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Abstract

We focus on the problem of generating high-quality, private synthetic glucose
traces, a task generalizable to many other time series sources. Existing methods for
time series data synthesis, such as those using Generative Adversarial Networks
(GANs), are not able to capture the innate characteristics of glucose data and cannot
provide any formal privacy guarantees without severely degrading the utility of the
synthetic data. In this paper we present GlucoSynth, a novel privacy-preserving
GAN framework to generate synthetic glucose traces. The core intuition behind our
approach is to conserve relationships amongst motifs (glucose events) within the
traces, in addition to temporal dynamics. Our framework incorporates differential
privacy mechanisms to provide strong formal privacy guarantees. We provide a
comprehensive evaluation on the real-world utility of the data using 1.2 million
glucose traces; GlucoSynth outperforms all previous methods in its ability to
generate high-quality synthetic glucose traces with strong privacy guarantees.

1 Introduction

The sharing of medical time series data can facilitate therapy development. As a motivating example,
sharing glucose traces can contribute to the understanding of diabetes disease mechanisms and the
development of artificial insulin delivery systems that improve people with diabetes’ quality of life.
Unsurprisingly, there are serious legal and privacy concerns (e.g., HIPAA, GDPR) with the sharing of
such granular, longitudinal time series data in a medical context [1]. One solution is to generate a set
of synthetic traces from the original traces. In this way, the synthetic data may be shared publicly in
place of the real ones with significantly reduced privacy and legal concerns.

This paper focuses on the problem of generating high-quality, privacy-preserving synthetic glucose
traces, a task which generalizes to other time series sources and application domains, including
activity sequences, inpatient events, hormone traces and cyber-physical systems. Specifically, we
focus on long (over 200 timesteps), bounded, univariate time series glucose traces. We assume
that available data does not have any labels or extra information including features or metadata,
which is quite common, especially in diabetes. Continuous Glucose Monitors (CGMs) easily and
automatically send glucose measurements taken subcutaneously at fixed intervals (e.g., every 5
minutes) to data storage facilities, but tracking other sources of diabetes-related data is challenging
[2]. We characterize the quality of the generated traces based on three criteria— synthetic traces
should (1) conserve characteristics of the real data, i.e., glucose dynamics and control-related metrics
(fidelity); (2) contain representation of diverse types of realistic traces, without the introduction of
anomalous patterns that do not occur in real traces (breadth); and (3) be usable in place of the original
data for real-world use cases (utility).
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Figure 1: Example Real Glucose Traces and Glucose Motifs from our Dataset.

Generative Adversarial Networks (GANs) [3] have shown promise in the generation of time series
data. However, previous methods for time series synthesis, e.g., [4, 5, 6], suffer from one or more of
the following issues when applied to glucose traces: 1) surprisingly, they do not generate realistic
synthetic glucose traces – in particular, they produce human physiologically impossible phenomenon
in the traces; 2) they require additional information (features, metadata or labels) to guide the model
learning which are not available for our traces; 3) they do not include any privacy guarantees, or, in
order to uphold a strong formal privacy guarantee, severely degrade the utility of the synthetic data.

Generating high-quality synthetic glucose traces is a difficult task due to the innate characteristics of
glucose data. Glucose traces can be best understood as sequences of events, which we call motifs,
shown in Figure 1, and they are more event-driven than many other types of time series. As such, a
current glucose value may be more influenced by an event that occurred in the far past compared to
values from immediate previous timesteps. For example, a large meal eaten earlier in the day (30-90
minutes ago) may influence a patient’s glucose more than the glucose values from the past 15 minutes.
As a result, although there is some degree of temporal dependence within the traces, only conserving
the immediate temporal relationships amongst values at previous timesteps does not adequately
capture the dynamics of this type of data. In particular, we find that the main reason previous methods
fail is because they may not sufficiently learn event-related characteristics of glucose traces.

Contributions. We present GlucoSynth, a privacy-preserving GAN framework to generate synthetic
glucose traces. The core intuition behind our approach is to conserve relationships amongst motifs
(events) within the traces, in addition to the typical temporal dynamics contained within time series.
We formalize the concept of motifs and define a notion of motif causality, inspired from Granger
causality [7], which characterizes relationships amongst sequences of motifs within time series traces
(Section 4). We define a local motif loss to first train a motif causality block that learns the motif
causal relationships amongst the sequences of motifs in the real traces. The block outputs a motif
causality matrix, that quantifies the causal value of seeing one particular motif after some other motif.
Unrealistic motif sequences (such as a peak to an immediate drop in glucose values) will have causal
relationships close to 0 in the causality matrix. We build a novel GAN framework that is trained
to optimize motif causality within the traces in addition to temporal dynamics and distributional
characteristics of the data (Section 5). Explicitly, the generator computes a motif causality matrix
from each batch of synthetic data it generates, and compares it with the real causality matrix. As
such, as the generator learns to generate synthetic data that yields a realistic causal matrix (thereby
identifying appropriate causal relationships from the motifs), it implicitly learns not to generate
unrealistic motif sequences. We also integrate differential privacy (DP) [8] into the framework
(Section 6), which provides an intuitive bound on how much information may be disclosed about
any individual in the dataset, allowing the GlucoSynth model to be trained with privacy guarantees.
Finally, in Section 7, we present a comprehensive evaluation using 1.2 million glucose traces from
individuals with diabetes collected across 2022, showcasing the suitability of our model to outperform
all previous models and generate high-quality synthetic glucose traces with strong privacy guarantees.

2 Related Work

We focus the scope of our comparison on current state-of-the-art methods for synthetic time se-
ries which all build upon Generative Adversarial Networks (GANs) [3] and transformation-based
approaches [9]. An extended related work is in Appendix A.
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(a) Glucose Motif 1 (b) Glucose Motif 2 (c) Temporal Motif 1 (d) Temporal Motif 2

Figure 2: Temporal Distributions of Sample Motifs. Each radial graph displays the temporal
distribution of a motif; there are 24 radial bars from 00:00 to 23:00, and each segment displays the %
of motif occurrences by each hour. Glucose motifs 1 and 2 are from Fig. 1; they are not temporally-
dependent and show up across the day. Temporal motifs 1 and 2 are from a cardiology dataset [15].

Time Series. Brophy et al. [10] provides a survey of GANs for time series synthesis. TimeGan [4] is a
popular benchmark that jointly learns an embedding space using supervised and adversarial objectives
in order to capture the temporal dynamics amongst traces. Esteban et al. [11] develops two time
series GAN models (RGAN/RCGAN) with RNN architectures, conditioned on auxiliary information
provided at each timestep during training. TTS-GAN [5] trains a GAN model that uses a transformer
encoding architecture in order to best preserve temporal dynamics. Transformation-based approaches
such as real-valued non-volume preserving transformations (NVP) [9] and Fourier Flows (FF) [12],
have also had success for time series data. These methods model the underlying distribution of the
real data to transform the input traces into a synthetic data set. Methods that only focus on learning the
temporal or distributional dynamics in time series are not sufficient for generating realistic synthetic
glucose traces due to the lack of temporal dependence within sequences of glucose motifs.

