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Predictive monitoring—making predictions about future states and monitoring if the predicted states satisfy
requirements—offers a promising paradigm in supporting the decision making of Cyber-Physical Systems
(CPS). Existing works of predictive monitoring mostly focus on monitoring individual predictions rather
than sequential predictions. We develop a novel approach for monitoring sequential predictions generated
from Bayesian Recurrent Neural Networks (RNNs) that can capture the inherent uncertainty in CPS, drawing
on insights from our study of real-world CPS datasets. We propose a new logic named Signal Temporal Logic

with Uncertainty (STL-U) to monitor a flowpipe containing an infinite set of uncertain sequences predicted
by Bayesian RNNs. We define STL-U strong and weak satisfaction semantics based on whether all or some
sequences contained in a flowpipe satisfy the requirement. We also develop methods to compute the range
of confidence levels under which a flowpipe is guaranteed to strongly (weakly) satisfy an STL-U formula.
Furthermore, we develop novel criteria that leverage STL-U monitoring results to calibrate the uncertainty
estimation in Bayesian RNNs. Finally, we evaluate the proposed approach via experiments with real-world
CPS datasets and a simulated smart city case study, which show very encouraging results of STL-U based
predictive monitoring approach outperforming baselines.
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1 INTRODUCTION

Predictive monitoring concerns the problem of (continuously) making predictions about future
states and monitoring if the predicted states satisfy or violate requirements. Predictive monitor-
ing offers a promising paradigm in supporting the decision making of Cyber-Physical Systems
(CPS), for example, reducing an automated insulin delivery system’s dosage if a potentially dan-
gerous hypoglycemic condition is predicted, and adapting a traffic control system’s signaling if
traffic congestion due to car accidents or inclement weather is forecast. On the one hand, various
machine learning and statistical analysis techniques (e.g., neural networks, ARIMA) have been
popularly applied to predict future states of CPS across different application domains, such as pre-
dicting glucose levels for artificial pancreas systems [32], predicting takeover reaction time for
automated vehicles [34], forecasting air quality [25], fire risk [39], and frost damage [43] in smart
cities. On the other hand, there have been great efforts over the past decades devoted to develop
runtime monitoring techniques and tools. For example, a survey of specification (e.g., Signal Tem-
poral Logic (STL) [31]) based runtime monitoring of CPS is provided in [3]. Nevertheless, research
on predictive monitoring that addresses challenges arisen from combining these two aspects has
received scant attention until very recently. Existing works of predictive monitoring (e.g., [1, 6])
mostly focus on monitoring individual predictions rather than sequential predictions. A more re-
cent work [35] considers STL-based monitoring for predictions made from statistical time-series
analysis, assuming that a joint probability distribution of predictions over multiple time-points
can be estimated.

In this paper, we develop a novel approach for monitoring sequential predictions generated
from Bayesian Recurrent Neural Networks (RNN) models. RNN-based sequential prediction has
been widely used in CPS applications (e.g., [16, 26]). Many commonly used RNN models (e.g.,
LSTM) are deterministic, which generate the same sequence of predictions given the same set of
historical states. A key challenge is how to generate and monitor predictions that can capture
the inherent uncertainty in CPS (e.g., due to sensing noise, human interactions). We study two
real-world CPS datasets to analyze the uncertainty characteristics and implications on predictive
monitoring. Insights from our study show that (i) deterministic RNN models are not suitable for
representing the significant uncertainty exhibited in CPS, and (ii) there is a need for developing
new monitors for checking sequential predictions with high uncertainty.

To address the first insight, we apply stochastic regularization techniques (SRTs) [12] to cast
deterministic RNNs as Bayesian RNNs, which adapt deterministic sequential predictions as a se-
quence of posterior probability distributions to estimate the uncertainty. We formally define a
flowpipe signal to represent uncertain sequential predictions generated by Bayesian RNNs. The
projection of a flowpipe for a single time-point is a confidence interval induced from a Gaussian
distribution, which includes values of all possible sequences predicted by the Bayesian RNN. A
larger confidence interval indicates a higher level of uncertainty about the prediction.

To address the second insight, we propose a new logic named Signal Temporal Logic with Un-

certainty (STL-U). Existing temporal logic based monitors (e.g., STL and its variants) mostly focus
on deterministic signals and cannot be directly applied for monitoring an infinite set of sequences
contained in a flowpipe. Several recent works (e.g., [18, 23, 24, 38]) extend STL with stochastic pred-
icates to reason about uncertainty. Our approach differs from these previous works fundamentally.
Instead of reasoning about the probability of satisfying a predicate, STL-U checks a flowpipe signal
containing an infinite set of sequences. For example, consider a STL-U formula�[0,2]AQIε=95% < 50,
which represents the requirement “the predicted Air Quality Index under 95% confidence level
should never exceed 50 in the next two hours”. We develop a STL-U monitor that checks if all
(resp. some) sequences contained in the predicated flowpipe satisfy the requirement, which we call
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STL-U strong (resp. weak) satisfaction. In addition, we equip the STL-U monitor with the capability
to answer queries such as “Under what confidence level, the predicated flowpipe is guaranteed to
strongly (weakly) satisfy the STL-U formula?” It is particularly useful to compute such confidence
guarantees when users do not know a priori about the level of prediction uncertainty.

Furthermore, the quality of predictive monitoring results depends on the uncertainty estimated
from Bayesian RNNs, which varies based on the choice of uncertainty estimation schemas (e.g.,
SRTs and dropout rates). In the current practice, an uncertainty estimation schema is often selected
empirically or guided by traditional deep learning metrics (e.g., mean square error, negative log-
likelihood, KL divergence), which tend to over-estimate the uncertainty level [13, 42]. In addition,
these metrics treat the uncertainty estimation of each individual value in a predicted sequence
separately, and thus lack an integrated view about the uncertainty of the sequence. To address
this limitation, we develop novel criteria that leverage STL-U monitoring results to select and
tune uncertainty estimation schemas. Such STL-U criteria can help to calibrate the uncertainty
estimates for predictive monitoring.

We compare STL-U criteria with state-of-the-art baselines via experimental evaluation on real-
world CPS datasets. The results are very promising: STL-U criteria outperform all six baselines in
terms of F1-scores comparing STL-U monitoring results for the predicted and target sequences. In
addition, experiments also show that STL-U uncertainty calibration is compatible with different
types of RNN models.

Finally, we evaluate the STL-U based predictive monitoring approach via a simulated smart city
case study with 10 smart services and 390 requirements. Experiment results demonstrate the effi-
ciency of the approach. In one case, it only takes around 281 seconds to monitor 130,000 predicted
flowpipes. Moreover, our approach can better support decision making in the simulated smart
city. The simulation results show that our approach improves various city performance metrics
(e.g., emergency waiting time, vehicle waiting number) significantly when compared with two
baselines.
Contributions. We summarize the major contributions of this paper as follows.

• We develop a novel STL-U based predictive monitoring approach for CPS, which continu-
ously monitors uncertain sequential predictions about future states generated by Bayesian
RNN models.
• We create novel STL-U criteria for calibrating uncertainty estimation in Bayesian deep learn-

ing.
• We evaluate the proposed approach via real-world smart city datasets and a simulated smart

city case study, which show encouraging results.

