree
construction?

3.1.1 Definitions

We define a signal net S = {so,51,...,5,} to be a set of n + 1 terminals,
with sg the source and the remaining terminals sinks. Performance-driven
interconnection problems have two basic flavors: geometric instances arising
in cell-based design, and weighted graph instances arising in building-block
design. In cell-based design, routing cost is closely approximated by Manhattan
distance, while in building-block design, routing cost is typically given by the
cost of a shortest path in the channel intersection graph of the layout (see
Section 1.2). Thus, the signal net S is more generally viewed as being embedded
in an underlying routing graph G = (V, E) with S C V. The graph G is
connected and has variable edge weights (costs): each edge e;; € F has a cost
d(vi, v;) equal to the routing cost between v; and v;. We seek a routing tree T
in G that spans S. The cost of T' is defined to be cost(T) = 3_, o7 d(vi, vj).
When V = S, the spanning tree with minimum cost is the MST or Tis.

The cost of a path in G is defined as the sum of its edge costs. The minimum-
cost path in G between two vertices v; and v; is denoted minpathg(v;,v;), and
we use distg(vi,v;) to denote its cost. In a routing tree, minpathr(v;,v;) is
simply the unique v;-v; path. The distance in a tree from the source to a given
sink s; is specially denoted as l; = distr(so, 5;).

In much of the following discussion, the radius of either a signal net or a routing
tree will hold special interest. The radius of a routing tree T is r(T) = 11215a<x l;.
Isn

Given signal net S and an underlying routing graph G, we use R; to ‘denote
the cost of the shortest sg-s; path in G, i.e., R; = distg(so,5;). A shortest
paths tree, denoted as an SPT or Ty, has l; = R; for all sinks s;. At times,

Delay 67

we use R to denote the maximum R; value over all sinks s;, and we say that
R is the radius of the signal net. Much of our discussion will concern the case
of S being embedded in geometry, so that G is a complete graph with each e;;
having cost equal to the Manhattan distance, d;;, between v; and v;. In this
case, R; = do; for all sinks s;. Finally, a vertex v that is embedded in the plane
has z- and y-coordinates v, and vy, respectively.

3.1.2 The Linear and Elmore Delay Approximations

The proper objective to use in efficiently constructing a “high-performance
routing tree” over a given signal net is not yet established. Many works rely on
the linear delay model, where the signal delay from s; to s; is proportional to
the length of the s;-s; path in the routing tree. The linear model can be used
to motivate essentially geometric routing constructions (e.g., a shortest paths
tree has optimum delay at every sink according to the linear model). However,
valuable insights are also obtained by considering the Elmore delay model, i.e.,
the first moment of the impulse response for a distributed RC representation

of the routing tree [87].

Elmore delay in an RC tree is defined as follows [205, 240]. Given routing tree
T rooted at the source sg, let e, denote the edge from node v to its parent
in T. The resistance and capacitance of edge e, are denoted by r., and c.,,
respectively. Let T, denote the subtree of T' rooted at v, and let ¢, denote
the sink capacitance of v (we assume that ¢, = 0 if v is a Steiner node). We
use C, to denote the iree capacitance of T,, defined to be the sum of sink and
edge capacitances in T, (note that when 7, is a single (leaf) node, C, is equal
to the corresponding sink capacitance ¢,). Using this notation, the Elmore
delay along edge e, equals r,(%5* + C,). Let rq denote the on-resistance of
the output driver at the source. Then the Elmore delay tgp(s;) at sink s; is

Ce,

tep(si) = raCsy + Z Teu("Q— +C) (3.1)

evEpath(so,si)

A fundamental property of this expression, which has been noted by Lin and
Mead [176], Rubinstein et al. [205], Tsay [240] and others, is that {gp(s;) can
be evaluated for all i = 1,...,n in O(n) time. Two depth-first traversals of the
tree are sufficient: the first traversal calculates all C, values and the delays on
each edge, while the second adds up the delays on each source-sink path. This

68 CHAPTER 3

calculation is enabling to the efficient methodologies described in Section 3.3
below.

In the Appendix, we review the underlying theory behind several efficient de-
lay approximations, including Elmore’s approximation and the class of two-pole
(moment-matching) methods. The Appendix also reviews recent work of Boese
et al. [30, 31, 32, 33, 34] which shows that Elmore delay has high fidelity with re-
spect to SPICE-computed delay over a wide range of technologies. It turns out
that although Elmore’s formula can yield inaccurate delay estimates, the rank-
ing of alternate routing tree solutions by Elmore delay closely reflects the rank-
ing obtained using SPICE3e2. Similar results have been obtained by Kim et al.
[157], who simulated critical-path delays over a suite of 209 ripple-carry adder
implementations and found near-perfect correlation between SPICE-computed
and Elmore delays. A theoretical motivation for this correspondence, based on
group delay, was given in [245]. These results form the basis of our focus on
Elmore delay at the end of this chapter.

If ro, and c., are proportional to the length of e, (with unit resistance and
unit capacitance given by 7 and €), then the r4 - C;, term in Equation 3.1
has linear dependence on cost(T), while the summation term has quadratic
dependence on [;. As a result, we can distill an essential “cost-radius conflict”
inherent in routing tree design: (i) when 74 is relatively large, the rq - C;,
term dominates the summation and suggests a minimum-cost routing solution,
but (ii) when ry is relatively small, the quadratic dependence on source-sink
pathlength dominates, and suggests a “star-like”, shortest paths tree topology.