Differentially-Private GANs. To protect sensitive data, several GAN architectures have been
designed to incorporate privacy-preserving noise needed to satisfy differential privacy guarantees [13].
Frigerio et al. [14] extends a simple differentially-private architecture (dpGAN) to time-series data
and RDP-CGAN [6] develops a convolutional GAN architecture specifically for medical data. These
methods find large gaps in performance between the non-private and private models. Providing strong
theoretical DP guarantees using these methods often results in synthetic data with too little fidelity
for use in real-world scenarios. Our framework carefully integrates DP into the motif causality block
and each network of the GAN, resulting in a better utility-privacy tradeoff than previous methods.

3 Preliminaries

3.1 Motifs

Glucose (and many other) traces can be best understood as sequences of events or motifs. Motifs
characterize phenomenon in the traces, such as peaks or troughs. We define a motif, µ, as a short,
ordered sequence of values (v) of specified length ⌧ , µ = [vi, vi+1, . . . , vi+⌧ ] and � is a tolerance
value to allow approximate matching (within � for each value). Some examples of glucose traces
and motifs are shown in Figure 1. We denote a set of n time series traces as X = [x1, ..., xn]. Each
time series may be represented as a sequence of motifs: xi = [µi1 , µi2 ...] where each ij gives the
index of the motif in the set that matches xij·⌧ , ...xi(j+1)·⌧�1

. Given the motif length ⌧ , the motif
set is the union of all size-⌧ chunks in the traces. This definition is chosen for a straightforward
implementation but motifs can be generated in other ways, such as through the use of rolling windows
or signal processing techniques [16, 17]. Motifs are pulled from the data such that there is always a
match from a trace motif to a motif from the set (if multiple matches, the closest one is chosen).

3.2 Glucose Dynamics (Why Standard Approaches Fail)

We first present a study of the characteristics of glucose data in order to motivate the development
of our framework. Although there are general patterns in sequences of glucose motifs (e.g., motif
patterns corresponding to patients that eat 2x vs. 3x a day), individual glucose motifs are typically
not time-dependent, as illustrated in Figure 2. The radial graphs display the temporal distribution of
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the first two glucose motifs from Figure 1 and two temporally-dependent motifs from a cardiology
dataset [15]. There are 24 radial bars from 00:00 to 23:00 for each hour of the day, and the bar value
is the percentage of total motif occurrences at that hour across the entire dataset (i.e., value of 10
would indicate that 10% of the time that motif occurs during that hour). Note that the glucose motifs
show up fairly evenly across all hours of the day whereas the motifs from the cardiology dataset have
shifts in their distribution and show up frequently at specific hours of the day. The lack of temporal
dependence in glucose motifs is likely due to the diverse patient behaviors within a patient population.
Glucose in particular is highly variable and influenced by many factors including eating, exercise,
stress levels, and sleep patterns. Moreover, due to innate variability within human physiology, motif
occurrences can differ even for the same patient across weeks or months. These findings indicate that
only conserving the temporal relationships within glucose traces (as many previous methods do) may
not be sufficient to properly learn glucose dynamics and output realistic synthetic traces.

3.3 Granger Causality

Granger causality [7] is commonly used to quantify relationships amongst time series without limiting
the degree to which temporal relationships may be understood as done in other time series models,
e.g., pure autoregressive ones. In this framework, an entire system (set of traces) is studied together,
allowing for a broader characterization of their relationships, which may be advantageous, especially
for long time series. We define xt 2 Rn as an n-dimensional vector of time series observed across n
traces and T timesteps. To study causality, a vector autoregressive model (VAR) [18] may be used.
A set of traces at time t is represented as a linear combination of the previous K lags in the series:
xt =

PK
k=1 A

(k)xt�k + et where each A(k) is a n⇥ n dimensional matrix that describes how lag k
affects the future timepoints in the series’ and et is a zero mean noise. Given this framework, we state
that time series q does not Granger-cause time series p, if and only if for all k, A(k)

p,q = 0. To better
represent nonlinear dynamics amongst traces, a nonlinear autoregressive model (NAR) [19], g, may
be defined, in which xt = g (x1<t , ..., xn<t) + et where xp<t =

�
xp1 ..., xpt�1 , xpt

�
describes the

past of series p. The NAR nonlinear functions are commonly modeled jointly using neural networks.

4 Motif Causality

Using Granger causality as defined would overwhelm the generator with too much information,
resulting in convergence issues for the GAN. Instead of looking at traces comprehensively, we
need a way to scope how the generator understands relationships between time series. To this
end, we aim to use the same intuition developed from Granger causality, namely developing an
understanding of relationships comprehensively using less stringent temporal constraints, but scope
these relationships specifically in terms of motifs. Therefore, we develop a concept of motif causality
which, by learning causal relationships amongst sequences of motifs, allows the generator to learn
realistic motif sequences and produce high quality synthetic traces as a result.

4.1 Extending Granger Causality to Motifs

In order to quantify the relationships amongst sequences of motifs to best capture glucose dynamics,
we extend the idea of Granger causality to work with motifs. Given a motif set with m motifs,
we build a separate (component) model, called a motif network in our method, for each motif,
resulting in m motif networks. For a single motif µi at time t, µit , we define a function gi specifying
how motifs in previous timesteps are mapped to that motif: µit = gi (µ1<t , ..., µm<t) + eit where
µj<t =

�
µj1 ..., µjt�1 , µjt

�
describes the past of motif µj . The output of gi is a vector, which is

added to the noise vector eit . Essentially, we define motif µi in terms of its relationship to past motifs.
The gi function takes in some mapping that describes how motifs in previous timesteps are mapped
to the current motif µit . The mapping is not specified in this notation, and could be defined in many
different ways. In our case, we instantiate gi using a single-layer LSTM, described next.

A gi function for each motif µi in the motif set is modeled using a motif network with a single-
layer RNN architecture. For a RNN predicting a single component motif, let ht 2 Rm represent
the m-dimensional hidden state at time t. This represents the historical context of the motifs in
the series for predicting a component motif at time t, µit . At time t, the hidden state is updated:
ht = gi(ht�1) + eit . gi here is the function describing how motifs in previous timesteps are mapped
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Figure 3: Motif Causality Block.

to the current motif, and is modeled (instantiated) as a single-layer LSTM as they are good at modeling
long, nonlinear dependencies amongst traces [20]. The output for a motif µi at time t, µit can be
obtained by a linear decoding of the hidden state, µit = W oht + eit , where W o is a matrix of the
output weights. These weights control the update of the hidden state and thereby control the influence
of past motifs on this component motif. Essentially, this function learns a weighting that quantifies
how helpful motifs in previous timesteps are for predicting the specified motif µi at time t. We note
that we define causality in this way based on how Granger causality models such relationships, which
is different from traditional causality models.