Paper Organization. In the rest of the paper, we describe the motivating study of CPS uncertainty
in Section 2, provide an overview of STL-U based predictive monitoring approach in Section 3,
propose STL-U logic and monitoring algorithms in Section 4, present STL-U criteria for uncertainty
calibration in Section 5, describe the evaluation results in Section 6, discuss the related work in
Section 7, and draw conclusions in Section 8.

2 MOTIVATING STUDY

In this section, we study the following real-world smart city datasets as motivating examples to
analyze uncertainty characteristics and to discuss implications on predictive monitoring for CPS.

(1) Air quality dataset [25] collected by Microsoft Research from 437 air quality monitoring
stations in China during the period of 5/1/2014 to 4/30/2015, which includes 2,891,393 records
of air quality index (AQI).

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 5s, Article 101. Publication date: September 2021.



101:4 M. Ma et al.

Fig. 1. The uncertainty level varies across different stations in the air quality dataset.

Fig. 2. The uncertainty level varies for different pre-knowledge (prefix lengths) in the traffic volume dataset.

(2) Traffic volume dataset [33] collected by the NYC Department of Transportation from 1,490
street segments in the New York City during the period of 9/13/2014 to 4/5/2018, which
includes 514,776 records of traffic volume count.

Uncertainty characteristics. We made the following observations by analyzing these datasets.

• Significant uncertainty exists in smart cities and the uncertainty level varies across different lo-

cations. As an illustrative example, Figure 1 shows 10-hour data segments taken from three
different stations in the air quality dataset. We preprocessed the raw data by averaging the
data within an hour and performing a uniform quantization [20]. Figure 1 plots data seg-
ments with the same prefixes (i.e., the same average AQI levels) for the first five hours. How-
ever, these data segments show significant uncertainty in the suffixes. The light shadows
in the figure cover the entire data range, and the dark shadows represent the range of 95%
percentile1 of the corresponding normal distribution at a time. A larger range of 95% per-
centile indicates a higher level of data uncertainty. Thus, Figure 1 shows that station 1 has
the highest uncertainty level, followed by station 2 and station 3.
• The data uncertainty level is affected by the pre-knowledge (i.e., the prefix length of data seg-

ments). As an illustrative example, Figure 2 plots 10-hour data segments taken from the same
location in the traffic volume dataset. We preprocessed the data by averaging the traffic vol-
ume counts within an hour and performing a logarithmic quantization [20]. Figure 2 shows
that, as the length of common data segment prefixes increases (i.e., more pre-knowledge
about the data), the uncertainty level reduces.

The uncertainty in CPS data could arise from many sources, such as noise from the sensing data
(e.g., reading errors, faults, anomalies), the environment (e.g., unexpected weather or events like
accidents), and human behaviors (e.g., interventions from human operators), to name a few. Thus,
predictive monitoring for CPS should account for the impact of uncertainty.

1We utilize 95% percentile because it is commonly used to represent the majority of the population distributed [37].
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Table 1. Number of Satisfying Data Segments for Each STL Formula

STL formulas λ = 50 λ = 51 λ = 70 λ = 75 λ = 80
�[0,10]AQI < λ 2,807 2,895 3,614 4,011 4,443
♦[0,10]AQI < λ 6,670 6,731 7,304 7,408 7,493
AQI < 150U[0,10] AQI < λ 5,558 5,613 6,030 6,169 6,230
�[0,10]Traffic < λ 1,241 1,359 3,090 3,332 3,532
♦[0,10]Traffic < λ 4,220 4,283 4,546 4,563 4,598

Implications on predictive monitoring. We discuss how the uncertainty in CPS would affect
predictive monitoring from two aspects: (i) prediction, and (ii) monitoring.

First, existing deterministic prediction models (e.g., RNNs) mostly forecast future states based
on historical states. Given the same historical data, a deterministic model always yields the same
prediction about future states. However, as discussed above, real-world CPS data exhibits signifi-
cant uncertainty. For example, Figure 1 illustrates that data segments with the same average AQI
levels for the first five hours can lead to a diverse range of trends for the following five hours. Thus,
deterministic prediction models are not suitable to capture the uncertainty in CPS data. There is
a need for developing new techniques that can predict future states with appropriate levels of
uncertainty.

Second, existing works (e.g., [29]) have applied Signal Temporal Logic (STL) to specify and mon-
itor city requirements. For example, a requirement that “the AQI level within 10 hours should al-
ways be below certain threshold λ” can be specified with a STL formula �[0,10](AQI < λ), where
� is the temporal logical operator representing “always” and λ is a parameter (e.g., λ = 50 for
good air quality). Table 1 shows five example STL formulas, with the first three representing city
requirements about AQI and the last two representing city requirements about traffic volume. We
applied a STL monitor to check how many 10-hour data segments of a selected location in the air
quality and traffic volume datasets satisfy these STL formulas with varying parameter values of λ.
We observe from Table 1 that the STL monitoring results can be very sensitive to the change of λ
values. For example, the number of satisfying data segments for ♦[0,10](AQI < λ) increases by 61
(from 6,670 to 6,731) when the λ value only increases by 1 (from 50 to 51), and goes up 85 (from
7,408 to 7,493) when the λ value increases from 75 to 80. Even though the differences also vary by
the type of requirements, the amount is still too large to ignore. From the perspective of the data, it
shows that a small difference of the data could completely change the monitoring results. However,
it is impossible to predict the data with 100% accuracy due to the existence of uncertainty in CPS,
which makes the monitoring results less effective to support decision making. It also indicates that
the existing monitors are not suitable for data with high uncertainty. Therefore, there is a need for
developing new monitors that can check the prediction results accounting for the uncertainty.

3 APPROACH OVERVIEW

We develop a novel predictive monitoring approach for CPS, as illustrated in Figure 3, to address
limitations discussed in the previous section. Our approach adopts Bayesian RNN models to pre-
dict future states (e.g., AQI in next 2 hours) based on historical data (e.g., AQI in the past 5 hours).
By contrast to deterministic prediction models that output a single sequence of predicted values,
Bayesian RNN models generate a sequence of distributions to capture the uncertainty of predicted
future states, which are represented by a range of potential values under a given confidence level
at each time-point. We propose a new logic named Signal Temporal Logic with Uncertainty (STL-
U) and develop a STL-U monitor to check such uncertain sequential predictions generated by
Bayesian RNN models. STL-U is expressive enough to specify CPS requirements with uncertainty
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Fig. 3. Overview of STL-U based predictive monitoring approach.

confidence levels. For example, a STL-U formula �[0,2]AQIε=95% < 50 represents the requirement
“the predicted AQI under 95% confidence level should never exceed 50 in the next two hours”. The
STL-U monitor checks if all or some possible sequences of future states predicted by the Bayesian
RNN model satisfy the requirement, which we call strong and weak satisfaction relations. When
the confidence level is unspecified in a formula (e.g., �[0,2]AQIε=? < 50), we can also use STL-U
monitor to compute the range of confidence levels under which the predicted flowpipe is guar-
anteed to strongly or weakly satisfy a requirement. In addition, we develop novel criteria (loss
functions) based on STL-U monitoring results to calibrate the uncertainty estimation in Bayesian
deep learning.

