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Abstract: Numerous ubiquitous computing applications depend on the  
ability to locate objects as a key functionality. We show that Radio Frequency 
Identification (RFID) technology can be leveraged to achieve object localisation 
in an inexpensive, reliable, flexible, and scalable manner. We outline the 
challenges that can adversely affect RFID-based localisation techniques, and 
propose practical mitigating solutions. We present several new algorithms for 
RFID-based object localisation that compare favourably with previous methods 
in terms of accuracy, speed, reliability, scalability, and cost. 
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1 Introduction 

The confluence of Radio Frequency Identification (RFID) and other wireless technologies 
lies at the heart of many emerging applications, such as remote medicine, robotic teams, 
wireless sensing, early warning systems (e.g. for tsunamis, earthquakes, chemical spills, 
etc.), locating points of interests (e.g. ATMs, banks, hospitals, etc.), and automated 
inventory management (Abowd and Mynatt, 2000; Hightower and Borriello, 2001; 
Mattern, 2001; Satyanarayanan, 2001; Estrin et al., 2002; Romer and Domnitcheva, 
2002; Vogt, 2002; Fontelo et al., 2003; Schilit, 2003; Merrell et al., 2005; Muthukrishnan 
et al., 2005; Romer et al., 2005; Blewitt et al., 2006; Liu et al., 2006; Wang et al.,  
2007; Want, 2008). Such applications require capabilities that include real-time object 
identification, object tracking, and position localisation. 

While typical RFID technology is sufficient for object tracking (i.e. registering the 
presence/absence of an object in a radio field) and identification (i.e. matching an 
onboard RFID tag ID with a trusted database), it does not normally provide object 
localisation capabilities (i.e. precisely locating the position of an object). Several RFID-
based localisation techniques for stationary and mobile objects have been proposed  
(Ni et al., 2003; Alippi et al., 2006; Senta et al., 2007; Milella et al., 2009). However, 
these techniques tend to compromise key requirements such as accuracy, speed, cost, 
scalability, and reliability, thus severely degrading the utility of these methods. Moreover, 
some previous localisation methods also require cumbersome non-RFID technologies 
such as ultrasonic sensors, vision sensors, cameras, and lasers, which again make them 
unsuitable for practical use in typical environments. 

We address these limitations by developing a scalable and reliable RFID-based 
localisation framework that accurately and rapidly determines the positions of stationary 
and mobile objects. Our approach consists of separate techniques to localise target tags, 
as well as localise readers attached to mobile objects. To localise stationary and mobile 
target tags, we vary the reader power levels over a set of calibrated reference tags having 
known sensitivities. Separately, we determine the positions of target mobile readers by 
measuring their proximity to known reference tags. Moreover, these two approaches can 
be combined to yield even higher accuracy and efficiency. 

We implemented, tested, and evaluated the proposed approach to confirm its general 
applicability, scalability, and reliability. Our approach suits a wide range of requirements 
and trade-offs including accuracy, speed, and cost. We have also identified several key 
challenges (e.g. environmental interferences, tag sensitivity, spatial arrangement of tags, 
etc.) that adversely affect the performance of RFID-based object localisation, and we 
propose mitigating techniques. 

This paper is organised as follows. Section 2 describes related research work in 
RFID-based object localisation. We formulate the problem of object localisation using 
RFID in Section 3. Section 4 presents several localisation challenges and mitigating 
techniques. We describe our object localisation framework in Section 5, and discuss the 
experimental evaluation and results in Section 6. Section 7 outlines key lessons learned, 
and Section 8 concludes with future research directions. 
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2 Related work 

Recent advances in ubiquitous computing have necessitated RFID-based object localisation 
capabilities, with research efforts specifically targeting the positioning of either stationary 
or mobile objects. RFID-based localisation techniques can be broadly classified as reader 
and tag-based approaches. In reader-based localisation techniques, the positions of RFID 
readers are ascertained, while in tag-based localisation techniques, the positions of RFID 
tags are determined. Note that RFID tags and readers can each be either stationary or 
mobile. In this paper, we focus on pure-RFID object localisation techniques, utilising 
only the interaction between RFID readers and tags (i.e. other RF-based approaches 
utilising near-field propagation, surface acoustic waves, microwaves, cameras, ultrasonics, 
etc., are outside the scope of this work, and arguably are not as useful in many RFID 
scenarios). Existing RFID-based stationary object localisation techniques are described 
below. 

Ni et al. (2003) propose placing active reference tags and determining the Euclidean 
distance between the reference and the target tags. K-nearest reference tags are used to 
determine the position estimates of a target tag, with a maximum localisation error of less 
than two metres. Alippi et al. (2006) model the indoor localisation problem as a non-
linear stochastic inversion problem. Their experimental 2D environment has multiple 
readers at fixed locations and tags at unknown locations. Data is gathered using multiple 
antennas at different orientations. A conditional probability-based model is used, wherein 
tag detection probabilities vary at different power levels, yielding an average localisation 
error of 0.68 metres. Bekkali et al. (2007) use two mobile readers, a probabilistic RFID 
map, and a Kalman filter-based technique to minimise the localisation error variance. 
Position estimates of the target tags are determined using a Received Signal Strength 
Indicator (RSSI)-based metric, and a probability density function generates the probability 
map for each reference tag. The localisation error of this approach has a root mean square 
in the range of 0.5 to 1 metres. 

Joho et al. (2009) develop a probabilistic sensor model based on the tag RSSI 
measurement, the antenna orientation, and tag location. A mobile reader moves through 
the environment to gather tag measurements and correlates them with the true locations. 
Multiple iterations are required to improve the tag position estimates, resulting in an 
average localisation error of 0.375 metres. Zhang et al. (2007) introduce the concept of 
virtual tags and a proximity map. Their key idea is to consider the presence of virtual tags 
with the reference tags. The RSSI values of virtual tags from each reader are calculated 
using a linear interpolation algorithm. Different proximity maps are generated for each 
reader, and the intersection of these maps is used to determine the location of the target 
tags. The localisation error of this approach is in the range of 0.14 to 0.29 metres. 

Wang et al. (2007) propose a 3D tag positioning scheme, wherein reference tags are 
placed either on the floor or ceiling and at least four readers are placed on the vertices of 
a hexahedron. Readers gradually increase their transmission power until responses are 
received from the reference and target tags. Statistical averaging and the simplex method 
are used to reduce the localisation error to a range of 0.1 to 0.9 metres, but at the cost  
of high hardware expense and long positioning times. Choi and Lee (2009) study the 
characteristics of a passive UHF RFID system and propose an RSSI-based localisation  
 
 



   

 

   

   
 

   

   

 

   

    An RFID-based object localisation framework 5    
 

    
 
 

   

   
 

   

   

 

   

       
 

approach using passive tags. The K-nearest neighbours algorithm is utilised to compute 
the differences of the RSSI-based metric of various reference tags in order to localise a 
single target tag, with an average localisation error of 0.21 metres. 