An essentially similar insight was derived in [28, 65, 257] from the simple upper
bound on Elmore delay due to Rubinstein et al. [205). The Elmore delay upper
bound for a tree T is simply the summation, over all nodes in T', of the RC
product arising when each node capacitance sees all the resistance between the
node and the source.! Note that this upper bound applies generically to delay at
every sink, unlike the sink-specific expression of Equation 3.1. The upper bound
can be re-expressed as the sum of four terms: one term is minimized when T has
minimum cost; a second term is minimized when T is a shortest paths tree; a
third term is minimized when T' is what the authors call a “quadratic minimum

1Let s;- be one of a finite number of points used to represent the tree, and let ¢’; denote the
total capacitance at sg (when the tree is modeled as composed of a finite number of segments,
¢'j indicates the sum of the internal capacitance (e.g., if s; is a sink) and the wire capacitance
between s"’» and the nearest point on the s;--so path). If Rj denotes the total resistance on
the sg-so path, then the upper bound on any sink delay in T is tgp < EJ. R,c';, where the

summation is taken over all points in the tree, not just the sinks s;.

Delay 69

Steiner tree”; and the fourth term is a constant. As in the analysis of Equation
3.1, it is the relative size of 74 which indicates the dominant term in the delay
expression. The size of r4 relative to the unit resistance 7 is a “resistance
ratio” [28, 65, 256] that captures the technology vis-a-vis routing tree design.
Values of % have typically decreased in current submicron CMOS and MCM
substrate technologies (see Table 3.1), suggesting that the traditional minimum-

cost objective is becoming less germane to performance-driven routing.

Name IC1 1C2 IC3 MCM
Technology 2.0 um 1.2 um 0.5 um MCM
Td 164.0 2121 Q 270.0 25.0 Q
F 0.033 2/um 0.073 Q/um 0.112 Q/pm | 0.008 Q/um
14 0.019 fF/um | 0.022 fF/pum | 0.039 fF/um | 0.06 fF/um
¢ 5.7 fF 7.06 fF 1.0 fF 1000 fF
X (x 10%pm) 0.0050 0.0029 0.0024 0.0031
chip size 1x1 em? 1x1 cm? 1x1 cm? 10x10 cm?

Table 3.1 Interconnect parameters for three CMOS IC technolo-
gies and an MCM technology. Parasitics for the IC1 and IC2 tech-
nologies are provided by the MOSIS project at the USC Informa-
tion Sciences Institute; IC3 parasitics are courtesy of the Micro-
electronics Center of North Carolina; MCM interconnect parasitics
are courtesy of Professor Wayne W.-M. Dai of UC Santa Cruz and
correspond to data provided by AT&T Microelectronics Division.
Unit inductance for the MCM interconnect is 380 fH/um, and is
assumed negligible for IC interconnect. The 74 values are scaled
driver resistances. Sink loading capacitances (¢;) are derived for
minimume-size transistors.

GEOMETRIC APPROACHES TO DELAY
MINIMIZATION

3.2

The above analysis of Elmore delay provides a retrospective validation of several
minimum-delay routing tree heuristics which trade off between tree cost and
tree radius. In this section, we first survey two early works that adopt such
geometric “cost-radius” intuitions, and then present three effective classes of
heuristics that are also based on purely geometric objectives.

70 CHAPTER 3

3.2.1 Early Cost-Radius Tradeoffs

An early work of Cohoon and Randall [57] is notable for its prescient insights.
For any given signal net, [57] proposed the construction of a “maximum per-
formance tree” corresponding to “a shortest path tree ... with minimum total
length”, and noted that such a tree seems difficult to construct. While the
minimum-cost shortest paths (spanning) tree is easily computed?, the Steiner
version of Cohoon and Randall’s question is precisely the rectilinear Steiner
arborescence problem discussed in Section 3.2.4 below. A heuristic was given
which determines a central trunk for the Steiner topology, then “attempt(s]
to combine the best features of an RMST and an RSPT”, i.e., a rectilinear
minimum spanning tree and a rectilinear shortest paths tree. This idea, too, is
interesting in light of the various cost-radius tradeoffs that are discussed below.
The heuristic in [57] connects the most distant sink directly to the source with
a wire of length R, then proceeds with an MST-like construction; if a terminal
s; is about to be added into the tree with I; > R, then the method reverts back
to an SPT-like construction. In this way, all source-sink paths are guaranteed
to be of length < R. A final phase of the heuristic performs edge-overlapping
to further reduce the Steiner tree cost.

The work of Cong et al. [61], which was contemporaneous with [57], also
observed the existence of conflicting min-cost and min-radius objectives in
performance-driven routing. While the shortest paths tree (SPT, or Ts) has
the smallest possible radius of any routing tree, its cost might be Q(|S|) times
greater than the cost of the minimum spanning tree (MST, or Tiy); see Figure
3.1. On the other hand, the radius r(Tjs) can be much larger than »(Ts).