At training time (the flow marked by orange dash-lines in Figure 3), the proposed approach au-
tomatically selects and tunes an optimal uncertainty estimation schema based on STL-U criteria.
As we will discuss in Section 5, such uncertainty calibration is an essential step to guarantee the
quality of predictive monitoring, in order to better support decision making of CPS. At runtime

(the flow marked by the blue lines in Figure 3), the proposed approach runs as a continuous itera-
tive process to monitor the predicted future states. Considering the predictive monitoring of AQI
in a smart city, for example, at time t , the proposed approach first predicts the AQI for the future 3
hours from time t and monitors if the predictions satisfy the requirements; after a period Δt (e.g.,
30 minutes), it predicts the AQI for the future 3 hours from t + Δt and checks if the new predic-
tions satisfy the requirements. In this way, the proposed approach provides continuous predictive
monitoring of future states to support decision making of CPS.

4 STL-U MONITOR

As described in the previous section, our approach adopts Bayesian RNN models to make sequen-
tial predictions about uncertain future states. We propose a Signal Temporal Logic with Uncertainty

(STL-U) to monitor such uncertain sequential predictions. We introduce STL-U syntax and seman-
tics in Section 4.1, and present methods to compute STL-U confidence guarantees in Section 4.2.

4.1 STL-U Syntax and Semantics

We formally define a new type of signals called flowpipes2 to represent uncertain sequential predic-
tions generated by Bayesian RNN models. We describe more details about Bayesian RNN models
and uncertainty estimation later in Section 5.

Definition 1 (Flowpipe). A single-variable flowpipe Ω is defined over a finite discrete time
domain T such that Ω[t] = Φt at any time t ∈ T and Φt is a Gaussian distribution N(θt ,σ

2
t ).

Let ω : {Ω}n be a (multi-variable) flowpipe signal, where n = |X | is the size of a finite set of

2To be noted, here we use the concept of flowpipes but define it in a new way.
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(independent) real variables X . Each variable x ∈ X has a corresponding flowpipe ωx whose value
at time t follows a Gaussian distribution Φt , denoted by ωx[t] = Φt .

Given a confidence level ε ∈ (0, 1) ⊆ R, a single-variable flowpipe Ω at time t is bounded by
a confidence interval [Φ−t (ε),Φ+t (ε)] with the lower bound Φ−t (ε) = θt − δ · σt√

N
and the upper

bound Φ+t (ε) = θt + δ · σt√
N

, where N is the number of samples that the Gaussian distribution is

estimated from, and δ is a function δ = F−1( ε2 ) with F denoting the CDF of the standard normal
distribution N(0, 1) [37]. In the special case where the Gaussian distribution’s variance is σt = 0,
a flowpipe signal becomes a single trace because the lower and upper bounds of the confidence
interval coincide (i.e., Φ−t (ε) = Φ+t (ε) = θt ). Given a (multi-variable) trace ω̄ and a flowpipe ω
over the same set of real variables X , we say that ω̄ belongs to ω, denoted by ω̄ ∈ ω, if ω̄x[t] ∈
[Φ−t (ε),Φ+t (ε)] for all x ∈ X and t ∈ T, where [Φ−t (ε),Φ+t (ε)] is the confidence interval of flowpipe
ωx under confidence level ε .

Definition 2 (STL-U Syntax). A STL-U formula φ over a flowpipe signal ω is given by

φ := μx(ε) | ¬φ | φ1 ∧ φ2 | �Iφ | ♦Iφ | φ1 UI φ2

where μx(ε) is an atomic predicate over variable x with confidence level ε , whose value is deter-
mined by μx(ε) ≡ f (x) > 0 with a continuous function f (x) about flowpipe ωx under confidence
level ε . Temporal operators �I , ♦I andUI with a time interval I ⊆ T represent (bounded) “always”,
“eventually”, and “until”, respectively.

We define the semantics of a flowpipe signal ω satisfying a STL-U formula φ at time t by two
indices: strong satisfaction, denoted by (ω, t) |=s φ; and weak satisfaction, denoted by (ω, t) |=w φ.

Definition 3. STL-U strong satisfaction semantics.

(ω, t) |=s μx(ε) ⇔ ∀x ∈ [Φ−t (ε),Φ+t (ε)], f (x) > 0

(ω, t) |=s ¬φ ⇔ (ω, t) 	|=w φ

(ω, t) |=s φ1 ∧ φ2 ⇔ (ω, t) |=s φ1 and (ω, t) |=s φ2

(ω, t) |=s �Iφ ⇔ ∀t ′ ∈ (t + I ), (ω, t ′) |=s φ

(ω, t) |=s ♦Iφ ⇔ ∃t ′ ∈ (t + I ), (ω, t ′) |=s φ

(ω, t) |=s φ1UIφ2 ⇔ ∃t ′ ∈ (t + I ) ∩ T, (ω, t ′) |=s φ2 and ∀t ′′ ∈ (t , t ′), (ω, t ′′) |=s φ1

Definition 4. STL-U weak satisfaction semantics.

(ω, t) |=w μx(ε) ⇔ ∃x ∈ [Φ−t (ε),Φ+t (ε)], f (x) > 0

(ω, t) |=w ¬φ ⇔ (ω, t) 	|=s φ

(ω, t) |=w φ1 ∧ φ2 ⇔ (ω, t) |=w φ1 and (ω, t) |=w φ2

(ω, t) |=w �Iφ ⇔ ∀t ′ ∈ (t + I ), (ω, t ′) |=w φ

(ω, t) |=w ♦Iφ ⇔ ∃t ′ ∈ (t + I ), (ω, t ′) |=w φ

(ω, t) |=w φ1UIφ2 ⇔ ∃t ′ ∈ (t + I ) ∩ T, (ω, t ′) |=w φ2 and ∀t ′′ ∈ (t , t ′), (ω, t ′′) |=w φ1

To be noted, the negation of strong satisfaction is equivalent to weak violation, and the negation
of weak satisfaction is equivalent to strong violation. Intuitively, strong satisfaction means that
all values bounded within the confidence interval of a flowpipe should satisfy the STL-U formula,
while weak satisfaction means that there exist some value within the confidence interval of a
flowpipe satisfying the STL-U formula. In CPS applications, strong satisfaction relations can be
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Fig. 4. An example flowpipe under the confidence level ε . Fig. 5. An example function f (x).

used for monitoring strict requirements (e.g., safety), while weak satisfaction relations can be used
for monitoring soft constraints (e.g., energy consumption).

Figure 4 shows an example flowpipe signal under the confidence level ε , representing predictions
from time t to t + c . At a time-point t1, the flowpipe follows a Gaussian distribution Φt1 with the
mean of θt1 and is bounded by a confidence interval [Φ−t1

(ε),Φ+t1
(ε)]. This flowpipe signal strongly

satisfies STL-U formula �(0,a)(xε < λ) at time t , because the flowpipe signal values bounded within
the confidence interval from time t to t + a are all below the threshold λ (see the left green zone
in Figure 4). Consider another STL-U formula �(b,c)(xε < λ). As shown in Figure 4 (yellow zone in
the right), the flowpipe’s confidence interval is entirely above the threshold λ at time t2, partially
below λ at time t3, and entirely below λ at time t4. Therefore, the flowpipe neither strongly nor
weakly satisfies the STL-U formula �(b,c)(xε < λ) at time t .