If all elements in the jth column of W o are zero (W o
:j = 0), this is a sufficient condition for an

input motif µj being motif non-causal on an output µi. Therefore, we can find the motifs that are
motif-causal for motif µi using a group lasso penalty optimization across the columns of W o:

min
W

TX

t=2

(µit � gi(µ0<t , ..., µm<t))
2 +

mX

j=1

||W o
:j ||2

We define this as the local motif loss, Lml, which is optimized in each motif network using proximal
gradient descent.

4.2 Training the Motif Causality Block

We next describe how the motif causality block is trained to learn motif causal relationships amongst
traces, displayed in Figure 3. The block is structured in this way to accommodate the privacy
integration (Section 6.2); here, we present its implementation without any privacy noise.

Partition data. First, the data is partitioned into r partitions (Step 1, Figure 3) such that no models
are trained on overlapping data. The number of partitions, r, is a user-specified hyperparameter.

Build motif network for each motif. Next, within each data partition a set of motif networks is
trained. As a pre-processing step, we assume each trace has been chunked into a sequence of motifs
of size ⌧ (Section 3.1). ⌧ is a hyperparameter, which we suggest chosen based on the longest effect
time of a trace event. We use ⌧ = 48, corresponding to 4 hours of time, because large glucose
events (from behaviors like eating) are encompassed within that time frame; see Appendix B for
more details. We assume a tolerance of � = 2 mg/dL, chosen to allow for reasonable variations in
glucose. To model motif causality for an entire set of data, a gi function is implemented for each
motif via a separate RNN motif net following the description provided previously, resulting in m
total networks (Step 2a, Figure 3). If all the motifs were trained together using a single motif network,
it would not be possible to quantify the exact causal effects between each individual motif as we
would not know which exact motifs contributed to a prediction (only that there is some combination
of unknown motifs that contribute to an accurate prediction for a particular motif). By training
each motif network separately, we are able to quantify the exact effect each motif has on each other,
without any confounding effects from other motifs.

Combine outputs of individual motif networks. Each motif network outputs a vector of weights
W o of dimensionality 1⇥m, corresponding to the learned causal relationships (Step 2b, Figure 3).
Values in the vector are between 0 (no causal relationship) and 1 (strongest causal relationship) and
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Figure 4: Overview of GlucoSynth Architecture.

give the degree to which every other motif is motif causal of the particular motif µi the RNN was
specialized for. To return a complete matrix that summarizes causal relationships amongst all motifs,
we stack the weights (Step 2c). The output of each data partition is a complete motif causality matrix,
resulting in r total matrices, each of dimensionality m⇥m.

Aggregate matrices and integrate with GAN. After motif causality matrices have been outputted
from each data partition, the weights in the matrices are aggregated (Step 3, Figure 3) to return the final
aggregate causality matrix, M (Step 4). In the nonprivate version, the weights are averaged. Finally,
M is sent to the generator to help it learn how to conserve motif relationships within sequences of
motifs in the synthetically generated data. Details are described next in the subsequent section.

5 GlucoSynth

The complete GlucoSynth framework, shown in Figure 4, comprises four key blocks: the motif
causality block (explained previously in Section 4), an autoencoder, a generator and a discriminator.
We walk through the remaining components of the framework surrounding the GAN next.

5.1 GAN Architecture Components

Autencoder. We use an autoencoder (AE) with an RNN architecture to learn a lower dimensional
representation of the traces, allowing the generator to better preserve underlying temporal dynamics
of the traces. The autoencoder consists of two networks: an embedder and a recovery network.
The embedder uses an encoding function to map the real data into a lower dimensional space:
Enc(x) : x 2 Rn ! xe 2 Re while the recovery network reverses this process, mapping the
embedded data back to the original dimensional space: Dec(xe) : xe 2 Re ! x̃ 2 Rn. A foolproof
autoencoder perfectly reconstructs the original input data, such that x = x̃ ⌘ Dec(Enc(x)). This
process yields the Reconstruction Loss, LR, the Mean Square Error (MSE) between the original data
x and the recovered data, x̃: MSE(x, x̃).

Generator. We implement the generator via an RNN or LSTM. Importantly, the generator works in
the embedded space, by receiving the input traces passed through the embedder (xe). To generate
synthetic data, a random vector of noise, z is passed through the generator and then the recovery
network to return the synthetic traces in the original dimensional space. To learn how to produce
high-quality synthetic data, the generator receives three key pieces of information:

1 – Stepwise. The generator receives batches of real data to guide the generation of realistic next step
vectors. To do this, a Stepwise Loss, LS , is computed at time t using the MSE between the batch of
embedded real data, xet, and the batch of embedded synthetic data, x̂et: MSE(xet, x̂et). This allows
the generator to compare (and learn to correct) the discrepancies in stepwise data distributions.

2 – Motif Causality. The generator needs to preserve sequences of motifs in addition to temporal
dynamics. Using the aggregate causality matrix M returned from the Motif Causality Block, the
generator computes a motif causality matrix, Mx̂, on the set of synthetic data x̂. Because the original
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causality matrix was not trained on data in the embedded space, we first run the set of embedded
synthetic data through the recovery network x̂e ! x̂. From there, the Motif Causality Loss, LM , is
computed as the MSE error between the two matrices: MSE(M,Mx̂). These matrices give a causal
value of seeing a motif µi in the future after some motif µj— unrealistic motif sequences will have
causal values close to 0. As the generator learns to generate synthetic data that yields a realistic causal
matrix (thereby identifying appropriate causal relationships from the motifs), it implicitly learns to
not generate unrealistic motif sequences.

3 – Distributional. To guide the generator to produce a diverse set of traces, the generator computes a
Distributional Loss, LD, the moments loss (MML), between the overall distribution of the real data
xe and the distribution of the synthetic data x̂e: MML(xe, x̂e). The MML is the difference in the
mean and variance of two matrices.

Discriminator. The discriminator is a traditional discriminator model using an RNN, the only change
being it also works in the embedded space. The discriminator yields the Adversarial Loss Real, LAr,
the Binary Cross Entropy (BCE) between the discriminator guesses on the real data yxe and the
ground truth y, a vector of 0’s, BCE(yxe , y) and the Adversarial Loss Fake, LAf , the BCE between
the discriminator guesses on the fake data yx̂e and the ground truth y, a vector of 1’s, BCE(yx̂e , y).