To address both tree radius and tree cost in the routing construction, [61]
proposed the following:

The Bounded-Radius Minimum Routing Tree (BRMRT) Problem:
Given a parameter ¢ > 0 and a signal net with radius R, find a minimum-
cost routing tree T with radius r(T) < (1+¢€) - R.

The parameter € specifies a tradeoff between the minimum-radius and minimum-
cost objectives. When € = 0, a minimum-radius spanning tree is obtained, and
as € increases, the weaker radius restriction allows further reduction of tree
cost. When ¢ = 0o, a minimum-cost spanning tree is obtained. Figure 3.2 gives

2We call such a tree a minimum-cost spanning arborescence. It may be computed by
executing Dijkstra's single-source shortest paths algorithm, and breaking ties in each pass
so that the closest possible node is chosen among all possible parents of the new permanent
node.

Delay 71

Figure 3.1 Three interconnection trees for the same signal net with
so at the center: (a) the shortest paths tree Ts; (b) the minimum
spanning tree Tys; and (c) a “tradeoff” between the two construc-
tions.

an example with three distinct spanning trees obtained using different values
of ¢: Figure 3.2(a) shows a minimum-radius spanning tree corresponding to
the case € = 0, with »(T") = 6; Figure 3.2(b) shows a solution with ¢ = 1 and
r(T) = 10; and Figure 3.2(c) shows the minimum spanning tree corresponding
to the case € = 0o, with »(T") = 14. The complexity of the BRMRT formulation
for spanning trees is still open; when Steiner points are allowed in the routing
tree, choosing € = oo yields the Steiner minimal tree formulation.

*—2— 2
3 zl 3
6 'T——;——# #
4 3 3 3
2 o—=2 o2

(a) e =0, cost(T) = 17, r(T)=6 (b)e=1,cosy(T) = 15, «(T)=10 (c) € =00, cost(T) = 14, r(T)=14

Figure 3.2 Increasing € may result in decreased tree cost, but in-
creased tree radius.

72 CHAPTER 3

The Bounded-Prim (BPRIM) Algorithm

Recall that in cell-based design methodologies, routing costs are closely approx-
imated by geometric distance, and the underlying routing graph is essentially
the complete graph G = (V, E) with V = S. In this regime, spanning tree solu-
tions will be of interest, even for performance-driven routing formulations: (i)
spanning trees are often easier to compute than Steiner trees, and (ii) a span-
ning solution can be easily converted into a corresponding Steiner solution by
edge-overlapping, while retaining essentially identical radius parameters. For
the BRMRT variant which seeks a bounded-radius spanning tree, an effective
heuristic follows the general scheme of Prim’s minimum spanning tree con-
struction [196). This “Bounded-Prim” (BPRIM) algorithm (Figure 3.3) grows
a tree T' = (V', E’) which initially contains only the source sp. At each step,
terminals s; € V' and s; € S — V’ are determined such that d(s;,s;) is mini-
mum. If adding the edge (si,s;) to T does not violate the radius constraint,
e, li + d(si,s;) < (1+¢€): R, the edge (si, s;) is added to T. Otherwise, the
algorithm “backtraces” along the path from s; to sp in T, and finds the first
terminal s;; such that the edge (si/, s;) is appropriate, i.e., l;; + d(sir,s;) < R.
The edge (s;7, s;) is then added to the tree. In the worst case, the backtracing
will terminate with s;» = sg, since edge (sg, ;) is certain to be appropriate.

Note that the backtracing chooses s;» so that liy + d(si/,s;) < R, instead of the
more obvious condition < (1 + €) - R. This introduces some “slack” at s;, so
that terminals added later within an ¢ - R neighborhood of s; will not cause
additional backtracing. Limiting the amount of backtracing in this way keeps
the cost of the resulting tree closer to that of the minimum spanning tree, while
still guaranteeing that backtracing is always possible. By contrast, the method
of Cohoon and Randall always enforces ¢ = 0 in its construction. The most
direct implementation of BPRIM requires ©(n?) time since each new terminal
can force examination of most of the previously added terminals.

It is easy to see that r(Tgpriam) is never greater than r(Tas) if the MST Ty
is unique.

Lemma 3.2.1 If the MST Ty is unique, then r(Tpprim) < v(Tm).

Proof: If ’I‘(TM) < (1 + 6) - R, then r(TBPRIM) = T(TM) since Tepprrm and
Ty will each be uniquely constructed, and will be identical to each other.

Otherwise, r(Teprim) < (1 +¢€) - R < r(Tp) by construction. 0

Delay 73

Algorithm BPRIM: Computing a bounded-radius spanning tree
Input: Net S with radius R, source so; parameter ¢ > 0
Output: Spanning tree Tsprinm with r(Teprim) < (14+¢) R
T=(V,E) = ({s),0)
While |V'| < S|

Select s; € V' and s; € S — V' minimizing dist(si, s;)

If l; + dist(si,s;) < (1+¢€¢)- R Then sy =s;

Else find the first terminal s;» along the path in T from s; to s

such that Iy + dist(sy,s;) <R

V' =V'U{s;}

E' = E'U{(sir,3;)}
Output Teprim =T

Figure 3.3 Algorithm BPRIM: computing a bounded-radius span-
ning tree Tpprrym for a given signal net S, with source s € S and
radius R, using parameter ¢ > 0.