Hekimian-Williams et al. (2010) utilise the phase difference of the signals received  
at two separate antennas to localise the active tags. Additionally, they make use of 
software-defined radios coupled with accurately sampled clocks to implement various 
phase difference estimation algorithms. Thus, clock precision is an important factor in 
determining the localisation accuracy. While their system yields high accuracy under 
ideal conditions, they do not take into account key factors such as multi-path scattering 
and tag sensitivity. Jin et al. (2006) propose to improve the localisation accuracy of the 
LANDMARC system (Ni et al., 2003) by selecting only a few reference tags that have 
the least distance from a target tag. They utilise multiple readers to localise the target tags 
to within an average localisation accuracy of 0.72 metres. Zhang et al. (2007) propose 
using the direction of arrival of tag responses in order to localise the target tags. 
Simulations indicate an average localisation error of 1 metre. However, the effects of 
multi-path scattering, environmental interferences, and tag sensitivity variations are not 
considered. 

Some RFID-based positioning techniques are specifically designed to localise mobile 
objects (as opposed to stationary ones). For example, Chae and Han (2005) propose a 
two-step approach to localise mobile robots in an indoor environment. In their first step, 
an onboard RFID reader is coarsely localised with respect to neighbourhood active 
reference tags. In the second step, a vision sensor combined with a feature detection 
algorithm identifies key environmental features to minimise the average localisation error 
to 0.23 metres. Their approach is less applicable in different scenarios since the onboard 
vision sensor requires a sufficiently illuminated environment and objects must be within 
line-of-sight (a fundamental drawback that RFID technology was intended to eliminate in 
the first place). 

Choi and Lee (2009) propose to localise mobile robots in an indoor environment by 
utilising ultrasonic sensors in combination with an onboard reader. Their localisation 
approach has two stages. In the first stage, the global position of the mobile robot is 
estimated through onboard reader localisation with respect to the neighbourhood passive 
reference tags. The second stage uses ultrasonic sensors for local position estimates. 
While their approach can yield higher accuracy, it is inherently not a pure RFID-based 
method, but rather a sound-based approach and is thus highly limited by issues such as 
environmental noise, line-of-sight, echoes, etc. 

Hähnel et al. (2004) propose a laser range scanner combined with an RFID reader 
onboard a mobile robot. The laser range scanner is used to learn a map comprised of 
reference tags, which in turn is used to estimate the position and orientation of mobile 
robots. However, this approach imposes line-of-sight constraints, and moreover tag 
orientation issues degrade the detection probability of the reference tags, resulting in high 
localisation errors in the 1 to 10 metres range. Han et al. (2007) propose a mobile object 
localisation technique by using reference tags and onboard mobile readers. They show 
that the particular spatial arrangement of tags affects the localisation error and propose a 
triangular tag arrangement scheme to minimise it. Their approach yields an average 
localisation error of 0.09 metres in a small test region of one metre square. 
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Milella et al. (2009) utilise an onboard monocular camera, a reader and a tag bearing 
estimation technique based on a ‘fuzzy inference system’ to localise mobile robots  
to within an average error of 0.64 metres. Senta et al. (2007) present a mobile robot 
localisation technique based on reference tags, onboard readers, and a support vector 
machine (SVM)-based machine learning approach. This method yields localisation errors 
of over 0.2 metres, and is limited by the tag spatial arrangement, measurement noise, and 
tag-reader proximity. Seo and Lee (2008) describe a mobile object localisation system 
that transmits an RFID signal from an onboard reader to the neighbourhood beacon, 
which in return responds with an ultrasonic signal. The estimated distance is computed 
based on the time difference between transmitted and received signals, with an average 
localisation error in the range of 0.2 to 1.6 metres. Vorst et al. (2008) present a  
mobile object localisation approach using reference tags, onboard readers, and a particle 
filter-based technique. They compare prior-obtained training data with real-time RFID 
measurements to yield an average localisation error in the range of 0.2 to 0.6 metres. 

Currently, the effectiveness of several of the previous approaches is hindered by 
reliance on line-of-sight techniques, combining multiple non-RFID (e.g. ultrasonic sensors, 
cameras, lasers, etc.) and RFID components in an ad-hoc manner, large number of onboard 
components, and high localisation delays (Chae and Han, 2005; Hähnel et al., 2004;  
Choi and Lee, 2009; Milella et al., 2009). Moreover, some of the above methods are too 
expensive or unwieldy due to the cost, size, and weight of the required infrastructure. 
Finally, the above approaches ignore the key issue that the RFID equipment itself can 
introduce significant amount of experimental errors. For example, previous works ignore 
the fact that ‘identical’ tags can have widely varying detection sensitivities, which can 
greatly affect the experimental outcomes (Chawla et al., 2010a; Chawla et al., 2010b). 
Thus, instead of addressing and mitigating these basic principles (as we do in our 
approach), previous research works resort to Herculean efforts in order to reduce the 
errors on other fronts, while ignoring bigger error sources, resulting in a hodgepodge of 
ad-hoc and sometimes ineffectual techniques. 

3 Problem statement: object localisation using RFID 

We address the problem of localising stationary and mobile objects by utilising ‘only’ 
RFID-based technology (as opposed to relying on non-RFID technology such as lasers, 
ultrasonic sensors, cameras, etc.). In this section, we describe the underlying principles of 
the proposed approach and the key performance parameters for optimisation. RFID-based 
object localisation requires determining the positions of stationary and mobile objects 
affixed with tags and/or readers. Radio signal properties such as power-distance 
relationships can ascertain these locations. Theoretically, the radio wave’s power-distance 
relationship can be characterised based on the Friis transmission equation as follows 
(Finkenzeller, 2003): 
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 (1) 

Here, PR is the power transmitted by the reader, PT is the power received at the tag, GR 
and GT are the respective antenna gains of the reader and the tag, λ is the radio wave 
wavelength, and D is the distance between the tag and reader. For a typical RFID system, 
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variables such as λ, GR and GT are some of the main design parameters. Thus, by 
knowing the power levels at the reader and the tag, the distance between them can be 
estimated. Alternatively, if the distance between the readers and tags are known, then the 
received power level at the tags can be determined. 

Thus, our overall RFID localisation strategy is as follows. We slowly increase the 
reader’s power level from low to high in small increments. When a given tag becomes 
detectable to a reader for the first time, the power level at which this first detection event 
happens indicates the tag’s distance from that reader. As different readers perform such 
readings (from different directions), the tag’s position can be estimated with increasing 
accuracy by considering the intersections of these detection regions. 