5.2 Training Procedure

First, the motif causality block is trained following the procedure described in Section 4.2, and then
the rest of the GAN is trained. The autoencoder is optimized to minimize LR + ↵LS , where ↵ is
a hyperparameter that balances the two loss functions. If the AE only receives LR (as is typically
done), it becomes overspecialized, i.e., it becomes too good at learning the best lower dimensional
representation of the data such that the embedded data are no longer helpful to the generator. For
this reason, the AE also receives LS , enabling the dual training of the generator and embedder. The
generator is optimized using min(1�LAf ) + ⌘(LS +LD) +LM , where ⌘ is a hyperparameter that
balances the effect of the stepwise and distributional loss. Finally the discriminator is optimized using
the traditional adversarial feedback minLAf + LAr. The networks are trained in sequence (within
each epoch) in the following order: autoencoder, generator, then discriminator. In our experiments
we set ↵ = 0.1 and ⌘ = 10 as they enable GlucoSynth to converge fastest, i.e., in the fewest epochs.

6 Providing Differential Privacy

There are two components to our privacy architecture, described in the following two subsections:
(1) each network in the GAN (Embedder, Recovery, Generator and Discriminator networks) is
trained in a differentially private manner using the Differentially-Private Stochastic Gradient Descent
(DP-SGD) algorithm from Abadi et al. [21]; and (2) the motif causality block is trained using
the PATE framework from Papernot et al. [22]. Importantly, two completely separate datasets are
used for the training of the motif causality block (dataset B in Figure 4) and the GAN (dataset
A in Figure 4). We structure the privacy integration in this way to allow for better privacy-utility
trade-offs. Our design satisfies the formal differential privacy notion introduced by Dwork et al.
[23]. Differential Privacy (DP) provides an intuitive bound on the amount of information that can
be learned about any individual in a dataset. A randomized algorithm M satisfies (✏, �)-differential
privacy if, for all datasets D1 and D2 differing by at most a single unit, and all S ✓ Range(M),
Pr[M(D1) 2 S]  e✏Pr[M(D2) 2 S] + �. The parameters ✏ and � determine the privacy loss
budget, which provide a way to tradeoff privacy and utility; smaller values have stronger privacy.
Importantly, privacy is provisioned at the trace level, and we assume each individual has only one
trace in the dataset.

6.1 Training the GAN Networks with DP

To add privacy to the GAN components, each of the networks (Embedder, Recovery, Generator and
Discriminator) is trained in a differentially private manner using DP-SGD [21]. Although the overall
GAN framework is complicated, the individual networks all use simple RNN or LSTM architectures
with Adam optimizers. As such, adding DP noise to their network weights is straightforward. We
employ the following procedure using Tensorflow Privacy functions [24]. Since there are four
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networks being trained with DP, we divide the privacy loss budget evenly to get the budget per
network, ✏net = ✏/4. Then, we use Tensorflow’s built-in DP accountant to determine how much noise
must be added to the weights of each network based on the number of epochs, batch size, number
of traces and ✏net. This function returns a noise multiplier, which we use when we instantiate a
Tensorflow DP Keras Adam Optimizer for each network. Finally, we train each of the networks using
their respective DP Keras Adam Optimizer, which automatically trains the network using DP-SGD.

6.2 Training the Motif Causality Block with DP

We train the motif causality block using the PATE framework [22]. PATE provides a way to return
aggregated votes about the class a data point belongs to. First, the data is partitioned into r partitions,
where r is determined based on the size of the dataset and the privacy loss budget. Then, a class
membership model is trained independently for each partition. The class membership votes from
each partition are aggregated by adding noise to the vote matrix and the noisiest votes are returned
using the max-of-Laplacian mechanism (LNMax), tuned based on the privacy budget and r.

We use PATE to train the motif causality block: instead of predicting the degree of class membership
we predict causal membership, e.g., does motif µi have a causal relationship to µj . The motif
causality block is trained in the same procedure described in Section 4.2 with two changes: (1) the
number of data partitions, r, is determined based on the privacy budget, instead of a user-specified
value; (2) the final causality matrix M is aggregated using DP across the partitions. In normal PATE,
carefully calibrated noise is added to a matrix of votes for each class, such that the classes with the
noisiest votes are outputted. In our use, each value in a motif causality matrix may be likened to a
class (i.e., causal “class" prediction between motif µi and µj). Thus, we use the LNMax mechanism
(from predefined Tensorflow Privacy functions [24]) to aggregate the matrices weights and return M .

We use PATE instead of training each motif network using DP-SGD for better privacy-utility trade-
offs. With DP-SGD, we would need to add noise to every motif net, eating up our privacy budget
quickly and severely impacting the quality of the returned casuality matrices. PATE allows us to train
each of the motif networks without any noise on the gradients, but then aggregates their returned
causality matrices in a privacy-preserving manner, resulting in a better privacy-utility trade-off.

7 Evaluation

Evaluating synthetic data is notoriously difficult [25], so we provide an extensive evaluation across
three criteria. Synthetic data should: 1) conserve characteristics of the real data (fidelity, Section 7.1);
2) contain diverse patterns from the real data without the introduction of anomalous patterns (breadth,
Section 7.2); and 3) be usable in place of the original for real-world use cases (utility, Section 7.3).

Data and Benchmarks. We use 100,000 single-day glucose traces randomly sampled across each
month from January to December 2022, for a total of 1.2 million traces, collected from Dexcom’s
G6 Continuous Glucose Monitors (CGMs) [26]. Data was recorded every 5 minutes (T = 288) and
each trace was aligned temporally from 00:00 to 23:59. We restrict our comparison to the five most
closely related state-of-the-art models for generating synthetic univariate time series with no labels or
auxiliary data: Three nonprivate—TimeGAN [4], Fourier Flows (FF) [12], non-volume preserving
transformations (NVP) [9]; and two private—RGAN [11] and dpGAN [14]. We refer the reader to
Appendix B for additional experimental details and all hyperparameter settings, including reasoning
behind the choice of motif size ⌧ = 48.

7.1 Fidelity

Visualization. We provide visualizations of sample real and synthetic glucose traces from all models.
Although this is not a comprehensive way to evaluate trace quality, it does give a snapshot view
about what synthetic traces may look like. We provide heatmap visualizations, where each heatmap
contains 100 randomly sampled glucose traces. Each row is a single trace from timestep 0 to 288.
The values in each row indicate the glucose value (between 40 mg/dL and 400 mg/dL). Figure 5
shows the nonprivate models, and Figures 8, 9, 10 in Appendix C.1 show the private models with
different privacy budgets. Upon examinging the heatmaps, we notice that GlucoSynth consistently
generates realistic looking glucose traces, even at very small privacy budgets.
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Figure 5: Heatmaps for Nonprivate Models

Population Statistics. To evaluate fidelity on a population scale, we compute a common set of glucose
metrics and test if the difference between the synthetic and real data is statistically significant. Table 1
provides an abbreviated summary of the results; Appendix C.2 has complete results. GlucoSynth
performs the best, with few statistical differences between the real and synthetic data for ✏ � 0.1.