Theorem 1 (Strength Relation Theorem). If a flowpipe ω strongly satisfies a STL-U formula

φ at time t , then the weak satisfaction relation also holds. On the other hand, if the flowpipe ω does

not weakly satisfy a STL-U formula φ at time t , then it would also not strongly satisfy φ. Formally,

(ω, t) |=s φ ⇒ (ω, t) |=w φ
(ω, t) 	|=w φ ⇒ (ω, t) 	|=s φ

We include the proof of Theorem 1 and properties of STL-U semantics in the Appendix.
It is challenging to monitor STL-U strong and weak satisfactions for a flowpipe that contains an

infinite set of sequences. Take the atomic predicate μx(ε) as an example. Based on Definition 3, a
flowpipe strongly satisfies μx(ε) iff f (x) > 0 for all x ∈ [Φ−t (ε),Φ+t (ε)]. It is computationally expen-
sive if not infeasible to exhaustively search through the entire confidence interval. In addition, it
does not suffice to only check the lower and upper bounds of the confidence interval when f (x) is
a non-monotonic function. Figure 5 shows an example where f (Φ−t (ε)) > 0 and f (Φ+t (ε)) > 0, but
there is a x0 ∈ [Φ−t (ε),Φ+t (ε)] with f (x0) < 0. We tackle this challenge by computing the minimal
value fmin of f (x) for x ∈ [Φ−t (ε),Φ+t (ε)] (e.g., via minimization algorithms in [8]). If fmin > 0,
which implies that f (x) > 0 for all x ∈ [Φ−t (ε),Φ+t (ε)], then the flowpipe strongly satisfies μx(ε).
Based on Definition 4, a flowpipe weakly satisfies μx(ε) iff there exist some x ∈ [Φ−t (ε),Φ+t (ε)] such
that f (x) > 0. For monitoring weak satisfaction, we compute the maximal value fmax of f (x) for
any x ∈ [Φ−t (ε),Φ+t (ε)] and check if fmax > 0. We include pseudo code of monitoring algorithms
for STL-U strong and weak satisfactions as Algorithm 1 and Algorithm 2 in the Appendix. Fol-
lowing Definition 1, we use an array of triplets 〈t ,θt ,σt 〉, t ∈ T to represent a flowpipe in STL-U
monitoring algorithms. Given θ , σ , and ε , calculating Φ+t (ε) and Φ−t (ε) takes a constant time O(1),
which could be further accelerated by caching the intermediate results. The time complexity of cal-
culating the predicate f (x) > 0 depends on the complexity of f (x) and the selected minimization
algorithms. The time complexity of STL-U monitoring algorithms is similar to STL monitoring
algorithms. Thus, STL-U can be used to monitor complex specifications (e.g., with multiple levels
of nesting temporal operators) via using Algorithm 1 or Algorithm 2 recursively.
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4.2 STL-U Confidence Guarantees

It may not always be possible for users to specify a confidence level for a flowpipe a priori. It is
therefore useful to query about, under what confidence level, a flowpipe is guaranteed to strongly
(weakly) satisfy a STL-U formula. We present methods to compute such confidence guarantees as
follows.

Let ϵs (φ,ω, t) and ϵw (φ,ω, t) denote the range of confidence levels that guarantee a flowpipe
signal ω strongly and weakly satisfying a STL-U formula φ at time t , respectively. Let ϵc

s (resp. ϵc
w )

denotes the complement set of ϵs (resp. ϵw ) within the interval (0, 1).

Definition 5. Confidence guarantees for STL-U strong satisfaction.

ϵs (μx,ω, t) =

(
0,

∫ θt+η

θt−η

Φt (x)dx
)
,where η = inf{|x − θt | | f (x) ≤ 0}

ϵs (¬φ,ω, t) = ϵc
w (φ,ω, t)

ϵs (φ1 ∧ φ2,ω, t) = ϵs (φ1,ω, t) ∩ ϵs (φ2,ω, t)

ϵs (�Iφ,ω, t) =
⋂

t ′ ∈(t+I )
ϵs (φ,ω, t ′)

ϵs (♦Iφ,ω, t) =
⋃

t ′ ∈(t+I )
ϵs (φ,ω, t ′)

ϵs (φ1UIφ2,ω, t) =
⋃

t ′ ∈(t+I )

⎧⎪⎪⎨⎪⎪⎩ϵs (φ2,ω, t
′) ∩ ��

⋂
t ′′ ∈(t,t ′)

ϵs (φ1,ω, t
′′)���
⎫⎪⎪⎬⎪⎪⎭

Definition 6. Confidence guarantees for STL-U weak satisfaction.

ϵw (μx,ω, t) =

(∫ θt+η

θt−η

Φt (x)dx , 1
)
, where η = inf{|x − θt | | f (x) > 0}

ϵw (¬φ,ω, t) = ϵc
s (φ,ω, t)

ϵw (φ1 ∧ φ2,ω, t) = ϵw (φ1,ω, t) ∩ ϵw (φ2,ω, t)

ϵw (�Iφ,ω, t) =
⋂

t ′ ∈(t+I )
ϵw (φ,ω, t ′)

ϵw (♦Iφ,ω, t) =
⋃

t ′ ∈(t+I )
ϵw (φ,ω, t ′)

ϵw (φ1UIφ2,ω, t) =
⋃

t ′ ∈(t+I )

⎧⎪⎪⎨⎪⎪⎩ϵw (φ2,ω, t
′) ∩ ��

⋂
t ′′ ∈(t,t ′)

ϵw (φ1,ω, t
′′)���
⎫⎪⎪⎬⎪⎪⎭

Theorem 2. Given a flowpipe signal ω and a STL-U formula φ, ω is guaranteed to strongly satisfy

φ at time t under a confidence level ε ∈ ϵs (φ,ω, t) computed based on Definition 5.

Theorem 3. Given a flowpipe signal ω and a STL-U formula φ, ω is guaranteed to weakly satisfy

φ at time t under a confidence level ε ∈ ϵw (φ,ω, t) computed based on Definition 6.

We include proofs of the above theorems in the Appendix.
In the following, we explain the intuition behind our methods. Figure 6(a) plots the normal

density curve of a Gaussian distribution Φt with the mean θt . A confidence level ε represents
the probability that the corresponding confidence interval [Φ−t (ε),Φ+t (ε)] contains a target value,
calculated as the percentage of the area of the normal density curve. When ε approaches 0, the
confidence interval shrinks to a single point θt ; and when ε approaches 1, the confidence interval
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Fig. 6. Computing confidence guarantees for STL-U formulas x < λ1 and x < λ2.

Fig. 7. Computing confidence guarantees for STL-U formula �[1,3](xε > 8) ∧ ♦[1,3](xε < 10).

expands to (−∞,∞). In general, the larger the value of ε , the wider the confidence interval range.
For example, Figure 6(a) shows confidence intervals for two confidence levels ε1, ε2 and ε1 < ε2.

To compute the range of confidence levels that guarantee the strong satisfaction of a STL-U
formula φ, we first determine the smallest distance η between the mean θt and the set of x values
that violateφ. Any x value within the interval (θt −η,θt +η) should satisfyφ. Thus, we compute the

integral
∫ θt+η

θt−η
Φt (x)dx as the upper bound of confidence level guarantee for strong satisfaction,

denoted by ϵ+s . Under any confidence level ε ∈ (0, ϵ+s ), the flowpipe is guaranteed to strongly satisfy
the STL-U formula φ. In the special case when the mean value θt violates φ, we have η = 0 and
ϵ+s = 0; thus, there does not exist a feasible value of ε , under which the flowpipe strongly satisfies
φ. Consider a STL-U formula φ1 : x < λ1. As shown in Figure 6(a), the flowpipe under ε1 strongly
satisfies φ1 because ε1 ∈ (0, ϵ+s ), while the flowpipe under ε2 does not strongly satisfy φ1 because
ε2 > ϵ+s .