When Ty is not unique, the radii of different minimum spanning trees can vary
by an unbounded amount, and r(Tgprrm) may be greater than r(Tpr). Thus,
Lemma 3.2.1 will not hold for all choices of Ths. In the example of Figure 3.4,
a Prim-like minimum spanning tree algorithm may choose a connection to y;
instead of z, or y, instead of zq, etc., such that »(Tgprim) > 7(Tar) even
though the two trees have identical cost. Of course, »(Tpprinr) cannot exceed
the maximum possible r(T3s). Choosing a minimum-radius Tas when the MST
is not unique has unknown complexity.

In general, the worst-case cost performance ratio between cost(Tpprrm) and
the cost of the optimal bounded-radius minimum spanning tree will depend
on the ¢ and |S|. Experimental results [63] show that fi’.ﬁ%}%%l, which is
clearly an upper bound on the cost performance ratio, is in practice bounded
by a small constant even when |S| is large. However, the cost performance ratio

is not bounded by a constant for any value of ¢.

Theorem 3.2.2 For any value of ¢, the ratio of cost(Tpprinm) to the cost of
the optimal bounded-radius minimum spanning tree can be arbitrarily large.

Proof: The construction of Figure 3.5 shows that BPRIM will have unbounded
cost performance ratio. The optimal solution is shown on the left with all

74 CHAPTER 3

Figure 3.4 A construction for which the radius of an MST (right)
is arbitrarily larger than that of a minimum-radius MST (left).

source-leaf pathlengths equal to R. Terminal y is situated so that the path-
length from the source to any leaf via y is slightly greater than (1+¢)- R. This
will cause the BPRIM construction to backtrace all the way back to the source
from every leaf, yielding an unbounded performance ratio. For any value of .
y can be replaced by many closely spaced terminals so that BPRIM creates an
appropriately long path between sg and z. 0O

Extensions of BPRIM

The bounded-radius construction can also be applied to minimum spanning
tree methods other than Prim’s algorithm. A more general algorithm template
is given in Figure 3.6.

Many distinct variants are possible, depending on how the pair of terminals s;
and s; are selected inside the inner loop. The following variants H1, H2 and
H3 have improved performance over the original BPRIM algorithm [61, 63].
These three variants afford progressively more freedom in the choice of s; and
its point of connection to the existing tree. Whereas BPRIM connects s; using
the first appropriate edge to s;s along the s;-sg path, H1 picks the minimum-
length appropriate edge to any s;» on the path; H2 finds the minimum-length
appropriate edge to any s;; € V'; and H3 finds the minimum-length appropriate
edge between any s € V' and any s; € S — V'.

Delay 75

[J

[)

[J
[]
[
[J
[
X ° X
y \ y

all leaves

source \ connect directly
to source

OSO 5 SO

Figure 3.5 The value of cost(Tgprim) is not bounded by any con-
stant factor from optimal for any value of €. The optimal solution
is shown on the left, and Tgpprpy is shown on the right.

Algorithm Extended-BPRIM: Computing a bounded-radius spanning tree
Input: Net S with radius R, source so; parameter € > 0
Output: Spanning tree T with (7)) < (1+¢)- R
T=(V,E")=({s0},0)
While [V'| < ||
Select two terminals s, € V' and s; € § ~ V'
with l; +d(si,8;) <(1+¢€)-R

Vi=V'u{s;}
E'= E'U{(si,s;)}
Output T

Figure 3.6 A more general BPRIM template.

= H1 - Find s; and s; as in BPRIM, and select the terminal s; along
the path in T from s; to sg which yields an appropriate edge (s;r,s;) of
minimum length.

s H2 - Find 5; and s; as in BPRIM, and select the terminal s;; € V’ which
yields a minimum-length appropriate edge (s;/, s;).

76 CHAPTER 3

s H3 — Find a pair of terminals s; € V' and s; € S — V' that yield a
minimum-length appropriate edge (si, s;).

b

“

-8
A4

I:‘I

O—I-O X ¢

Re

X

source

So 1 S0
s A ®

u

source y y

o
p
b

®

Figure 3.7 Construction showing that the cost performance ratio of
both H2 and H3 is not bounded by a constant for any €. The optimal
solution is shown on the left; both Tys and Ty3 will be identical to
the tree shown on the right. As with Figure 3.5, the construction
can be changed to fit any given value of ¢ by introducing paths of
closely spaced points between sg and .

The time complexity of variants H1 and H2 is O(|S|?), while variant H3 can
be implemented to run in time O(|S}3). Lemma 3.2.1 holds for each of H1, H2,
and H3. However, Figure 3.5 shows that variant H1 will also have unbounded
cost performance ratio, and the example of Figure 3.7 establishes unbounded
performance ratio for variants H2 and H3. Notice that while H1, H2 and
H3 appear ordered by increasing power and flexibility, Figure 3.8 shows that
BPRIM can outperform these more complicated variants.