Figure 1 illustrates a shared region induced by the geometric intersections of the radio 
wave lobes used to detect a tag by several readers. Such intersection regions, if small 
enough in size, can help minimise the error in position when estimating the locations of 
target objects using reference tags (i.e. regions overlapped by more radio wave lobes 
have a smaller area than other more peripheral regions covered by fewer lobes, resulting 
in increased localisation accuracy). Note, however, that this intuitive intersection-of-
regions analogy is only a conceptual explanatory tool. Our system does not explicitly 
compute geometrical regions, nor is it even particularly aware of geometry in general. 
Rather, our system compares the detection power levels of target tags with those of 
known reference tags, in order to infer the target tag’s position. In other words, our 
approach is ‘relativised’ in that it tries to match the behaviours of known and unknown 
tags, under the key assumption that if the behaviours and responses of two tags are very 
similar, then their positions must be very close as well. 

Figure 1 A shared region induced by the intersection of radio wave lobes 
 

 
 

       RFID Antenna              Intersection Region           Radio Wave  

At first glance it may seem contradictory that a positioning system can be mostly 
oblivious to geometrical considerations. However, because of all the real-world factors 
that interfere with accurate RF transmission and reception, correlating a complex geometry 
with precise levels of RF receptivity is difficult. Our system sidesteps these complicated 
issues by ignoring the geometry, and instead takes a pragmatic relative approach by 
observing and comparing behaviours rather than trying to accurately predict them. Note 
that such an empirical approach naturally adapts and automatically calibrates to unknown 
conditions and unexpected effects, since these would presumably affect (identical) target 
and reference tags in a very similar way. Thus, the geometry-obliviousness feature of our 
system is not a weakness but rather a deliberate capability that yields performance 
advantages. 
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In real-world scenarios, various ad-hoc interfering factors (e.g. environmental 
conditions, multi-path scattering, and RF occlusions due to liquids and metals, etc.) affect 
signal strengths and received power levels. Moreover, variability in detection sensitivities 
across ‘identical’ tags poses a unique challenge in reliably establishing and leveraging 
the empirical power-distance relationship. To understand the implications of this variability, 
consider two tags of the same type (e.g. ‘Impinj Dogbone Monza 3’ UHF passive tag) 
having different sensitivities (due to manufacturing variations). 

These tags, when kept at the same fixed location from the reader, will be initially 
detected at different reader power levels, thereby skewing the observed empirical power-
distance relationship. Our proposed object localisation framework considers these 
challenges and takes the pragmatic approach of only using uniformly sensitive reference 
tags to establish the empirical power-distance relationship. Section 5.1 below will discuss 
this sensitivity analysis in greater detail. 

4 Localisation challenges 

As discussed above, all RFID-based object localisation techniques have inherent position 
estimate errors due to various external (e.g. environmental interferences) and internal 
(e.g. RFID tags and reader related) factors. This section describes several key challenges 
that could induce localisation errors and our proposed techniques to mitigate them. 

4.1 Interference and RF occlusion 

Environmental factors such as radio noise and occlusions by liquids or metals (which 
tend to be opaque to RF signals) can cause radio wave scattering and attenuation, which 
in turn can result in localisation errors. Mitigating techniques such as electrostatic 
shielding, full Faraday cycle analysis, and path-loss contour mapping can help reduce the 
impact of such factors on localisation accuracy (Sweeney, 2005). Deploying more tags 
and readers in the region of interest can also reduce adverse effects due to interferences 
and occlusions. 

4.2 Tag sensitivity 

Tag detection sensitivity is characterised by the minimum power needed to read the tag at 
a particular distance. It is a function of chip threshold power sensitivity, tag antenna gain, 
and chip’s high impedance state (Nikitin and Rao, 2008). Moreover, tag manufacturing 
variability can dramatically affect the detection sensitivities of tags. Thus, tags with low 
sensitivities become invisible at shorter distances than their higher sensitivity counterparts, 
leading to localisation errors. To address this issue, we propose a pre-processing step of 
sorting (i.e. ‘binning’) the tags based on their detection sensitivities. We thus classify 
tags as ‘highly sensitive’, ‘average sensitive’, and ‘low sensitive’ using read measurements 
over different power and distance combinations (Chawla et al., 2010a; Chawla et al., 
2010b), as detailed in Section 5 below. This enables only uniformly sensitive tags to  
be deployed in the same experiment, resulting in more consistent and meaningful 
experimental results. Curiously, previous works all seem to ignore this critical issue. 
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4.3 Tag spatiality 

RFID-based object localisation techniques typically utilise reference tags placed at known 
locations. The positions and arrangements of these reference tags can significantly affect 
the localisation accuracy. Regular placements of the reference tags (as opposed to 
random arrangements) tend to yield lower positioning errors (Han et al., 2007). 

4.4 Tag orientation 

Tag orientation significantly affects tag and reader interaction. For example, Bolotnyy 
and Robins (2007a, 2007b, 2009) analysed how tag orientation impacts the tag detection 
probability. In particular, they discovered that when multiple tags are placed on the same 
object, orthogonal orientations yield much higher detection probabilities than parallel 
orientations. 

Figure 2a, shows a 3D object with multiple orthogonally oriented RFID tags. Figure 2b 
shows orthogonal planar (i.e. horizontal and vertical) orientations of two tags. In Section 5, 
our experiments indicate that horizontal planar orientations increase the tag’s sensitivity. 
Thus, utilising multiple tags in orthogonal spatial and horizontal planar orientations tends 
to improve the overall localisation accuracy. 

Figure 2 Tag orientations 

 
  

 
(a) 3D orthogonal            (b) Planar orthogonal 

4.5 Reader locality 

Theoretically, the usable power in the radio waves emitted by the reader attenuates 
inversely proportional to the cube (for near-field) and square (for far-field) of the 
distance (as given by the Friis transmission equation). This determines the operating/ 
detection region for the tags with respect to the readers. Thus, the reader’s location and 
proximity to a tag impacts the tag’s localisation accuracy. We propose that more tags 
should be placed in regions likely to be nearer to the objects being localised in order to 
improve the overall localisation accuracy. 