To compute the range of confidence levels that guarantee the weak satisfaction of a STL-U
formula φ, we find the smallest distance η between the mean θt and the set of x values that satisfy

φ. We compute the integral
∫ θt+η

θt−η
Φt (x)dx as the lower bound of confidence level guarantee for

weak satisfaction, denoted by ϵ−w . Under any confidence level ε ∈ (ϵ−w , 1), the flowpipe is guaranteed
to weakly satisfy the STL-U formulaφ. When there does not exist any x value satisfyingφ, we have
η = ∞ and ϵ−w = 1; thus, there does not exist a feasible value of ε , under which the flowpipe weakly
satisfies φ. Figure 6(b) shows the same Gaussian distribution Φt as in Figure 6(a). For the STL-U
formula φ2 : x < λ2, the flowpipe under ε2 weakly satisfy φ2 because ε2 ∈ (ϵ−w , 1); however, the
flowpipe under ε1 does not weakly satisfy φ2, because ε1 < ϵ−w .

We include pseudo code of algorithms for computing confidence guarantees for STL-U strong
and weak satisfaction as Algorithm 3 and Algorithm 4 in the Appendix. Here we use an example to
describe the procedure of recursively computing confidence guarantees via parsing the syntax tree
of a STL-U formula. Figure 7(a) shows an example flowpipe with values of mean θ and variance σ
in each time step t . Consider a STL-U formula �[1,3](xε > 8)∧♦[1,3](xε < 10). Figure 7(b) illustrates
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how to iterate through the formula’s syntax tree and compute confidence guarantees for strong
satisfaction. First, at the left bottom of the tree, we compute the range of confidence levels that
can guarantee the strong satisfaction of xε > 8, and obtain the results of (0, 0.20), (0, 0.49), (0, 0.68)
for t ∈ [1, 3]. Then, we move up the tree to compute the confidence guarantee for �[1,3](xε > 8)
by taking the intersection of these three ranges, which yields (0, 0.20). Meanwhile, from the right
branch of the tree, we obtain the range of confidence levels that guarantee the strong satisfaction
of xε < 10, and taking a union of these ranges for ♦[1,3](xε < 10), which yields (0, 0.55). At the
top of the syntax tree, we take the intersection of (0, 0.20) and (0, 0.55) for ∧ operation, which
yields (0, 0.20) as the final result of confidence guarantees for strongly satisfy the STL-U formula.
Figure 7(c) shows a similar process of recursively computing confidence guarantees for weak sat-
isfaction of the same STL-U formula.

5 PREDICTION WITH LOGIC-CALIBRATED UNCERTAINTY

Recall from Section 2 that deterministic prediction models are not suitable to capture the uncer-
tainty exhibited in CPS. To address this limitation, we adopt Bayesian RNN models in the proposed
predictive monitoring approach. We describe how to build Bayesian RNN models for prediction
and motivate the need for uncertainty calibration in Section 5.1. Then, we define STL-U based
criteria for uncertainty calibration in Section 5.2.

5.1 Uncertainty Estimation with Bayesian RNN Models

Stochastic regularization techniques (SRTs) have been popularly used to cast deterministic deep
learning models as Bayesian models for uncertainty estimation [11]. Given a well-trained deter-
ministic RNN model with learnable parameters W , we can obtain a Bayesian RNN model with
parametersW ′ via SRTs that transformW toW ′ by applying a n ×n mask, where n is the number
of neurons in each layer. Elements of the mask w are sampled from some probability distribution.
The connection from neuron j to neuron i would be dropped if wi j = 0, the connection remains
the same if wi j = 1, and a weight β ∈ (0, 1) would be applied to the connection if wi j = β . In this
work, we consider four commonly used SRTs as illustrated in Figure 8. Let p denote the dropout
rate.

• Bernoulli dropout: Each row of the mask is sampled from a Bernoulli distribution, denoted
by wi,∗ ∼ B(p).
• Bernoulli dropConnect: Each element of the mask is sampled independently as wi, j ∼ B(p).
• Gaussian dropout: Each row of the mask is sampled from a Gaussian distribution, denoted

by wi,∗ ∼ N(1, (1 − p)/p).
• Gaussian dropConnect: Each element of the mask is sampled independently, denoted by
wi, j ∼ N(1, (1 − p)/p).

Figure 9 shows how to use the obtained Bayesian RNN model to predict future states based on
historical states. We apply the Monte Carlo method to repeat the Bayesian RNN prediction for N
times, which yield a set of sequential predictions. Thus, we can estimate a Gaussian distribution
Φt ∼ N(θt ,σ

2
t ) for each time step t , where the mean θt and variance σt are computed based on

the Monte Carlo samples {x (1)t , · · · ,x
(N )
t }.

Different uncertainty estimation schemas (i.e., SRTs and dropout rates) can yield different un-
certainty estimates for the same model trained with the same data. How to select the best uncer-
tainty estimation schema for an application still remains an open question. Currently, a common
practice is to pick a schema empirically, without systematically evaluating how different choices
would impact the quality of uncertainty estimates. Furthermore, deep learning methods that seek
to optimize the prediction accuracy may overestimate the uncertainty. For example, consider two
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Fig. 8. Four commonly used SRTs.

Fig. 9. Bayesian RNN-based sequential prediction with uncertainty estimation.

Fig. 10. Comparison of different uncertainty estimation schemas.

distributions predicted with uncertainty estimation schemas M1(p1) and M2(p2), as shown in
Figure 10(a) and (b). M2(p2) is a better schema based on the metric of prediction accuracy, be-
cause the target value (red dot) falls within the confidence interval [Φ−t (ε),Φ+t (ε)] in Figure 10(b)
but not in Figure 10(a). However,M2(p2) yields a higher level of uncertainty, as indicated by the
larger confidence interval range.

In this work, we develop novel criteria that leverage STL-U monitoring results to select un-
certainty estimation schemas. Here is an example to explain the intuition behind our approach.
Consider two distributions predicted with uncertainty estimation schemasM2(p2) andM3(p3), as
shown in Figure 10(b) and (c). Both distributions fulfill the accuracy metric, because their confi-
dence intervals contain the target value (red dot). Suppose that the requirement is to check if a
flowpipe strongly satisfies a STL-U formula xε < 5. As shown in Figure 10(c), the distribution pre-
dicted with schemaM3(p3) strongly satisfies xε < 5, because all values in the confidence interval
[Φ−t (ε),Φ+t (ε)] are smaller than 5. By contrast, the resulting distribution of schemaM2(p2) does not
strongly satisfy xε < 5, because some values in the confidence interval are greater than 5. Thus,
based on STL-U monitoring results, we would selectM3(p3) rather thanM2(p2) as the uncertainty
estimation schema, which also yields a tighter bound of estimated uncertainty. In the following,
we formally define STL-U based criteria for selecting uncertainty estimation schemas.

5.2 STL-U Criteria for Uncertainty Calibration

As shown in Figure 11, given a predicted flowpipe ω and a target trace ω̄, we can calculate the loss
based on monitoring results of ω and ω̄ with respect to a STL-U formula φ. We propose two uncer-
tainty calibration criteria as loss functions based on STL-U satisfaction relations and confidence
guarantees, denoted by Lsat and Lcf , respectively.
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Fig. 11. STL-U criteria for uncertainty calibration computed as loss functions.