3.2.2 Shallow-Light Constructions

In order to bound both the worst-case radius performance and the worst-case
cost performance of the routing tree, “shallow-light” tree constructions have

Delay 77

A

1428
source 1

2 2428

’-——L—
25
o

Figure 3.8 Example for which BPRIM (left) outperforms variants
H2 and H3 (right); é is a very small real number and ¢ = (2 —
368)/(2+ 39).

been proposed which capture properties of both Tas and Ts stmultaneously to
within constant factors of optimal.®

Definition: Given a signal net S and parameter a > 1, a shallow-light tree
T = (S, E’) is a spanning tree over S that satisfies: (i) ; < a-R;, 1 <i<n,
and (ii) cost(T) < B - cost(Tn) with the constant 3 depending only on «. We
call such a tree an («, 3)-tree.

Works by three separate groups provide shallow-light constructions [17, 63, 156).
All three groups use the following general technique, pioneered by Awerbuch
et al. in [16]:4

1. construct Tyys;

2. visit the terminals of S in the order of a depth-first traversal of T)s;

3The term “shallow-light” seems to have originated in the work of Awerbuch et al. [16],
and indicates a tree with bounded radius (i.e., “shallow”) and bounded cost or weight (i.e.,
“light”).

4 This basic technique of Awerbuch et al. [16] can be traced further back to literature in
the sparse graph spanner area of computational geometry, e.g., see the work of Levcopoulos
and Lingas [170]. Generally speaking, techniques used for sparse graph spanners have strong
resonances with VLSI routing objectives (e.g., see [42, 191]). However, a graph spanner
has bounded pathlengths between all pairs of nodes in a given graph, which is too strong a
constraint for our (single-source) routing application.

78 CHAPTER 3

3. whenever violations of the prescribed radius bound are observed, insert or
delete edges as necessary; and

4. return the shortest paths tree (with respect to the single source sp) over
the resulting graph.

Cong et al. [63] proposed the “Bounded Radius, Bounded Cost” (BRBC)
algorithm for performance-driven global routing; this algorithm is the focus of
the present subsection. The unpublished manuscript of Awerbuch et al. [17]
describes an algorithm that is identical to BRBC, and shows that it yields a
shallow-light, (1 + 2¢,1 + %)-tree for parameter ¢ > 0. Finally, the method
of Khuller et al. [156] obtains a (1 +¢,1+ %) shallow-light construction by
“relaxing” edges, in contrast to the earlier works of {17, 63] which add complete
source-sink shortest paths when violations of the radius bound occur.

In surveying these results, which have occurred in rapid succession over the
past several years, several aspects of their precise history should be noted. The
seminal work of Awerbuch et al. [16] gave a “diameter shallow-light” tree con-
struction, with simultaneous low diameter and low cost, to enable efficient mes-
sage passing and global function computation over a communication network.®
The authors of [16] achieved tree diameter within a factor 1 + 2¢ of optimal,
and tree cost within a factor 2+ -f- of optimal, for parameter ¢ > 0. The BRBC
method may be viewed as a straightforward “radius shallow-light” extension
of Awerbuch et al.’s method in [16]. However, the motivating BRMRT prob-
lem formulation is actually quite distinct from the notion of “shallow-light”:
the definition of “shallow-light” implies a sink-dependent radius bound, but
the results originally proved for BRBC establish a net-dependent radius bound.
Specifically, [63] showed that BRBC achieves /; < (1+¢€)- R, 1 <i < n, while
maintaining tree cost within 1+ 2 of optimal. The stronger result, that BRBC
is also shallow-light, was obtained in [17).

The following discussion assumes a routing graph G = (V, E) with V = S. For
ease of notation, we sometimes refer to sinks without subscripts, e.g., v, z, y,
etc.

SHo et al. [121, 123] have also proposed heuristics for a minimum-cost bounded-diameter
spanning tree formulation.

Delay 79

The BRBC Algorithm

The basic idea of the “shallow-light” recipe is to construct a subgraph @ of G,
such that @ spans S and has both small cost and small radius. The shortest.
paths tree of () will also have small cost and radius since it is a subgraph of
@, and will therefore serve as a good routing solution. The BRBC algorithm
is outlined as follows (Figure 3.10 gives a more formal description):

® Compute a shortest paths tree Ts of G, and compute a minimum spanning
tree T of G. Also, initialize the graph @ to be equal to Tys.

m Let L be the sequence of vertices corresponding to any depth-first tour of
Tar; the tour will traverse each edge of Ty exactly twice (see Figure 3.9),
and hence the cost of this tour is 2 - cost(Tas).

m Traverse L while keeping a running total, Sum, of traversed edge costs. As
the traversal visits each vertex L;, check whether Sum > € - distg(so, L;).
If so, reset Sum to 0 and merge the edges of minpathg(so, Li) into @.
Continue traversing L while repeating this process.

® Qutput Tgrpc = a shortest paths tree over Q.

/V

Figure 3.9 A spanning tree and its depth-first tour.

80 CHAPTER 3

Algorithm BRBC: Computing a bounded-radius, bounded-cost spanning tree
Input: Graph G = (V, F) (with radius R, source s¢ € V), ¢ > 0
Output: Spanning tree Tgrpc with r(Terec) < (1+¢€) R

and cost(Tsrpc) < (1 + 2) - cost(Tn)

Q=Tu
L = depth-first tour of Tar
Sum =0

Fori=1to |L|~1
Sum = Sum + dist(Li, Lit1)
If Sum > ¢ distg(so, Li+1) Then
Q = Q U{ edges in minpaths(so, Li+1)}
Sum =0
Output Terpc = shortest paths tree of Q

Figure 3.10 The BRBC algorithm. Tgrpc will have radius at most
(1+¢€)- R, and cost at most (1 + 2) - cost(Th).