The main guiding principle behind all the above mitigating techniques is to identify 
and minimise possible errors at the sources where they arise. This leads to efficient 
localisation techniques, fewer onboard components, higher localisation accuracy and speed. 
In the following section, we use this principle with the proposed object localisation 
framework to improve the localisation accuracy and speed. 
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5 Object localisation framework 

The proposed localisation approach utilises two different techniques. In the first 
technique, an onboard reader and reference tags embedded in the environment are used  
to coarsely localise the mobile object. The second technique varies the power levels of 
environment-embedded readers to localise the onboard tag via the empirical power-
distance relationship (calibrated using reference tags at known positions). To ensure uniform 
behaviour from the tags, we test, sort, and select them based on their (similar) detection 
sensitivity. Also, by employing multi-tags (Bolotnyy and Robins, 2007a; Bolotnyy and 
Robins, 2007b; Bolotnyy and Robins, 2009), we reduce the uncertainties when inferring 
tag positions. Finally, we combine these localisation techniques and propose several 
heuristics for significantly improving the localisation accuracy. 

While tags are sorted, placed, and calibrated as part of an offline pre-processing 
phase, the actual localisation and error minimisation heuristics are performed in real 
time. The calibration process may be repeated occasionally, in order to adjust the system 
to varying environmental conditions. Re-calibration may also be performed in parallel 
with actual localisation operations to accommodate ‘drifts’ in the empirical power-distance 
relationship. Below we describe key aspects of the proposed localisation approach. 

5.1 Tag sensitivity analysis 

Tag manufacturing variability can dramatically affect the detection sensitivity of tags (i.e. 
the minimum reader power level needed to successfully read a tag at a given location). In 
fact, a small fraction of any commercially obtained batch of tags are typically even 
‘dead’ (i.e. non-functional) altogether. While the localisation speed will increase with 
higher tag sensitivities, the accuracy of the proposed localisation framework depends on 
the uniform detection sensitivities of the tags. Thus, an offline pre-processing quality-
control check provides a characterisation of the sensitivities to ensure that only tags with 
uniform (and reasonably high) sensitivities contribute to our subsequent localisation 
experiments. 

Our experimental evaluation showed that tag sensitivity varied considerably across a 
group of 243 tags of the same type. We have characterised the tag sensitivities based on 
the read counts under different reader power levels and distance combinations. Thus, 
given a fixed reader power level, if a tag has low read counts among its peers, we call it 
‘low sensitive’. Similarly, tags with high read counts are labelled as ‘highly sensitive’, 
and tags having equal read count are called ‘average sensitive’. We performed two 
experiments to quantify single tag sensitivities by varying the power levels and distances 
between the readers and the tags. While these experiments use EPC Gen2 passive tags, 
this tag binning approach is equally applicable to other types of RFID tags. 

5.1.1 Single tag calibration 

In this experiment, a batch of four tags was placed at a distance of 2.54 metres from the 
reader. We varied the reader power level from 25.6 dBm to 31.6 dBm, in steps of 3 dBm. 
We recorded the cumulative read counts of each tag for 60 seconds (i.e. 3 read iterations 
lasting 20 seconds each). We found that 114 out of 243 tags had cumulative read counts 
of zero at 25.6 dBm, while remaining tags had read counts in the range of 3 to 9 (some  
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tags had read counts as high as 10). Moreover, at a reader power level of 28.6 dBm, most 
of the tags had cumulative read counts in the range 6 to 11, and the cumulative read 
counts ranged between 5 and 11 at 31.6 dBm. 

We labelled tags as ‘low sensitive’ only if they had zero cumulative read counts at a 
power level of 25.6 dBm. Also, tags were labelled as ‘low sensitive’ at 28.6 dBm only  
if they were also labelled as ‘low sensitive’ at 25.6 dBm. Similarly, we labelled tags  
as ‘highly sensitive’ at 25.6 dBm only if they were also labelled as ‘highly sensitive’ at 
31.6 dBm. While the combination of power levels and distance ranges was comparatively 
small, variations in tag sensitivities were evident even at this scale. Using this process,  
89 out of 243 tags were classified as highly sensitive, 133 tags ranked as average 
sensitive, and the remaining tags were considered to be low sensitive (and some tags 
were dead altogether). Thus, this experiment classified 243 tags into three sensitivity 
categories based on the reader power levels required to detect them.  

Similarly, in another set of experiments, we kept the reader power level constant and 
varied the distance between the tags and the reader with the same increments as above. 
This process classified 61 out of the 243 tags as low sensitive, 161 tags as average 
sensitive, and 21 tags as highly sensitive. We then combined the outcomes of these two 
sensitivity experiments by taking the intersection of the ‘average sensitive’ tag sets from 
each experiment, thus classifying 133 tags as overall ‘average sensitive’. 

In the ensuing localisation experiments, we selected all the reference and target tags 
from this overall average sensitive tag set. We also constructed four-way multi-tag 
platforms, made from the average sensitive tags that provide higher operational reliability. 
See the work (Bolotnyy and Robins, 2007a; Bolotnyy and Robins, 2007b; Bolotnyy and 
Robins, 2009) for a more detailed analysis of multi-tags and their advantages over 
ordinary tags. 

Figure 3 illustrates the design of our four-way multi-tag platform consisting of four 
‘Impinj Dogbone Monza 3’ UHF passive tags having overall average sensitivity, 
mounted on a vertical stand made of Lego bricks (our choice of Lego components is 
based on the versatility of Lego bricks as well as the transparency of their plastic material 
to radio waves). We built 33 such multi-tag platforms, and each tag on these platforms 
was calibrated separately according to the power-distance relationship discussed above 
(Chawla et al., 2010a; Chawla et al., 2010b). Following our usual ‘abundance of caution’ 
philosophy, we performed two extensive platform calibration experiments to ensure 
uniform detection sensitivity for the entire multi-tag platform across such variables as tag 
rotation and reader proximity. These experiments are described in more detail below. 

Figure 3 A four-way multi-tag platform constructed using Lego Bricks 

 

 



   

 

   

   
 

   

   

 

   

   12 K. Chawla and G. Robins    
 

    
 
 

   

   
 

   

   

 

   

       
 

5.1.2 Multi-tag calibration 

In this calibration experiment, we ensured that the four-way multi-tag platforms 
consisting of four proximate equally sensitive tags all have similar sensitivities. This goal 
was achieved by determining the average read count of constituent tags having matching 
orientations with respect to the reader’s antennas. Thus, tags at position one, two, three, 
and four were oriented towards antenna one, two, three, and four, respectively. We kept 
the reader power level constant at 31.6 dBm and varied the distance between the reader 
and the multi-tag platform within the range of 1.27 to 3.81 metres. We also varied the 
reader power level within the range of 25.6 to 31.6 dBm, keeping the distance between 
them constant at 2.54 metres. We repeated this calibration experiment three times and 
computed the average. 