Criterion based on STL-U satisfaction. We defineLsat based on the linear combination of three
functions:hs (ω, ω̄,φ) andhw (ω, ω̄,φ) for evaluating if the predicted flowpipeω and the target trace
ω̄ are consistent in terms of strong and weak satisfaction (or violation) of the STL-U formula φ,
and hb (ω, ω̄) for evaluating the prediction accuracy by checking if the target trace ω̄ belongs to
the predicted flowpipe ω. Formally, we define

hs (ω, ω̄,φ) = 1
(
(ω |=s φ ∧ ω̄ |= φ) ∨ (ω 	 |=s φ ∧ ω̄ 	 |= φ)

)
hw (ω, ω̄,φ) = 1

(
(ω |=w φ ∧ ω̄ |= φ) ∨ (ω 	 |=w φ ∧ ω̄ 	 |= φ)

)
hb (ω, ω̄) = 1(ω̄ ∈ ω)

where 1(ϕ) is an indicator function such that 1(ϕ) = 1 if ϕ = True, and 1(ϕ) = 0 otherwise. The
loss function is then given by

Lsat(ω, ω̄,φ) = 1 − (β1 · hs (ω, ω̄,φ) + β2 · hw (ω, ω̄,φ) + (1 − β1 − β2) · hb (ω, ω̄))

where β1, β2 ∈ (0, 1) are real-valued coefficients representing the relative importance of
strong/weak satisfaction and prediction accuracy in different domains. The goal is to minimize
the loss Lsat, for which we need to maximize the linear combination of hs (ω, ω̄,φ), hw (ω, ω̄,φ),
and hb (ω, ω̄). Intuitively, the higher quality of the prediction in terms of the consistency of STL-U
monitoring results and the accuracy compared with the target trace, the lower the loss.
Criterion based on STL-U confidence guarantees. Recall from Section 4 that, in addition to
checking strong/weak satisfaction relations, the STL-U monitor can also compute a range of confi-
dence levels under which the predicted flowpipe is guaranteed to strongly/weakly satisfy a STL-U
formula. Based on STL-U confidence guarantees, we define the following loss function:

Lcf(ω, ω̄,φ) = 1 − (β1 · дs (ω, ω̄,φ) + β2 · дw (ω, ω̄,φ) + (1 − β1 − β2) · дb (ω, ω̄))
where β1, β2 ∈ (0, 1) are real-valued coefficients similar to those used for Lsat, and дs (ω, ω̄,φ),
дw (ω, ω̄,φ) and дb (ω, ω̄) are functions defined as follows.

дs (ω, ω̄,φ) =
{
ϵ+s ω̄ |= φ

1 − ϵ+s ω̄ 	 |= φ

дw (ω, ω̄,φ) =
{

1 − ϵ−w ω̄ |= φ

ϵ−w ω̄ 	 |= φ

дb (ω, ω̄) = inf
{
ε | ω̄x [t] ∈ [Φ−t (ε),Φ+t (ε)] for all x ∈ X , t ∈ T

}
where ϵ+s is the upper bound of confidence guarantee for strong satisfaction computed based on
Definition 5, ϵ−w is the lower bound of confidence guarantee for weak satisfaction computed based
on Definition 6, and дb (ω, ω̄) computes the smallest confidence level under which the predicted
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flowpipe is guaranteed to contain the target trace. The goal is to minimize the loss Lcf , for which
we need to maximize the linear combination ofдs (ω, ω̄,φ),дw (ω, ω̄,φ), andдb (ω, ω̄). Intuitively, the
lower the loss, the higher quality of predictions in terms of confidence guarantees for strong/weak
satisfaction and prediction accuracy.
Uncertainty calibration using STL-U criteria. In order to select the best uncertainty estimation
schema, we start with a set of candidate schemasM1(p),M2(p), ...,Mn(p). For each schema with
SRTMi , we tune the dropout rate parameter p using loss functions Lsat or Lcf . Given a dataset
with multiple target traces, we average the losses over all traces to obtain the optimal dropout
rate p∗. We compare the losses of candidate schemas equipped with their corresponding optimal
dropout rates, and select the best schema M∗(p∗) that yields the lowest loss. Such a process of
selecting and turning uncertainty estimation schemas based on STL-U criteria is illustrated as part
of Figure 3.

We evaluate and compare the performance of different STL-U criteria in Section 6. Generally
speaking, users can choose to use Lsat or Lcf depending on their needs and problem domains. For
example, we would recommend applications with strict safety requirements (e.g., a fire risk pre-
diction and control service) to adopt Lsat for checking strong satisfaction relations. By contrast,
Lcf is more flexible and does not require a pre-defined confidence level, which is suitable for appli-
cations that do not have a specific confidence level yet try to optimize the uncertainty estimation
(e.g., a newly deployed energy control service).

6 EVALUATION

We conducted experiments to evaluate the proposed approach. In Section 6.1, we compare STL-U
criteria for uncertainty calibration with state-of-the-art baselines using real-world CPS datasets. In
Section 6.2, we demonstrate the performance of our approach on real-time predictive monitoring
in a simulated smart city case study. The experiments were run on a machine with 2.2GHz CPU,
32GB memory, and Nvidia GeForce RTX 2080Ti GPU.

6.1 Evaluating STL-U Criteria for Uncertainty Calibration

We use two real-world city datasets (i.e., air quality and traffic volume datasets) described in Sec-
tion 2. We split each dataset into 80% data for RNN training, 10% data for STL-U based uncertainty
estimation (i.e., tuning Bayesian RNN), and 10% data for testing. We trained the model for 30
epochs.
Comparing different STL-U criteria. Figure 12 plots the loss obtained using different STL-U
criteria when varying uncertainty estimation schemas (i.e., SRT and dropout rate p) for the air
quality dataset. We trained an LSTM as the underlying RNN model. Figure 12(a) shows the results
of using STL-U criterion Lsat for φ1 = �I (xε < λ), where the schema of Bernoulli DropConnect
with p = 0.8 yields the lowest loss. Figure 12(b) shows the results of using STL-U criterion Lcf

for φ1, where the schema of Gaussian Dropout with p = 0.9 yields the lowest loss. Figure 12(c)
shows the results of using STL-U criterion Lcf for φ2 = ♦I (xε < λ), where the schema of Bernoulli
Dropout with p = 0.9 yields the lowest loss. Thus, the optimal uncertainty estimation schema
varies based on different STL-U criteria. The experiments demonstrate that the proposed approach
is feasible for the automated selection of optimal schemas based on system requirements and user
demands (i.e., whether the user is interested in checking requirement satisfaction or computing
confidence guarantees).
Comparing STL-U criteria with baselines. Table 2 shows the results of applying uncertainty
estimation with STL-U criteria (bottom two rows) and state-of-the-art baselines (top six rows) to
the testing data of air quality and traffic volume datasets. We trained an LSTM as the underlying
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Fig. 12. Selecting uncertainty estimation schemas using different STL-U criteria.