Theorem 3.2.3 For any weighted graph G and € > 0, r(Trec) < (1+¢€)- R.

Proof: For any v € V, let v;_; be the last node before v on the MST traver-
sal L for which BRBC added minpathg(so,vi-1) to @ (see Figure 3.11). By
construction, disty(vi-1,v) < ¢- R. We then have

distrgrec(50,v) < distrgppc(so,vi-1) + distp (vi-1,v)
< distg(so,vi-1)+€- R
< R+¢R
= (I14¢) R

a

Theorem 3.2.4 For any weighted graph G and parametere > 0, cost(Tgrpc) <
(1+ 2) - cost(Tm).

Proof: Let v, vs,..., v, be the set of nodes to which BRBC added shortest
paths minpathg (so, v;) from the source node, and let vy = sg. We have

cost(Terpc) < cost(Tu) + Zdistc(so, ;)

i=1

Delay 81

since Tgrac 1s a subtree of the union of Tjs with all of the edges in the
added shortest paths. By construction, distr(vi—;,v;) > € - distg(s,v;) for all
i=1,...,m, implying

m
1
cost(Tprpc) < cost(Ty)+ Z - disty (vi—1, v;)

i=1

< cost(Ty) + = - cost(L)

[N

= cost(Ty)+ - -cost(Tu)

= (1+ %) -cost(Tar)

50

minpathg (s,vj.1)

L = DFS tour of Tpq distp (vj.1.v)

--—-_—> Vi-l v

Figure 3.11 The BRBC construction.

Theorem 3.2.4 suggests that for ¢ = 0, the ratio %&%’;M"fl is not bounded

by any constant; this is illustrated by the example of Figure 3.1, for which
cost(TerBC) :

cost(Tar) 18 Q(ISI)
Bounded-Radius Steiner Trees

BRBC generalizes to the case where we seek to connect a subset of the vertices
in the routing graph, and can use the remaining vertices as Steiner points.® The
BRMRT problem then becomes the “Bounded-Radius Optimal Steiner Tree”

8This is the case for building-block VLSI design, where the underlying routing graph is the
channel intersection graph as defined by Preas [193], Dai, Asano and Kuh [70] and Kimura
[158]. Other very similar routing graphs have been proposed in the context of escape lines by
Hightower [120] and in the context of line intersection routing by Cohoon and Richards {58].

82 CHAPTER 3

(BROST) problem, which simplifies to the NP-complete Steiner problem in
graphs when the radius bound is set to +oo.

Observe that in the BROST problem, constructing a “minimum spanning tree”
for S in G is itself an instance of the graph Steiner problem. A BRBC analog
for the Steiner case must therefore first approximate the minimum-cost Steiner
tree that connects S within G.” Given an approximate minimum-cost Steiner
tree T', the same shallow-light construction will immediately yield a routing tree
with radius bounded by (1 +¢) - #(T"), and cost bounded by (1 + 2). cost(T).

The heuristic of Kou, Markowsky and Berman (KMB) (159, 249] can be used
to build a Steiner tree T' = Tk pp in the underlying routing graph, such that
cost(Tk pp) will be at most twice the cost of an optimal Steiner tree T,,:.8 We
may traverse a depth-first tour L of Tk mp, adding into Tk prp the edges in
selected shortest paths from the source to vertices of L, just as in the original
BRBC method. We then compute the shortest paths tree in the resulting graph
and output the union of all shortest paths from the source to terminals in S
(this will include intermediate non-terminals on the shortest paths as Steiner
points). We call the resulting method the BRBC_S algorithm.

Theorem 3.2.5 For any weighted routing graph G = (V, E), set of signal net
terminals S C V, and parameter €, r(Tprpc_s) < (1 +¢€)- R and
cost(TerBc.s) < 2-(1+ 2) - cost(Top:).

Proof: By the previous arguments, 7(Tgrpc_s) < (1 + ¢€) - R. In addition,
cost(Tprpc.s) < (1+ 2) - cost(Txmp)- Since cost(Tkmp) < 2 - cost(Topt), We
have cost(TprBc_s) < 2+ (1+ 2) - cost(Top:), thus yielding the cost bound.®

7Strictly speaking, this analogy is not a requirement. While we have used L = a depth-
first tour of a spanning tree, any tour of the vertices — hopefully with reasonably small cost
- will suffice (e.g., a traveling salesman tour). The only requirement for the tour is that it
visit every node in S.

8Recall from Section 2.7 that the KMB algorithm works as follows. Given a graph G =
(V,E) and a signal net S C V, construct the complete graph G’ over the vertices in S,
with each edge weight equal to the cost of the corresponding shortest path in G. Then,
compute M STg:, the minimum spanning tree of G/, and expand each edge of M ST/ into
the corresponding shortest path; this yields a subgraph G of G that spans S. Finally,
compute M STsn and delete pendant edges from M STq until all leaves are vertices in S.
Output the resulting tree as Tk prp.