Distributional Comparisons. We visualize differences in distributions between the real and synthetic
data by plotting the distribution of variances and using PCA [27]. Figure 6 shows the variance
distribution for the nonprivate models. Additional comparisons across privacy budgets are available
in Appendix C.3. In both nonprivate and private settings, GlucoSynth produces synthetic distributions
closest to the real ones, better than all other models.

7.2 Breadth

We quantify breadth in terms of glucose motifs. For each model’s synthetic traces, we build a motif
set (see Section 3.1). Given a real motif set from the validation traces Sx, for each synthetic motif set
Sx̂, we compute “Validation Motifs", (VM), the fraction of motifs found in the validation motif set
that are present in the synthetic motif set, VM/|Sx̂|. This metric quantifies how good our synthetic
motif set is (e.g., are its motifs mostly similar to motifs found in real traces). We also compute metrics
related to coverage, the fraction of motifs in the validation motif set that are found in our synthetic
data, defined as VM/|Sx|. This gives a sense of the breadth in a more traditional manner. To compare
actual distributions of motifs (not just counts), we compute the MSE between the distribution of
real motifs Sx and the distribution of synthetic motifs Sx̂. This gives a measure about how close the
synthetic motif distribution is to the real one. We want high VM and coverage, and low MSE. Results
are in Table 1 with additional analysis in Appendix D; overall our model provides the best breadth.

7.3 Utility

We evaluate our synthetic glucose traces for use in a glucose forecasting task using the common
paradigm TSTR (Train on Synthetic, Test on Real), in which the synthetic data is used to train
the model and then tested on the real validation data. We train an LSTM network optimized for
glucose forecasting tasks [28] and report the Root Mean Square Error (RMSE) in Table 1. We run the
experiment 10 times and train the LSTM for 10,000 epochs. We have also tested with other models
including RNNs, attention-based models and other LSTM architectures (such as bidirectional LSTMs)
but show the results for the best performing model, the LSTM optimized for glucose forecasting.
Since RMSE provides a limited view about the model’s predictions, we also plot the Clarke Error
Grid [29], which visualizes the differences between a predictive and reference measurement, and is a
basis for evaluating the safety of diabetes-related medical devices. More details are in Appendix E.
GlucoSynth provides the best forecasting results compared to all other models across all privacy
budgets.
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Table 1: Fidelity, Breadth and Utility Evaluation. Fidelity: bolded values do not have a statistically
significant difference from the real data (what we want). Breadth and Utility: VM = fraction found
validation motifs; We want high VM, Coverage and low MSE, RMSE; Bolded values indicate the
best ones at each privacy budget (nonprivate compared with private models when ✏ = 1).

Fidelity (metric, p-val) Breadth Utility
Model ✏ Variance Time-in-Range VM Coverage MSE RMSE

GlucoSynth

0.01 2576, <1e�5 61.8, 2e�5 1.000 0.010 99.0 0.038± 3e�4
0.1 2809, 0.356 60.1, 0.532 1.000 0.083 11.2 0.036± 3e�4
1 2761, 0.022 60.6, 0.410 0.992 0.145 6.7 0.030± 1e�4
10 2801, 0.316 60.2, 0.845 1.000 0.167 5.0 0.029± 1e�4
1 2812, 0.503 60.2, 0.682 0.987 0.534 1.6 7e�3± 2e�4

TimeGAN 1 2235, 8e�3 62.3, 0.420 0.625 6e�3 107.7 0.061± 3e�4

FF 1 2836, 0.902 46.6, <1e�5 0.642 0.405 2.0 0.038± 3e�4

NVP 1 1789, <1e�5 65.5, <1e�5 0.482 0.328 1.9 0.029± 3e�5

RGAN

0.01 57, <1e�5 78.8, <1e�5 0.013 1e�3 108.6 0.819± 0.010
0.1 53, <1e�5 71.6, 3e�5 0.015 0.031 107.3 0.688± 6e�3
1 67, <1e�5 78.2, <1e�5 0.015 0.033 103.3 0.651± 0.018
10 77, <1e�5 83.7, <1e�5 0.017 0.053 100.3 0.619± 0.016
1 90, <1e�5 78.0, <1e�5 0.026 0.091 79.6 0.460± 0.013

dpGAN

0.01 451, <1e�5 95.3, <1e�5 0.094 0.054 180.1 0.205± 5e�3
0.1 1057, <1e�5 86.4, <1e�5 0.390 0.195 28.9 0.045± 2e�4
1 875, <1e�5 86.6, <1e�5 0.480 0.239 23.2 0.030± 2e�5
10 1030, <1e�5 88.1, <1e�5 0.743 0.251 16.1 0.035± 8e�5
1 1121, <1e�5 81.8, <1e�5 0.855 0.293 10.9 0.028± 5e�5

(a) GlucoSynth (b) TimeGAN

(c) FF (d) NPV

Figure 6: Distributional Variance for Nonprivate Models

8 Limitations & Conclusion

Limitations. In order to train on a huge set of glucose traces, we used a private dataset, not publicly
available (one of the motivations for this project was actually to share a synthetic version of these
traces). That being said, smaller samples of glucose traces with similar patient populations are
available at OpenHumans [30] and T1D Exchange Registry [31]. In addition, one of the reasons our
privacy results perform well is because we use two separate datasets for the training of the motif
causality block and the GAN. However, this may be a limiting factor for others that do not have a
large enough set of traces available to be able to train adequately on partitioned data.

Conclusion. In this paper we have presented GlucoSynth, a novel GAN framework with integrated
differential privacy to generate synthetic glucose traces. GlucoSynth conserves motif relationships
within the traces, in addition to the typical temporal dynamics contained within time series. We pre-
sented a comprehensive evaluation using 1.2 million glucose traces wherein our model outperformed
all previous models across three criteria of fidelity, breadth and utility.
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A Extended Related Work

We overview related work in three lines of research: time series, conditional time series, and time
series methods that employ differential privacy. Table 2 summarizes previous time series synthesis
methods. We note that there have been exciting developments for adjacent research tasks (data
augmentation, forecasting) such as diffusion models [32], but there are not yet any publicly available
models specifically for the generation of complete synthetic time series datasets. As such, we focus
the scope of our comparison on the current state-of-the-art methods for synthetic time series which all
build upon Generative Adversarial Networks (GANs) [3] and transformation-based approaches [9].
In particular TimeGAN [4], RGAN [11] and dpGAN [14] are most similar to ours and used as
benchmarks in the evaluation in Section 7.