We also analysed the sensitivity of multi-tags with respect to rotation. Using similar 
power and distance combinations as above, we measured the average read counts of  
each multi-tag in each of the four possible 90-degree rotations. These experiments 
showed that aside from minor variations in average read counts (possibly due to the long 
oval shape of the radio wave lobe emitted by the reader’s antenna), all multi-tags 
performed uniformly with respect to distance, power level, and rotation. 

In conclusion, these experiments show that combining individually calibrated 
average-sensitive tags results in equally sensitive multi-tags. On a philosophical note, 
while this outcome is happily the expected one, we still followed sound ‘scientific 
method’ principles and carefully verified this hypothesis experimentally. This kind of 
careful, methodical controlled experimentation is not wasted effort, since it sometimes 
can uncover startling and unexpected facts, such as the huge variance in sensitivity of 
ostensibly ‘identical’ commercial tags discussed above. 

5.2 Localisation algorithms 

We now describe our proposed localisation algorithms for estimating positions of stationary 
and mobile objects. 

5.2.1 Tag localisation algorithm I: Linear Search 

The first localisation algorithm linearly increments the reader power level from lowest to 
highest in order to determine the minimum power level required to detect a tag. While 
this approach finds the minimum tag detection power level, it may take some time to 
converge due to the linear step-wise power incrementing approach. 

Alternatively, we can instead vary the power level from highest to lowest in order to 
detect tags, since tags are typically not located very near the readers, but rather farther 
away from them. Thus, stepping down the power level (i.e. from highest to lowest) will 
tend to lower the average number of iterations required to determine the minimum tag 
detection power level. We call this algorithm ‘Linear Search’ and outline its pseudo-code 
in Figure 4. 
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Figure 4 Tag localisation algorithm I: Linear Search 

Input:  
Unique tag ID TagID 
Power varying step PowerStep  
Power varying direction PowerDirection  
 
Output: 
Minimum power level Power, MinPower required to detect tag TagID 
 
if (PowerDirection = LowToHigh) then 
     Power = MinPowerLevel 
     repeat 
            if (Power > MaxPowerLevel) then 
                    return NotFound 
            end 
            set reader power level to Power 
            search for tags until successful or time-out 
            if (TagID is found) then 
                  return Power 
            end 
            Power = Power + PowerStep 
     end 
else 
     Power = MaxPowerLevel 
     MinPower = MaxPowerLevel 
     repeat 
            if (Power < 0) then 
                    return NotFound 
            end 
            set reader power level to Power 
            search for tags until successful or time-out 
            if (TagID is found) then 
                  MinPower = Power 
            else 
                  return MinPower 
            end 
            Power = Power – PowerStep 
     end 
end 
  

We control the power level step using the input parameter ‘PowerStep’. The direction of 
reader power level increment (e.g. from lowest to highest) is controlled using the input 
parameter ‘PowerDirection’. At each power level, a single tag having the unique tag ID 
(specified by the input parameter ‘TagID’) is searched until either it is found, or else a 
search timeout occurs. Thus, given a set of tags to be found this Linear Search algorithm 
operates in a serial manner, to determine the minimum tag detection power levels for 
each given tag. This algorithm provides highly accurate tag detection power level, at the 
possible expense of longer overall running times (due to the additional number of RFID 
read operations that may be required). 
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5.2.2 Tag localisation algorithm II: Binary Search 

In the second localisation algorithm, we start at a mid-value power level, and then  
step-up or step-down the power, based on the reader’s ability to detect any tags at that 
stage. This binary search-based approach will tend to converge faster on the minimum 
power levels required to detect tags. We control the direction of the power level increment 
by using the variable ‘TagFound’. Figure 5 depicts this proposed Binary Search algorithm. 

Figure 5 Tag localisation algorithm II: Binary Search 

Input:  
Unique tag ID TagID 
Power varying step PowerStep 
 
Output: 
Minimum tag detection power level TagPower 
 
TagPower = MaxPowerLevel + 1 
TagFound = False 
repeat 
     Power = (MinPowerLevel + MaxPowerLevel) / 2 
     set reader power level to Power 
     search for tags until successful or time-out 
     if (TagID is found) then 
           TagFound = True 
           if (TagPower > Power) then 
                 TagPower = Power 
           end 
    end 
    if (TagFound) then 
           MaxPowerLevel = Power 
    else 
           MinPowerLevel = Power 
    end 
    if ((MaxPowerLevel – MinPowerLevel)) ≤ PowerStep) then 
          return TagPower 
    end 
end 
  

When the minimum and maximum power levels differ by only the power step size, we 
return the tag detection power levels (using the variable ‘TagPower’). While the Binary 
Search algorithm searches for tags in an exponentially converging manner (as opposed to 
linearly), it requires less time to terminate than the Linear Search algorithm. However, 
the power level resolution for Binary Search algorithm is sometimes less accurate than 
that of the Linear Search approach, which uses a finer-granularity power step size 
increment. Thus, the Binary Search algorithm trades off run time against accuracy in the 
minimum tag detection power level. 

5.2.3 Tag localisation algorithm III: Parallel Search 

The Linear Search and the Binary Search algorithms search for only a single tag per 
execution cycle (i.e. they operate in a serial manner). Our third algorithm addresses this 
limitation by determining the minimum tag detection power levels in parallel, for all the 
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tags in the reader’s vicinity. This ‘Parallel Search’ strategy is analogous to running the 
Linear Search algorithm in parallel for all the tags. Figure 6 illustrates this Parallel 
Search algorithm, which takes as input (through the parameter ‘TagIDSet’) a set of tags 
to be found and returns the minimum tag detection power levels (via the variable 
‘PowerSet’). A key step in this algorithm is determining which tags have reached their 
optimal minimum detection power level by checking the power levels of tags whose 
detectabilities have not changed for a given number of iterations. 

Figure 6 Tag localisation algorithm III: Parallel Search 

Input:  
Set of unique tags TagIDSet 
Power varying step PowerStep  
 
Output: 
Set of minimum tag detection power levels PowerSet 
 
set all tags in TagIDSet to MaxPowerLevel 
Power = MaxPowerLevel 
repeat till Power ≥ 0 
     set reader power level to Power 
     search for tags until successful or time-out 
     update power levels in PowerSet for all detected tags in TagIDSet 
     check for tags in TagIDSet with no power level update in PowerSet 
     Power = Power – PowerStep 
end 
return PowerSet 
  

Note that the underlying RFID equipment and protocols are already designed to 
detect/read multiple tags in a single read phase (including collision resolution). We thus 
rely on the embedded RFID hardware functionality to achieve the required parallelism 
(i.e. the simultaneous detection of many tags in a single reader operation). The proposed 
Parallel Search algorithm sweeps from the highest to lowest power levels, since more 
tags tend to be farther away from a given reader than closer to it. Since Parallel Search 
can determine the minimum power levels of many tags in parallel, it enables the 
simultaneous localisation of multiple stationary and mobile objects, resulting in faster 
overall run times. 