Table 2. Results of Comparing STL-U Criteria with Six Baselines

Air Quality Traffic Volume
Criteria SRT p HeterLoss Accuracy F1-Sat SRT p HeterLoss Accuracy F1-Sat

- B-Dropout 0.81 183.9 0.67 0.34 B-Dropout 0.50 0.63 0.79 0.17
- B-DropConnect 0.53 121.0 0.69 0.22 B-DropConnect 0.74 0.23 0.38 0.51
- G-Dropout 0.45 152.8 0.76 0.10 G-Dropout 0.50 0.66 0.79 0.17
- G-DropConnect 0.58 129.4 0.78 0.12 G-DropConnect 0.54 0.25 0.56 0.44

Lacc B-DropConnect 0.53 121.0 0.69 0.22 B-DropConnect 0.74 0.23 0.38 0.51
Lht G-Dropout 0.50 119.2 0.81 0.65 G-Dropout 0.50 0.66 0.79 0.17
Lsat G-DropConnect 0.81 154.1 0.80 0.81 B-DropConnect 0.58 0.24 0.51 0.67
Lcf B-DropConnect 0.73 165.4 0.79 0.76 B-Dropout 0.90 0.3 0.78 0.68

RNN model for each dataset. We consider six baselines for comparison. The top four rows of the
table are results of using four SRTs with optimal dropout rates p tuned based on the prediction
accuracy (i.e., the percentage of target traces covered in the predicted flowpipes). The next two
rows are results based on optimizing the uncertainty estimation schema using two commonly
used criteria: Lacc is the loss function concerning the F1-score of prediction accuracy (i.e., if the
target trace is covered by the predicted flowpipe), and Lht is the loss function approximating
the Heteroscedastic aleatoric uncertainty [21]. For the hyperparameters in loss functions, we use
β1 = 0.2, β2 = 0.2 for Lsat , and β1 = 0.3, β2 = 0.3 for Lcf .

We compare their performance in terms of three metrics shown in columns of the table:

• Heteroscedastic loss: HeterLoss = 1
MT

∑M
i=1
∑T

t=1(
| |y (i )t −θ

(i )
t | |2

2(σ (i )t )
2 + 1

2 log 2σ (i)t ), where M repre-

sents the total number of instances in the testing data and T represents the length of the
predicted sequence;

• Prediction accuracy (RMSE): Accuracy = 1
MT

∑M
i=1
∑T

t=1
| |y (i )t −θ

(i )
t | |2

2(σ (i )t )
2 .

• F1-score comparing the STL-U requirement satisfaction for the predicted and target se-
quences: F1-Sat = T P

T P+ 1
2 (F P+F N ) , where TP , FP , FN represents number of true positives,

number of false positives, and number of false negatives, respectively.

The results show that both STL-U criteria yield significant higher F1-scores of requirement
satisfaction than all six baselines, which having comparable performance with baselines in terms
of Heteroscedastic loss and accuracy. Low F1-scores of requirement satisfaction indicate that
flowpipes predicted using baselines can be barely used for monitoring city requirements due
to the low quality of estimated uncertainty (i.e., the predicted flowpipes may contain too much
noise to obtain meaningful results about requirement violations). Thus, using STL-U criteria to
calibrate the uncertainty estimation is an essential step for the predictive monitoring.
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Fig. 13. Results of comparing different RNN models.

Comparing different RNN models. Figure 13 compares the F1-score of requirement satisfaction
of applying different uncertainty calibration criteria on three types of RNN models: (1) Vanilla RNN,
(2) LSTM, and (3) Spatial LSTM [22]. The results show that STL-U criteriaLsat andLcf significantly
outperform baseline criteria Lacc and Lht across all three RNN models for both datasets. In addi-
tion, both STL-U criteria yield comparable performance across different RNN models. Using Lsat

with an LSTM model and a Spatial LSTM model result in the highest F1-score for the air quality
dataset and the traffic volume dataset, respectively. The experiments demonstrate that our pro-
posed approach of uncertainty estimation and calibration is compatible with different underlying
RNN models.

6.2 Real-time Predictive Monitoring for a Simulated Smart City

We set up a closed-loop simulated smart city based on the Simulation of Urban MObility (SUMO)
platform [5] using real-world data of New York City [33]. We implemented ten smart services in the
simulated smart city, including S1: Traffic Service, S2: Emergency Service, S3: Accident Service, S4:
Infrastructure Service, S5: Pedestrian Service, S6: Air Pollution Control Service, S7: PM2.5/PM10
Service, S8: Parking Service, S9: Noise Control Service, and S10: Event Service. We built a proto-
type implementation of the STL-U based predictive monitoring and applied it for the predictive
monitoring of 390 requirements concerning different city performance metrics (e.g., AQI, traffic
volume, noise) in various locations of the simulated smart city. When a smart service requests an
action, we predict future city states under the influence of the requested action and monitor if city
requirements would be violated. Based on the real-time predictive monitoring results generated by
our approach, the control center can decide if the requested action should be accepted or rejected
to prevent any potential requirement violation. For the details of the decision making process, we
follow the methods in CityResolver [29], which is a decision making system for conflict detection
and resolution in smart cities. As an intuitive example, when a smart navigation service requests
an action to direct vehicles to a school area to release traffic congestion, the predictive monitoring
approach first predicts the future sequences of noise levels and air pollution levels, and verifies
them with STL-U specified city requirements on noise and air pollution in the school areas. If the
predicted sequences satisfy the requirements, the requested action will be approved; however, if
they violate the requirements, the control center will generate a resolution similar to CityResolver.
In our experiment, we run the simulated New York city with STL-U predictive monitoring for 30
simulation days and obtain the results regarding the metrics in Table 3. Experimental results show
that our approach is efficient in handling a large number of flowpipes and requirements. We did
not include the execution time of experiments, because the implementation of our prototype tool
is not optimized yet. However, it only takes about 281 seconds to check the satisfaction of 130,000
flowpipes that predict AQI in eight future time units.

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 5s, Article 101. Publication date: September 2021.



Predictive Monitoring with Logic-Calibrated Uncertainty for CPS 101:17

Table 3. Results of Comparing the Impact of STL-U based Predictive

Monitoring with Two Baselines

City Performance Metrics No Monitor LSTM + STL Monitor STL-U Predictive Monitor

Number of Violation - 267 189

Air Quality Index 68 57 43

Noise (db) 73 49 48

Emergency Waiting Time (s) 20 14 10

Vehicle Waiting Number 22 18 15

Pedestrian Waiting Time (s) 190 148 121

Vehicle Waiting Time (s) 112 90 80

Table 3 compares STL-U based predictive monitoring’s impact on city performance with two
baselines: (1) running the simulated city without predictive monitoring, and (2) running the simu-
lated city with a basic predictive monitoring component implemented with a deterministic LSTM
predictor and a STL monitor. The results are based on 30-day data in the simulated city. First,
we observe that our predictive monitor detects fewer requirement violations for the predicted fu-
ture city states than the baseline method (2). This is because our approach uses a Bayesian LSTM
predictor with calibrated uncertainty, which can generate more accurate predictions about future
city states than the deterministic predictor, and thus reducing the number of spurious violations.
Furthermore, the results show that our approach has the potential to improve various city per-
formance metrics. For example, compared with the two baselines, our approach reduces the air
quality index by 36.8% and 24.6%, and reduces the emergency vehicle waiting time by 50% and
28.6% in the simulated city.

7 RELATED WORK

Predictive monitoring for CPS. The research area of predictive monitoring has been drawing
increasing attention in recent years. For example, (Bayesian) Neural Predictive Monitoring [6, 7]
checks predictions about neural state classification and uses a principled criteria to reject predic-
tions that are likely to be incorrect; a predictive monitor for rare failures is developed in [1] using
Discrete-Time Markov Chains trained with samples of rare events; STLnet [28] incorporates pre-
dictive monitoring into the learning process and enhance RNN-based sequential prediction models
to follow STL specified model properties in both training and testing processes. Prevent [2] and
other runtime verification techniques with state estimation [4, 19, 40] use Hidden Markov Models
or Dynamic Bayesian Networks to learn and predict the probability of a hidden state satisfying
a safety property. A more recent approach [41] uses instead linear hybrid models of the system
under monitoring to bound the uncertainty in the gaps between consecutive samples.