Table 2: Summary of Previous Methods for Time Series Synthesis. *CI = conditional information or
extra features

Name Private? No Labels Required? No CI*? Length
TimeGAN [4] x X X 24 - 58
TTS-GAN [5] x x X 24 - 150

SigCWGAN [33] x X x 80,000
RGAN [11] X X X 16 - 30

RCGAN [11] X X x 16 - 30
dpGAN [14] X X X 96

RDP-CGAN [6] X X x 2 - 4097
DoppelGANger [34] X X x 50 - 600
GlucoSynth (Ours) X X X 288

Time Series. There have been promising models to generate synthetic time series across a variety of
domains such as financial data [35], cyber-physical systems (e.g., smart homes [36]), and medical
signals [37]. Brophy et al. [10] provides a survey of GANs for time series synthesis. TimeGan [4]
is a popular benchmark that jointly learns an embedding space using supervised and adversarial
objectives in order to capture the temporal dynamics amongst traces. TTS-GAN [5], trains a GAN
model that uses a transformer encoding architecture in order to best preserve temporal dynamics.
Transformation-based approaches have also had success for time series data. Real-valued non-
volume preserving transformations (NVP) [9] model the underlying distribution of the real data using
generative probabilistic modeling and use this model to output a set of synthetic data. Similarly,
Fourier Flows (FF) [12] transform input traces into the frequency domain and output a set of synthetic
data from the learned spectral representation of the original data. Methods that only focus on learning
the temporal or distributional dynamics in time series are not sufficient for generating realistic
synthetic glucose traces due to the lack of temporal dependence within sequences of glucose motifs.

Conditional Time Series. Many works have developed time series models that supplement their
training using extra features or conditional data. Esteban et al. [11] develops two GAN models
(RGAN/RCGAN) with RNN architectures, conditioned on auxiliary information provided at each
timestep during training. SigCWGAN [33] uses a mathematical conditional metric (Sig � W1)
characterizing the signature of a path to capture temporal dependence of joint probability distributions
in long time series data. However, our glucose traces do not have any additional information available
so these methods cannot be used1.

Differentially-Private GANs. To protect sensitive data, several GAN architectures (DP GANs)
have been designed to incorporate privacy-preserving noise needed to satisfy differential privacy
guarantees [13]. Although DP GANs such as PateGAN [38] have had great success for other data
types and learning tasks (e.g., tabular data, supervised classification tasks), results have been less
satisfactory in DP GANs developed for time series.

RGAN/RCGAN [11] also includes a DP implementation, but the authors find large gaps in perfor-
mance between the nonprivate and private models. Frigerio et al. [14] extends a simple DP GAN
architecture (denoted dpGAN) to to time-series data. The synthetic data from their private model

1There is a caveat here that RGAN does not use auxillary information, hence why we compare with it in our
benchmarks.
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Figure 7: Example motif causality matrix for a small motif set (m = 10). Each value in the grid is
between 0 and 1. 0 indicates no motif-causal relationship, and 1 indicates the strongest motif causal
relationship.

conserves the distribution of the real data but loses some of the variability (diversity) from the original
samples. RDP-CGAN [6] develops a convolutional GAN architecture that uses Rényi differential
privacy specifically for medical data. Across different datasets, they find that reasonable privacy
budgets result in major drops in the performance of the synthetic data. Finally, DoppelGANger [34]
develops a temporal GAN framework for time series with metadata and perform an in-depth privacy
evaluation. Notably, they find that providing strong theoretical DP guarantees results in destroying
the fidelity of the synthetic data, beyond anything feasible for use in real-world scenarios. Each
of these methods touches on the innate challenge of generating DP synthetic time series due to
very high tradeoffs between utility and privacy. Our DP framework uses two different methods
to integrate privacy into our GAN architecture, resulting in a better utility-privacy trade-off than
previous methods.

B Additional Experimental Details

Note on Data Use. As explained in the approach (Section 5), our model uses two separate datasets
for the training of the motif causality block and the rest of the GAN. As such, we used two different
samples of glucose traces with no overlap between patients for the training of each section (meaning
we actually used a total of 2.4 million traces across the entire model). We also note that we have
received the proper ethical and legal consent from the individuals to use their data in this way (and
for this purpose).

Hyperparameters. Our experiments were completed in the Google Cloud platform on an Intel
Skylake 96-core cpu with 360 GB of memory. We use a separate validation dataset (not the set
of original training traces) for all experimental results. Throughout all our experiments we use
GlucoSynth model parameters of ↵ = 0.1 and ⌘ = 10 and a motif tolerance of � = 2 mg/dL and
motif length ⌧ = 48. Motif length of 48 timesteps is equivalent to 4 hours of time and represents a
clinically significant threshold. This threshold was chosen because the effect of any behaviors on
glucose occur within 4 hours of the event (e.g., the effect from eating a meal – a rise in glucose – will
occur within 4 hours after eating.) We note that other choices for ⌧ could be used, based on what
types of phenomenon the users wish to replicate; for example, to capture day/night glucose rhythm
effects, we suggest a ⌧ of 144, corresponding to 12 hours of time.

We vary ✏ in our privacy experiments, but keep � the same at 5e�4. Importantly, in order to meet
our privacy guarantees, we assume that privacy is provisioned at the trace level and each individual
has only one trace in the dataset. The motif set is derived separately from the training data (either
from a public dataset or generated based on knowledge about the underlying data, e.g., the possible
glucose motif combinations), so as not to effect the differential privacy guarantees or use up any
privacy budget. In our case, we assume the motif set is all-encompassing and generated from the
universe of possible motifs, resulting in m = 5, 977, 610 total motifs in the motif set.

Benchmark Details. TimeGAN [4] is implemented from www.github.com/jsyoon0823/
TimeGAN; Fourier Flows (FF) [12] are implemented from www.github.com/ahmedmalaa/
Fourier-flows; RGAN [11] is implemented from www.github.com/ratschlab/RGAN;
and DPGAN [14] is adapted from www.github.com/SAP-samples/security-research-
differentially-private-generative-models. All the benchmarks were trained according to
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their suggested parameters, with most models trained for 10,000 epochs. We note that we trained for
more than the suggested epochs (50,000 instead of 10,000) and tried many additional hyperparameter
settings for RGAN to attempt to improve its performance and provide the fairest comparison possible.

Figure 8: Heatmaps for GlucoSynth Across Different Privacy Budgets

Figure 9: Heatmaps for RGAN Across Different Privacy Budgets

Figure 10: Heatmaps for dpGAN Across Different Privacy Budgets

C Additional Evaluation: Fidelity

C.1 Visualizations

We provide heatmap visualizations of sample real and synthetic glucose traces from all the models.
Although this is not a comprehensive way to evaluate trace quality, it does give a snapshot view about
how the synthetic traces compare to the real ones. Each heatmap contains 100 randomly sampled
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glucose traces. Each row is a single trace from timestep 0 to 288. The values (coloring) in each row
indicate the glucose value (between 40 mg/dL and 400 mg/dL). Figure 5 shows the nonprivate models,
and Figures 8, 9, 10 show the private models with different privacy budgets. Upon examinging the
heatmaps, we notice that GlucoSynth consistently generates realistic looking glucose traces, even at
very small privacy budgets.