5.2.4 Reader localisation algorithm: Measure and Report 

While the previous algorithms localise tags attached to the objects, our fourth algorithm 
uses readers located onboard the objects themselves, in order to estimate their positions. 
In particular, we detect and record the unique tag IDs encountered by an object along  
a motion path. We associate a timestamp with each such measurement, resulting in a list 
of tuples of the form 〈TagID, Timestamp〉. Thus, we can determine the trajectory of  
the objects by knowing their proximity to the locations of reference tags, along with  
the measurement times. We call this algorithm ‘Measure and Report’, as described in 
Figure 7. 
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Figure 7 Reader localisation algorithm: Measure and Report 

Input:  
Unique tag ID TagID 
 
Output: 
Two-tuple having unique tag ID TagID and current date-time TimeStamp 
 
if (TagID is found) then 
     return 〈TagID, TimeStamp〉 
else 
     return NotFound  
end  

Table 1 describes the runtime complexity of each algorithm. The Measure and Report 
algorithm is the fastest algorithm, while the Linear Search and Binary Search algorithms 
take considerably more time due to their serial manner of operation. The Parallel Search 
algorithm takes less time than either the Linear Search or Binary Search algorithm, as its 
run time is independent of the number of tags and only depends on the number of power 
levels used during the searching. 
Table 1 Time complexity of localisation algorithms 

Localisation technique Localisation algorithm Time complexity 
Reader localisation Measure and Report O(1) 
Tag localisation Linear Search O(N⋅P) 
 Binary Search O(N⋅LogP) 
 Parallel Search O(P) 

Notes: N = Number of tags, P = Number of reader power levels used. 

Moreover, the algorithms that require more time tend to generate higher resolution 
minimum tag detection power levels, whereas the faster algorithms trade off localisation 
accuracy for speed. We experiment with different combinations of these algorithms to 
observe the tradeoffs between localisation accuracy and running speed. Furthermore, 
localisation errors can occur due to (a) the onboard reader operating range, (b) matching 
the onboard target tags with the nearest reference tags, and (c) the inherent power level 
estimation errors of the algorithms (e.g. due to varying environmental conditions).  
We next discuss these errors along with mitigating techniques. 

5.3 Error heuristics 

Localisation errors occur in the first technique (i.e. onboard reader localisation) due to 
limitations in the read-range of the onboard reader. Since mobile objects can move 
arbitrarily, an inexpensive and reliable way to reduce this type of error is by placing more 
densely/regularly arranged reference tags throughout the expected regions of motion. In 
the second technique (i.e. onboard tag localisation), errors in the position estimates can 
occur by identifying the onboard multi-tag with the nearest neighbourhood reference 
tags. 
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Figure 8 A source of localisation errors 

 

 
 

      RFID Antenna       Reference Tag      Reference Tag        Radio Wave      Localisation Error  

Figure 8 depicts four antennas emitting radio waves, conceptually forming an intersection 
region where the onboard target tags may be found. In the process of matching the 
behaviour of an unknown tag to those of known reference tags, potential ambiguities and 
‘round off’ errors may occur. In order to minimise possible localisation errors, we have 
developed 11 error-reducing heuristics, as described in following sub-sections. 

5.3.1 Error heuristic I: absolute difference 

This localisation error-reducing heuristic computes the absolute difference of the reader 
power levels between the neighbouring tags and the onboard tag (all of which are multi-
tags in our experiments). We propose four such possible heuristic variants, as follows: 
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5.3.2 Error heuristic II: minimum power reader selection 

This error-reducing heuristic computes the absolute difference of the power levels 
between the neighbouring reference tags and the onboard tag using the minimum power 
levels of two orthogonally positioned readers. We propose two such possible heuristic 
variants, as follows: 
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5.3.3 Error heuristic III: root sum square absolute difference 

This error-reducing heuristic computes the square root of the sum of the squares of the 
absolute difference (in reader power levels) between the neighbouring reference tags and 
the onboard tag. We propose four such possible heuristic variants, as follows: 
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5.3.4 Error heuristic IV: all heuristics minimum 

This error-reducing meta-heuristic computes the minimum over all the power levels 
obtained using the above heuristics. Thus, this ‘meta-heuristic’ yield the least tag 
detection power levels, denoted as follows: 

( )11H : Min LL
H

∀
 (12) 

The variables in all the expressions above have the following denotations: 

T = Target tag 

RJ = Reference tag J 

H = Heuristic 

Power = Minimum detection power level for a tag 

M = Number of readers 

B = Set of neighbours 

ΔI(R) = |Power(T) – Power(R)| using reader I 

J, K = Iteration variables for neighbourhood tags 

L = Iteration variable for heuristics 

The above error-reducing heuristics contribute to an online post-processing step in our 
object localisation framework, once the minimum detection power levels of the reference 
and onboard tags have been determined. Employing different combinations of localisation 
algorithms and error-reducing heuristics can achieve a desired level of accuracy. Another 
key feature of the proposed framework is the flexibility to incorporate new localisation 
algorithms and error-reducing heuristics that may be developed in the future, enabling 
this framework to localise objects with even higher accuracy and speed. 
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6 Experimental evaluation 

This section presents the implementation details, experimental evaluation methodology, 
localisation accuracy data, and run times. We also compare the proposed localisation 
approach with existing localisation techniques. 

6.1 Experimental set-up 

We evaluated the proposed object localisation framework in an indoor environment using 
one reader connected to four antennas, 33 reference multi-tags, one onboard reader, and 
one four way multi-tag platform per mobile robot that acted as either a stationary or a 
mobile object. We constructed two mobile robots using Lego Mindstorms kits, with the 
onboard controller being an HP iPAQ hx2490 Pocket PC, connected to an iDtronic 
Voltaire portable RFID reader, as shown in Figure 9. 

Figure 9 Experiment components: mobile robot platform and track 

 

The Lego railroad track is used to conveniently move the mobile robots along 
predetermined paths. Also shown are the four-way multi-tag platforms used as reference 
tags. To localise any object/tag, we vary the stationary reader power levels to localise the 
onboard multi-tag, using in turn all of the localisation algorithms described above. 
Alternatively, we also localised objects with the onboard reader to read the reference tags 
encountered during motion and transmit the tag IDs to a backend workstation with the 
onboard bluetooth link. A key aspect of the proposed localisation approach is to limit the 
use of onboard non-RFID components, while still obtaining good localisation accuracy 
and speed. 