9Using the graph Steiner heuristic of Zelikovsky [254], this cost bound may be further
reduced to it . 1+ %—) times optimal, and other bounds may similarly be reduced by the
factor 1/12. However, we state all of our analyses in terms of the KMB bound since the
fractions are simpler, and KMB is more widespread in the current literature (cf. works of

Delay 83

Improvements in Geometry

If the routing is in the geometric plane, so that we can introduce Steiner points
at arbitrary locations, the basic algorithm of Figure 3.10 can be modified to
introduce Steiner points on the tour L whenever Sum = 2¢-R. For each of these
Steiner points, we construct a shortest path to the source and add it to @ as in
the original BRBC algorithm. Each node in the tour L will be within distance
€ - R of a Steiner point, i.e., within (1 + ¢) - R of the source. In some sense,
each shortest path to the source “services” points on L within distance ¢ - R
on either side of the Steiner point. Because this variant relies on an underlying
geometry, we call it the BRBC_G algorithm. The following radius and cost
bounds hold, with the proofs of these bounds following along the same lines as
the proofs of Theorems 3.2.3 and 3.2.4.

Theorem 3.2.6 In the geometric plane, 7(Tgrpc_¢) < (1 +¢€)- R and
cost(Tprec.c) <2 (14 1) cost(Top). 0

Well-known results which bound the worst-case ratio between the optimum
Steiner tree cost and the optimum spanning tree cost in various geometries can
yield even better bounds for the above scheme. Two examples are as follows.

Corollary 3.2.7 In the Manhaitan plane, r(Tprec.c) < (1 +¢) - R and
cost(TprBc.¢) < % (14 %) Topt-

Proof: By the result of Hwang [135], the rectilinear minimum spanning tree

gives a % approximation to the optimal rectilinear Steiner tree.!® We then
apply arguments similar to those used for Theorems 3.2.3 and 3.2.4. 0

Corollary 3.2.8 In the Fuclidean plane, r(Tgrpc_c) < (1 +¢€)- R, and
cost(TprBc_g) < 725 (1 + %) 'Topt-

Proof: By the result of Du and Hwang [78], the Euclidean minimum spanning

tree gives a % approximation to the optimal Euclidean Steiner tree. We again
apply the arguments of Theorems 3.2.3 and 3.2.4. 0O

Cohoon and Ganley [104] and Chiang et al. [53] which use techniques similar to KMB for
global routing).

10Recall that the result of Berman and Ramaiyer [25] and Zelikovsky [253] imply that this
constant may be further reduced to 1L, or even less [24].

84 CHAPTER 3

This result improves with increased flexibility in the wiring geometry, e.g., if
octolinear or 30-60-90 degree wiring is allowed instead of rectilinear wiring. By
applying the result of [210] for A-geometries (allowing angles 3;\'1), a cost bound
of 725cos T - (1+ 1) may be established. When X approaches oo, this bound

approaches the bound of Corollary 3.2.8 above.

We now close the discussion of the BRBC algorithm by showing how the
BRMST and BROST formulations diverge from the original shallow-light cri-
terion above.

Sink-Dependent Bounds and the Shallow-Light Result

For certain applications, one may wish to impose different wirelength con-
straints on different source-sink paths within a given signal net, since the cir-
cuit timing is path-dependent rather than net-dependent. Any timing-critical
path between a primary input and a primary output has two components: (i)
internal module delays, and (ii) one or more source-sink connections, each of
which is part of a signal net that connects an output of one module to an input
of another module. Intuitively, any source-sink connection on a timing-critical
path will require a small value of ¢, whereas a source-sink connection that is
not on any critical path might allow a larger value of ¢ in order to reduce tree
cost. (This issue will become the focus of Section 3.3.2 below.) With this in
mind, [63] addressed the following variant formulation:

The Non-Uniform Bounded-Radius Minimum Routing Tree Problem:
Given a signal net with source so and radius R, and given values ¢; > 0 associ-
ated with the sinks s;, find a minimum-cost routing tree T with [; < (1+¢)- R
for each s;.

The BRBC method is easily modified to handle this variant, by changing
the condition inside the Figure 3.10 loop from “Sum > ¢ - distg(s, Liy1)” to
“Sum > €;41 - distg(s, Li1)”. We call this variant the BRBC_¢; algorithm.
Extensions to (geometric) Steiner routing are also straightforward. The fol-
lowing source-sink pathlength bound is obtained analogously to the result of
Theorem 3.2.3:

Lemma 3.2.9 For any weighted routing graph G with source sg, radius R, and
parameters €1,€,...,€n, distTBRBc_q(so,s,-) < (1+¢€) - R for each sink s;.