C.2 Population Statistics

In order to evaluate fidelity on a population scale, we compute a common set of glucose metrics used
to evaluate patient glycemic control on the real and synthetic data, including average trace variability
(VAR), Time in Range (TIR), the percentage of time glucose is within the clinical guided range of
70-180mg/dL; and time hypo- and hyper- glycemic (time below and above range, respectively) in
Table 4. More details on each of the metrics are included in Table 3. We test if the difference in
metrics between the synthetic and real data is statistically significant, using a p-value of 0.05. A
p-value <0.05 indicates the difference is statistically significant. We want synthetic data that has
similar population statistics to the real data: p-values > 0.05 such that the differences in statistics
between real and synthetic data are not significant. GlucoSynth outperforms all other models, with no
statistically significant difference in all metrics for privacy budgets of ✏ � 100 and only one metric
with a statistically significant difference for budgets ✏ = 1� 10.

Table 3: Glycemic Metric Explanations

Metric Name Explanation
VAR Signal Variance average trace variability
TIR Time in Range % of time glucose � 70 &  180

Hypo Time Hypoglycemic % of time glucose < 70
Hyper Time Hyperglycemic % of time glucose > 180
GVI Glycaemic Variability Index more detailed measure of glucose variability
PGS Patient Glycaemic Status metric combining GVI and TIR

Table 4: Population Data Statistics. Each cell value for the synthetic data shows the (metric, p-value)
using a 0.05 testing threshold. Bolded values do not have a statistically significant difference from
the real data (what we want).

Model ✏ VAR TIR Hypo Hyper GVI PGS
Real Data N/A 2832.76 60.31 1.58 38.11 4.03 349.23

GlucoSynth

0.01 2575.501, 0.0 61.759, 2.0e�5 1.331, 0.0 36.91, 5.66e�4 4.002, 0.085 323.056, 0.0
0.1 2803.513, 0.356 60.088, 0.532 1.264, 0.0 38.648, 0.137 3.969, 2.74e�4 347.562, 0.712
1 2760.853, 0.022 60.597, 0.41 1.512, 0.163 37.892, 0.537 4.019, 0.577 345.159, 0.368
10 2800.805, 0.316 60.24, 0.845 1.538, 0.395 38.222, 0.76 3.963, 6.7e�5 344.376, 0.28
100 2796.424, 0.244 60.138, 0.625 1.567, 0.808 38.295, 0.609 4.044, 0.32 352.679, 0.449
1 2811.622, 0.503 60.165, 0.682 1.54, 0.416 38.295, 0.61 4.056, 0.083 353.584, 0.339

TimeGAN 1 2234.576, 8.08e�3 62.315, 0.42 0.657, 8.233e�3 37.028, 0.669 5.482, 0.0 503.148, 0.2e�5

FF 1 2836.067, 0.902 46.578, 0.0 5.627, 0.0 47.795, 0.0 4.931, 0.0 528.773, 0.0

NVP 1 1789.430, 0.0 65.499, 0.0 1.507, 0.154 32.994, 0.0 6.607, 0.0 589.473, 0.0

RGAN

0.01 56.96, 0.0 78.756, 0.0 0.0, 1.78e�4 21.244, 0.0 2.52, 0.0 93.409, 0.0
0.1 52.553, 0.0 71.617, 3.7e�5 0.0, 1.78e�4 25.715, 0.0 2.208, 0.0 98.944, 0.0
1 67.346, 0.0 78.154, 0.0 0.0, 1.78e�4 21.846, 0.0 2.251, 0.0 85.417, 0.0
10 76.632, 0.0 83.681, 0.0 0.0, 1.78e�4 16.319, 0.0 2.23, 0.0 64.562, 0.0
100 84.918, 0.0 74.285, 0.0 0.0, 1.78e�4 25.715, 0.6e�5 2.208, 0.0 98.944, 0.0
1 89.702, 0.0 78.044, 0.0 0.0, 1.78e�4 21.956, 0.0 2.184, 0.0 82.923, 0.0

dpGAN

0.01 451.098, 0.0 95.275, 0.0 4.60, 0.0 0.124, 0.0 7.718, 0.0 41.549, 0.0
0.1 1057.205, 0.0 86.43, 0.0 0.837, 0.0 12.732, 0.0 6.349, 0.0 148.412, 0.0
1 874.663, 0.0 86.631, 0.0 1.135, 0.0 12.234, 0.0 4.794, 0.0 118.286, 0.0
10 1029.971, 0.0 88.122, 0.0 2.002, 0.0 9.876, 0.0 4.759, 0.0 93.632, 0.0
100 821.636, 0.0 89.354, 0.0 0.664, 0.0 9.982, 0.0 4.613, 0.0 82.561, 0.0
1 1120.553, 0.0 81.773, 0.0 1.359, 0.3e�5 16.868, 0.0 6.248, 0.0 188.991, 0.0
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(a) GlucoSynth (b) TimeGAN

(c) FF (d) NPV

Figure 11: PCA Comparison for Nonprivate Models

C.3 Distributional Comparisons

We visualize differences in distributions between the real and synthetic data by plotting the distribution
of variances and using PCA [27]. Figure 6 and Figure 11 show the variance distribution and PCA
plots, respectively for the nonprivate models. We also compare distributional changes across privacy
budgets: Figures 12 and 13 show GlucoSynth, Figures 14 and 15 show RGAN and Figures 16 and 17
show dpGAN.

Looking at the figures, GlucoSynth better captures the distribution of the real data compared to all of
the nonprivate models. As evidenced in the PCA plot, (Fig. 11), FF comes the closest to capturing
the real distribution in its synthetic data, but ours does a better job of representing the more rare types
of traces. GlucoSynth also outperforms all of the private models across all privacy budgets. Even at
small budgets (✏ < 1), the general shape of the overall distribution is conserved (e.g., see Figure 12).

D Additional Evaluation: Breadth

Compared to all other models across all privacy budgets, our model has the best ratio of found
validation motifs, with close to 1.0 for VM and the lowest MSEs. It also has the best coverage for
nonprivate settings and an ✏ of 100. Interestingly, dpGAN has the best coverage compared to all other
models for privacy budgets ✏  10 but worse MSEs across all budgets than GlucoSynth. This means
that although it finds a broader number of motifs contained in the real data, the overall distributions
of motifs it creates in the synthetic data have much higher error rates. We argue that the tradeoff
found by our model is better because although it does miss some of the types of motifs from the real
data (misses some breadth), from the ones it does find it constructs realistic distributions of the motifs
and generates very few anomalous ones.