Table 2 describes our experimental set-up and implementation details. Note that the 
mobile robots utilising only RFID technology for localisation have somewhat bounded 
speed, due to the computational delays inherent in determining minimum tag detection 
power levels, as well as the reader’s operational speed (Han et al., 2007). Thus, while 
mobile robots may move several metres per second while using onboard RFID readers 
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for localisation, more precise localisation requires slower speeds. Such locomotion speed 
limitations are also present in other existing mobile object localisation techniques. We 
believe that as RFID technology keep advancing, faster readers, identification protocols, 
combined with more sophisticated tags can help achieve localisation for mobile objects 
moving at higher speeds. 
Table 2 Experimental set-up 

Type Component Details 
Backend Workstation CPU AMD Athlon 64 @ 2GHz 
 RAM 1 GBytes 
 Hard Disc 100 GBytes 
 OS Windows XP 
 PL C++/C# 
 API M4 LIB 
RFID Equipment Reader ThingMagic M4, iDtronic Voltaire CF readers 

 Antenna Linear with 6 dBi gain 
 Tag Impinj Dogbone Monza 3 93 × 23 mm 
 Protocol EPC Gen2 
Environment Map Area 8 metres 
 Room Volume 41 cubic metres 
 Reference Tags 132 single tags (33 Multi-tags) 
Robots Kit Lego Mindstorms 
Onboard Control PDA HP iPAQ hx2490 
Onboard Link Wireless Bluetooth dongle 

6.2 Experimental results 

We divide the proposed localisation approach into the set-up phase and the localisation 
phase. In the set-up phase, we instrument a 2D region with 33 reference multi-tags and 
determine their empirical power-distance relationships. In the localisation phase, we 
estimate the positions of target objects by comparing the prior-stored empirical power-
distance relationship of the reference tags with real-time measurements obtained from the 
onboard target tags. 

6.2.1 The empirical power-distance relationship 

In Section 3, we discussed the ideal power-distance relationship based on the Friis equation. 
We now describe our methodology for empirically determining the power-distance 
relationship, while accommodating various error sources, such as multi-path scattering, 
environmental interferences, RF occlusions, etc. 

Figure 10 illustrates the power-distance relationship between the uniformly sensitive 
reference tags and the readers. We utilised the Linear Search algorithm to calibrate the 
empirical power-distance relationship, since it provides highly accurate minimum tag 
detection power levels. Note that as the distances between the tags and readers increase, 
more reader power is required to detect the tags. Such a relationship also implicitly 
determines the read-range of the reader (e.g. in illustration given in Figure 10, the 
operating region is 4 metres long and 2 metres wide). 
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Figure 10 The empirically observed power-distance relationship 

 

6.2.2 Localisation accuracy 

We now describe our experimental results pertaining to localisation. We utilised the 
proposed algorithms in different combinations during the set-up phase and the localisation 
phase, in order to determine which algorithm combinations yield the smallest localisation 
errors. In our experiments, reference tags are placed throughout the 2D experimental 
region at positions specified by their distances from antenna four (X-axis) and from 
antenna three (Y-axis), as illustrated in Figure 11. 

Figure 11 A top-view of experimental set-up 
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       RFID Antenna                RFID Multi-tag Platform 

The localisation accuracy along X and Y axis is depicted in Figures 12a and 12b. The 
proposed localisation approach closely approximates (along both axes) the actual positions 
of target objects. We used the Linear Search algorithm in the set-up phase and the Binary 
Search algorithm in the localisation phase in order to yield the desired localisation 
accuracy. Note that the Parallel Search algorithm and the Measure and Report algorithm 
achieve comparable accuracy with higher localisation speed. Importantly, the Linear 
Search algorithm in the low-to-high mode (i.e. where the power levels are incremented 
from lowest to highest) provides more accurate minimum tag detection power levels, 
which improves the localisation accuracy (see Figure 13a). 
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Figure 12 Localisation accuracy: (a) along X-axis, and (b) along Y-axis 

 
(a) 

 
(b) 

6.2.3 Localisation speed 

Localisation speed is heavily dependent on the time required to estimate minimum tag 
detection power levels. While the Linear Search algorithm (in high-to-low mode), the 
Binary Search algorithm, and Parallel Search algorithm all provide less accurate 
estimates of the minimum tag detection power levels, they also run reasonably quickly, 
as illustrated in Figure 13b. On the other hand, the Linear Search algorithm in low-to-
high mode requires more time to run than the other algorithms, but is more accurate. This 
data confirms our hypothesis that varying the power levels from high to low is typically 
more efficient for localising tags farther away from the reader (i.e. where one would 
typically expect to find them). Thus, by combining the different algorithms and their 
variants, appropriate application-driven trade-offs can be chosen between localisation 
accuracy and speed. 

6.2.4 Power step vs. localisation accuracy 

In Section 5, we discussed the parameter ‘PowerStep’ which specifies the power level 
increment. We measured the impact of this parameter on the minimum tag detection 
power levels. This is accomplished by determining for a given target tag, the minimum 
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tag detection power levels using different power steps. Figure 14a illustrates the 
minimum detection power levels of a tag for four different power steps, measured using 
the three localisation algorithms and two orthogonally placed antennas. Linear Search 
algorithm in low-to-high mode reports the lowest minimum tag detection power level, 
while Parallel Search yields the highest minimum tag detection power level for the same 
tag. Since localisation accuracy is based on determining the minimum tag detection 
power levels (i.e. if an algorithm reports a lower minimum tag detection power level  
than other comparable algorithms then that algorithm yields higher accuracy), these 
algorithms are able to trade off accuracy and speed. 

Figure 13 Algorithmic variability: (a) Minimum tag detection power levels, and (b) Localisation time 

 
(a) 

 
(b) 

6.2.5 Reference tag density vs. localisation accuracy 

We hypothesised that increasing the number of reference tags increases the localisation 
accuracy only up to a certain point. To test this hypothesis, we varied the number of 
reference tags from 1 to 33 and determined that the range of localisation error varied 
from 1.2 to 0.2 metres, as depicted in Figure 14b. Thus, adding inexpensive passive 
reference tags increases the localisation accuracy only up to a point. For example, with 
only 22 reference tags, 88% of the maximum possible localisation accuracy was achieved 
(Chawla et al., 2010a; Chawla et al., 2010b). 
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Figure 14 The impact on localisation accuracy: (a) Power step size, and (b) Number of reference tags 

 
(a) 

 
(b) 

6.3 Comparative analysis and visualisation 

We now compare the proposed localisation approach to existing stationary and mobile 
object localisation techniques. For each proposed technique we measured separately the 
time required by the set-up phase and the localisation phase (Table 3). Curiously, most 
previous localisation techniques do not report either of these times (i.e. the set-up time 
nor the localisation time). These omissions bring into question the practicality of previous 
approaches, since excessive run times can severely limit the utility of a localisation 
method. Some previous localisation techniques also heavily utilise non-RFID based 
components (e.g. cameras, ultrasonic sensors, lasers, etc.). Thus, the accuracy of such 
methods comes at an onerous price of resorting to cumbersome, ad-hoc combinations, 
and expensive technology/equipment, tending to further diminish the practicality of such 
methods. 