Delay 85

Application of earlier arguments yields the cost bound

2
min(ey,€z,...,€,)

COSt(TBRBC-e;) < (1 +) -cost(Tap),

and the analysis in [63] establishes a somewhat better bound:

Lemma 3.2.10 For any weighted routing graph G with source sq and parame-
ters e < €3 <...< €, cost(Tprpe.e;) < (1+ ;f‘_—l . mﬁ)wost(ﬂ;),

€240y

where HM denotes harmonic mean and k = [2761%&2)%”-2] O

All of these bounds for the BRBC algorithm are in terms of the “net-dependent”
radius objective that is inherent in the BRMST formulation, i.e., all [; are
bounded by multiples of R. Because R can be much greater than a given sink
radius R;, a bound of l; € (1 + ¢;) - R may not be meaningful in practice.
Thus, a stronger and more compelling result is that of Awerbuch et al. [17],
who showed that the BRBC algorithm is actually shallow-light. Recall that the
proof of Theorem 3.2.3 showed

distTBRBC(SO, ‘U,'._.l) + diStL(v,'_l, v)

distrgppc(so,v) <
< distg(so,vi-1) + distp(vi—1,v).

Awerbuch et al. (see Lemma 2.2 of [17]) use the “other triangle inequality” in
observing that

distg(so,vi—1) < distg(so,v) + distp (vi—q,v).

This can be combined with the above relation to yield

distrpnpc(50,v) < distg(so,v) +2 - distr(vio1,v)
< (142¢)-R,

where R, = distg(so,v).

Theorem 3.2.11 BRBC constructs a shallow-light, (1+2¢,1+ %)-tree for pa-
rameter € > 0. |

86 CHAPTER 3

The KRY Algorithm

The algorithm of Khuller, Raghavachari and Young (KRY) [156] provides what
is essentially a best-possible shallow-light tree construction. The KRY method
also follows the basic template of Awerbuch et al. in performing a DFS traversal
of Tyr. However, when an analog of the Sum variable exceeds the prescribed
radius bound, KRY adds only a piece of the shortest path back to the source,
i.e., it adds edges from the shortest path one at a time until the distance to the
source is sufficiently reduced. By not adding complete shortest paths as in the
BRBC approach, the cost of the construction is kept low.

For each sink v € S, v # so, KRY maintains both a source-sink pathlength
upper bound UB[v] and a parent pointer p[v]. The value UB[v] is an upper
bound on the cost of traveling from v to sqg in the current graph via parent
pointers. All pathlength upper bounds are initially set to U B[v] = 400, and
all parent pointers initially point to p[v] = so. The key operation is a “Relaz”
step which resembles a typical shortest-paths recurrence. Relaz(u,v) checks
whether there is a “shorter” path to v through u, vis-a-vis the pathlength upper
bound. In other words, if UB[v] > UB[u] + d(u,v), then the algorithm sets
UB[v] «— UB{u] + d(u,v) and p[v] — u. By calling Relaz(u,v) with u being
the parent of v in T, the Relax operation can be used to add an edge of the
v-sp shortest path into the solution. Figure 3.12 gives a high-level description
of KRY, following the presentation in [156).

Because each edge is relaxed exactly twice during the depth-first traversal, and
because at most a linear number of relaxations can result from calls in the
subroutine Add-Path, KRY is a linear-time algorithm. However, it requires
precomputation of both Ths and Tg, which cannot be achieved in less than
©(nlogn) time in the geometric plane. The following results of Khuller et al.
establish the shallow-light and “unimprovable” qualities of the KRY construc-
tion.

Theorem 3.2.12 KRY constructs a shallow-light, (1 +¢€,1 + %)-tree for pa-
rameter ¢ > 0. a

Theorem 3.2.13 For any € > 0 and any B with 1 < f < 1 + 2, there exist
graphs for which no spanning (1 + €, B)-tree ezists. 0

Khuller et al. further show that for such values of ¢ and B, it is NP-complete
to even determine whether a given G = (V, E') with source s € V contains a

Delay 87

Algorithm KRY: Computing a (1 +¢,1+ £)-tree

Input: Vertex set S with source so; Tan; Ts; € > 0

Output: Spanning tree T ry with ; < (1+¢) - R Vsi € S
and cost(Tnry) < (14 %) - cost(Tar)

Initialize U B[v] = oo, p[v] = so for all v € § - {s0}

Call DFS(sq)

Return tree Ticpy = {(v,p[v] | v € S — {s0}}

Subroutine DFS(u) : Traverse subtree of T rooted at u,
relaxing edges to add partial paths from Ts

If UB[u] > (1 +¢) - Ry Then

Add-Path(u)
For each child v of v in Ty Do

Relaz(u,v)

DFS(v)

Relaz(v,u)

Subroutine Add-Path(v) : Relax along the v-so shortest path
If UB[v] > R, Then

u = parent of v in Ts

Add-Path(u)

Relaz(u,v)

Figure 3.12 The KRY algorithm. Tk gy will have radius at most
(1+4¢)- R, and cost at most (1 + £) - cost(Thr).

spanning (1 + ¢, 3)-tree. Improvements for the Steiner and geometric cases are
straightforward, and can employ approximations of Ty and Ts as described
earlier for the BRBC method. It is interesting to note that analogous shallow-
light properties hold for KRY even when the signal net contains multiple sources
[156]. This can be particularly relevant for routing of large critical nets on-chip,
where a balanced tree of buffers is used to drive the many fan-ins and reduce
rise-time delays. Essentially, the leaves of the buffer tree will correspond to
multiple sources in the net routing problem.!!

110Other applications of multiple-source routing arise in clock distribution, e.g., with a very
large monolithic