18



Figure 12: GlucoSynth Distributional Variance Comparison Across Privacy Budgets

Figure 13: GlucoSynth PCA Comparison Across Privacy Budgets
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Figure 14: RGAN distributional Variance Comparison Across Privacy Budgets

Figure 15: RGAN PCA Comparison Across Privacy Budgets
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Figure 16: dpGAN distributional Variance Comparison Across Privacy Budgets

Figure 17: dpGAN PCA Comparison Across Privacy Budgets
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(a) GlucoSynth (b) TimeGAN (c) FF

(d) NPV (e) RGAN (f) dpGAN

Figure 18: Clarke Error Zone Figures for All Models

E Additional Evaluation: Utility

Since RMSE may provide a limited view about the predictions from the glucose forecasting model,
we also plot the Clarke Error Grid [29], which visualizes the differences between a predictive
measurement and a reference measurement, and is the basis used for evaluation of the safety of
diabetes-related medical devices (for example, used for evaluating glucose outputs from predictive
models integrated into artificial insulin delivery systems). The Clarke Error Grid is implemented
using www.github.com/suetAndTie/ClarkeErrorGrid. The grids are shown in Figure 18.

In the figures, the x-axis is the reference value and the y-axis is the prediction. A diagonal line means
the predicted value is exactly the same as the reference value (the best case). There are 5 total zones
that make up the grid, listed in order from best to worst:

• Zone A – Clinically Accurate: Predictions differ from actual values by no more than 20%
and lead to clinically correct treatment decisions.

• Zone B – Clinically Acceptable: Predictions differ from actual values by more than 20% but
would not lead to any treatment decisions.

• Zone C – Overcorrections: Acceptable glucose levels would be corrected (overcorrection).
• Zone D – Failure to Detect: Predictions lie within the acceptable range but the actual values

are outside the acceptable range, resulting in a failure to detect and treat errors in glucose.
• Zone E – Erroneous Treatment: Predictions are opposite the actual values, resulting in

erroneous treatment, opposite of what is clinically recommended.

We show Clarke Error grids for all models (and the private models with no privacy included, ✏ = 1).
This is because comparing the models at different privacy budgets is not very informative – it can be
hard to tell exactly where changes between different budgets may occur. We also present a table with
the percentages of predicted datapoints in each category in Table 5. This table includes a comparison
among different privacy budgets for the private models (much more effective than the figures by
themselves.)
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Table 5: Clarke Error Grid Zones. Value is the percentage of predicted datapoints. Categories go
from A to E, best to worst. Bolded rows indicate the best results on the synthetic data at each privacy
budget (nonprivate models compared with private models when ✏ = 1)

Model ✏ A: Accurate B: Acceptable C: Overcorrection D: Failure to Detect E: Error

GlucoSynth

0.01 0.858± 1.057e�3 0.131± 1.172e�3 3.271e�3± 0.0 0.017± 1.158e�4 5.79e�6± 1.2e�6
0.1 0.863± 6.947e�3 0.126± 7.526e�4 3.054e�3± 1.45e�5 0.018± 4.34e�5 5.79e�6± 0.0
1 0.862± 1.578e�3 0.128± 1.259e�3 3.343e�3± 1.45e�5 0.016± 3.329e�4 5.79e�6± 0.0
10 0.864± 6.947e�3 0.125± 6.513e�4 3.039e�3± 5.79e�5 0.017± 4.34e�5 8.68e�6± 2.89e�5
100 0.864± 1.74e�3 0.126± 1.447e�3 3.387e�3± 0.0 0.017± 2.895e�4 5.79e�6± 0.0
1 0.964± 1.201e�3 0.035± 1.158e�3 3.039e�4± 2.89e�5 1.732e�4± 1.158e�4 8.68e�6± 1.45e�5

TimeGAN 1 0.741± 0.012 0.233± 0.012 2.240e�3± 9.8e�5 0.024± 8.44e�4 2.19e�4± 1.9e�5

FF 1 0.824± 6.624e�3 0.156± 6.148e�3 3.547e�3± 9.0e�5 0.017± 3.940e�4 3.57e�4± 8.0e�6

NVP 1 0.79± 3.03e�4 0.186± 3.87e�4 3.49e�3± 1.5e�5 0.02± 1.04e�4 3.58e�4± 5.0e�6

RGAN

0.01 0.54± 0.014 0.435± 0.014 3.389e�4± 1.197e�4 0.024± 2.71e�4 2.429e�4± 3.43e�5
0.1 0.594± 1.998e�3 0.38± 1.74e�3 1.326e�3± 1.429e�4 0.025± 1.069e�4 2.873e�4± 8.68e�6
1 0.637± 6.785e�3 0.336± 6.128e�3 2.661e�3± 1.87e�5 0.024± 6.464e�4 2.792e�4± 2.95e�5
10 0.634± 3.452e�3 0.338± 3.247e�3 2.253e�3± 1.004e�4 0.025± 2.894e�4 3.027e�4± 1.71e�5
100 0.638± 4.709e�3 0.335± 4.219e�3 1.991e�3± 2.17e�5 0.025± 4.884e�4 2.949e�4± 2.26e�5
1 0.646± 6.89e�4 0.326± 7.19e�4 2.613e�3± 2.852e�4 0.024± 3.006e�4 2.859e�4± 1.5e�5

dpGAN

0.01 0.308± 3.482e�3 0.509± 3.71e�3 2.894e�7± 0.0 0.183± 2.33e�4 1.114e�5± 4.196e�6
0.1 0.781± 6.35e�4 0.191± 5.37e�4 3.226e�3± 5.715e�5 0.024± 3.8e�5 2.533e�4± 1.881e�6
1 0.786± 5.44e�4 0.187± 5.81e�4 2.409e�3± 2.894e�7 0.024± 3.6e�5 2.078e�4± 5.787e�7
10 0.806± 7.34e�4 0.169± 6.09e�4 2.386e�3± 1.476e�5 0.023± 1.113e�4 2.146e�4± 2.749e�6
100 0.813± 3.18e�4 0.161± 2.86e�4 2.266e�3± 2.083e�5 0.023± 5.4e�5 1.889e�4± 1.013e�6
1 0.819± 1.487e�3 0.16± 1.306e�3 3.193e�3± 2.677e�5 0.018± 1.60e�4 3.166e�4± 5.208e�6

Looking at the grids, we can see that GlucoSynth performs the best, with most of the values along
the diagonal axis (Zone A and B) and less around the other zones (Zones C-E) as compared to the
other models. This means that most of the predicted glucose values from the model trained on our
synthetic data are in the Clinically Accurate and Acceptable ranges, with less in the erroneous zones.
Moreover, by examining the table we see that GlucoSynth outperforms all other models across all
privacy budgets as well.
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