Table 3 also reports the size of the test area, and the average localisation error. Note 
that the maximum time required by any of the proposed localisation approaches during 
the set-up phase is due to the Linear Search algorithm operating in the low-to-high mode. 
However, it should be noted that the set-up phase is an offline pre-processing step that is 
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executed only infrequently. The proposed Parallel Search localisation approach can 
simultaneously localise multiple stationary and mobile objects in 1.67 minutes with an 
overall average accuracy of 0.35 metres. Moreover, combining the different localisation 
algorithms in the set-up and the localisation phases can achieve a combined overall 
average accuracy of 0.18 metres. We believe that additional fine-tuning of our methodology 
can further improve these results. 
Table 3 Comparison of proposed RFID-based object localisation techniques with existing 

methods 

Technique Average Time (min) Localisation error (m) 

 Set-up 
phase 

Localisation 
phase 

Test area
(m2)  

Ni et al., 2003a NR NR NR 2 
Alippi et al., 2006a NR NR 20 0.68 
Bekkali et al., 2007a  NR NR 9 0.5–1.0 
Joho et al., 2009a 27 NR NR 0.375 
Zhao et al., 2007a NR NR 20 0.14–0.29 
Wang et al., 2007a NR NR NR 0.1–0.9 
Choi et al., 2009a NR NR NR 0.21 
Jin et al., 2006a NR NR 40 0.72 
Zhang et al., 2007a NR NR NR 1 
Chae and Han, 2005b NR NR 48.4 0.23 
Choi and Lee, 2009b NR NR 14.4 0.016–0.024 
Hähnel et al., 2004b NR NR 784 1–10 
Han et al., 2007b NR NR 1 0.09 
Milella et al., 2009b NR NR 70 0.64 
Senta et al., 2007b NR NR 2 0.2 
Seo and Lee, 2008b NR NR 5 0.2–1.6 
Vorst et al., 2008b NR NR 125 0.2–0.6 
Linear Search (HL) 29.78 1.42 8 0.29 
Linear Search (LH) 161.23 5.28 8 0.27 
Binary Search 47.24 1.95 8 0.31 
Parallel Search 1.67 1.67 8 0.35 
Measure and Report 0 0 8 0.25 
Combined Approach 161.23 10.32 8 0.18 

Notes: NR = Not Reported, aStationary Localisation Technique, bMobile Localisation 
Technique, LH = Low to High, HL = High to Low. 

We also developed a visualisation tool that provides a real-time view of the object 
localisation environment. The visualisation user interface contains five key regions, 
which enable the end-users to select different error heuristics, view localisation error  
per location (both graphically and analytically), and control experimental variables  
(e.g. antenna power, reference nodes, etc.). Using this tool, practitioners can determine 
the localisation accuracy at various points in the environment. Regions with low 
localisation accuracy can be enhanced with additional low-cost passive tags. Thus, the 
visualisation tool (see Figure 15) also serves as a feedback mechanism that can help 
enhance the localisation accuracy, as well as controlling the experimental testbed. 
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Figure 15 The visualisation user interface 
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7 Key lessons learned 

This section outlines some key insights and lessons learned during the conceptualisation, 
design, and implementation of the proposed object localisation framework. 

7.1 Calibration of tags 

Typically, RFID-based localisation techniques use off-the-shelf tags as-is in their 
experiments. We have discovered that even in a brand-new batch of tags, tag sensitivities 
varied considerably, although previous works are surprisingly oblivious to this important 
issue. Identifying and systematically mitigating this source of localisation errors enabled 
us to minimise its impact on localisation accuracy. 

7.2 Empirical power-distance relationship 

While the ideal power-distance relationship can be described using, e.g., the Friis 
transmission equation, factors such as multi-path scattering, environmental interferences, 
RF occlusions and variability in tag sensitivities can substantially skew this relationship. 
Nevertheless, the power-distance relationship can be reliably characterised by direct 
empirical calibration measurements, rendering moot many of the unpredictable and  
hard-to-characterise variabilities. 

7.3 Simplicity in algorithmic design 

We emphasised simplicity (i.e. ‘Occam’s razor’) in designing the localisation algorithms 
and error heuristics yielding effective and efficient techniques. Our streamlined methods 
can be implemented with relatively little overhead, using widely available commercial 
RFID equipment. 

7.4 Tag orientation and placement strategies 

Tag orientation and placement are key factors that impact effective detection. Moreover, 
multi-tags have superior detection sensitivities over ordinary single tags. We experimentally 
determined the preferable (multi-)tag orientations and placement strategies (e.g. orthogonal 
orientations yield higher detection probabilities). 

7.5 Minimise onboard components 

While designing the RFID testbed mobile platforms, we focused on simplifying the 
onboard components and avoiding non-RFID components, in order to reduce the overall 
complexity. The resulting object localisation framework is efficient, robust, scalable, and 
economically viable. 

7.6 Visualisation and control tools 

We designed a graphical user interface to visualise the operation, performance, and 
localisation accuracy of the experimental environment. This GUI enabled the quick 
identification of various issues, including the identification (and enhancement) of  
low-accuracy regions, the discovery of improved tag placement strategies, etc. 
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7.7 Application scenarios 

The proposed object localisation framework was designed to operate in variety of 
scenarios, such as the 3D positioning of objects, the simultaneous localisation of multiple 
stationary and mobile objects, localisation in outdoor settings, etc. The design principles 
in our framework aim towards practicality, relevance, and generality. 

8 Conclusions and future work 

We proposed an accurate, scalable, reliable, streamlined RFID-based approach for localising 
objects. We have outlined several localisation challenges and developed practical techniques 
to mitigate them. We deployed uniformly sensitive four-way multi-tags in order to 
improve the object localisation accuracy and speed. Furthermore, we analysed the impact 
of the reference tag density on the localisation accuracy, and compared the proposed 
localisation approach to existing methods. While these experiments were performed in an 
indoor setting, the proposed localisation approach is general enough to be widely 
applicable to other scenarios (e.g. 3D regions, outdoor environments, multiple stationary, 
mobile object localisation, etc.). Future research can also strive for further improvements 
in the overall localisation speed, especially for moving objects. 
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