These existing works mostly focus on monitoring individual predictions rather than sequen-
tial predictions. A more recent work [35] applies statistical time-series analysis techniques (e.g.,
ARIMA) to forecast future signal values and computes the satisfaction probability of a STL formula
over the prediction horizon; however, the applicability of this approach is limited by the assump-
tion that a joint probability distribution of predictions over multiple time-points can be estimated.
By contrast, our approach considers uncertain sequential predictions generated by Bayesian RNN
models, which are generally applicable to many CPS domains.
Temporal logic based runtime monitoring. Over the past decades, tremendous progress
has been made in developing techniques and tools of runtime monitoring (also called runtime
verification) based on rigorous specifications expressed in various temporal logics (e.g., LTL,
STL). For example, a survey on STL-based runtime monitoring for CPS is provided in [3], which
includes applications such as automotive systems and medical devices; a STL-based framework
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is developed in [29] for detecting requirement violations in smart cities; SaSTL [27] extends STL
for runtime monitoring of spatial-temporal properties in CPS; and another spatial-temporal logic
named SpaTeL is applied to monitor the power grid in [15]. However, most of the literature
focuses on monitoring deterministic multi-variable signals, which is a limiting factor when we
need to monitor predictive models and to reason about uncertainty.

There are some attempts to handle uncertainty by incorporating random variables in predi-
cates. For example, C2TL [18] checks the probability of a deterministic signal satisfying a linear
constraint whose coefficients are random variables; PrSTL [38] uses atomic predicates that are pa-
rameterized with a time-varying random variable over a deterministic signal; StSTL [24] checks
the probability of a real-valued measurable function over stochastic signals; and StTL [23] extends
StSTL to reason about the robustness of requirement satisfaction. Our approach differs from these
previous works in several aspects. First, the proposed STL-U monitor checks a flowpipe signal that
contains an infinite set of uncertain sequences rather than a single sequence. Moreover, instead of
computing a single probability value of satisfying a predicate, STL-U reasons about the uncertainty
captured by confidence intervals of the flowpipe signal, which is a more suitable representation of
uncertainty estimated from Bayesian deep learning.

The problem of monitoring an infinite set of sequences has been studied before in [36] for the
reachability analysis of continuous and hybrid system models. This work proposes a Reachset
Temporal Logic (RTL), which extends STL and is defined on the reach sequence (i.e., a function
mapping time to the set of states reachable from a set of initial states and uncertain inputs). The
notion of reachability in RTL (i.e., checking if all the values within the reach sequence satisfies
a formula) can be encoded as STL-U strong satisfaction with our approach. In RTL, the formulas
are in positive normal form: the negation operator can appear only in basic propositions while it
remains undefined for generic formulas that may include also temporal operators. Furthermore,
the RTL-based model checking algorithm is limited to a specific fragment of RTL where the only
possible temporal operator that can be used is the next operator. Similar to RTL [36], the parame-
ter synthesis approach presented in [9] introduces a new semantics for the positive normal form
fragment of STL that is defined on sets of traces rather than on a single trace.

In our approach, we introduce the notion of strong/weak semantics to handle the negation
operator with more generic formulas: we define the evaluation of strong satisfaction for a formula
¬φ (for both atomic predicates and temporal formulas) as equivalent to the violation of the weak
satisfaction for the formula φ and vice-versa. Our work takes inspiration from the paper of Eisner
et al. [10] where the authors propose a weak/strong semantics to reason with linear temporal logic
(LTL) on truncated paths: the weak semantics provides an optimistic view of the satisfaction of an
LTL formula on a truncated path, while the strong semantics provides a pessimistic view. In our
approach instead, the weak/strong semantics is used to change the existential/universal quantifier
when we interpret a proposition over a confidence interval.
Uncertainty estimation in deep learning. While most deep learning models do not offer the
uncertainty of their predictions [11], works that capture the uncertainty (or confidence) of the
prediction can be dated to the early development of neural networks in the 90s’. Bayesian Neural
Network [30] represents a probabilistic model that infers a distribution as output. It is known to be
robust and resilient to overfitting. However, the hardness of inference prevents the prevalence of
the model in practice. Following these directions, several works [14, 17] use variational inference
to perform an approximated inference on Bayesian Neural Networks. Aside from variational
inference, Monte Carlo Dropout is another approach to obtain uncertainty estimation of the
model [12, 44]. By exploiting the dropout structure in the deep neural network, these approaches
turn the original Neural Network model into a simple Bayesian Neural Network without
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changing the structure and apply approximated inference with the Monte Carlo approach. Exist-
ing works [21, 42, 44] mostly focus uncertain estimation on single-time classification or regression
tasks. This paper focuses on the case of time series prediction. Moreover, in contrast to previous
measures of uncertainty that are rather empirical, our work proposes a formal framework to model
and define requirements to the output distribution. Our work can thus be used to provide a confi-
dence guarantee of the model prediction and to evaluate the quality of the uncertainty estimation.

8 CONCLUSION

We developed a novel predictive monitoring approach for CPS, which consists of a logic-calibrated
Bayesian RNN prediction model that continuously generates sequential predictions of future states,
and a novel STL-U monitor that checks if the generated predictions satisfy CPS requirements. Ad-
ditionally, we proposed novel criteria based on STL-U monitoring results to calibrate uncertainty
estimation in Bayesian deep learning for the predictive monitor. The experimental results show
that STL-U criteria leads to improved uncertainty estimation in various Bayesian deep learning
models, and STL-U based predictive monitor significantly improves performance metrics in a sim-
ulated smart city study.

The proposed STL-U monitor is generally applicable for monitoring an infinite set of sequences
beyond those generated by Bayesian deep learning. For example, STL-U monitor can also check
trajectories of continuous and hybrid systems (e.g., those considered in [36]). In addition, the pro-
posed STL-U criteria for uncertainty calibration can be used in a broad spectrum of deep learning
applications. As demonstrated in Section 6, STL-U criteria can be used for the automated selec-
tion of optimal uncertainty estimation schemas and are compatible with different types of RNN
models. Applying STL-U criteria for uncertainty calibration does not require knowledge about the
inner working of deep learning models and stochastic regularization techniques. Thus, they are
amendable for different deep learning applications.

There are several directions to explore for the future work. First, we will extend STL-U logic
with quantitative semantics (e.g., robustness of requirement satisfaction). Second, we will explore
the theoretical implications of STL-U criteria on uncertainty calibration for Bayesian deep learning.
Third, we will investigate the scalability and efficiency of proposed STL-U monitoring algorithms
for more complex specifications (e.g., those with multiple layers of nesting temporal operators).
Last but not least, we will apply it to a wide range of real-world CPS applications such as au-
tonomous driving, smart health, and smart homes.

APPENDIX

Proof of Theorem 1. We just need to prove (ω, t) |=s φ ⇒ (ω, t) |=w φ by structural induction
below. By contraposition, we have ((ω, t) 	|=w φ ⇒ (ω, t) 	|=s φ) ⇔ ((ω, t) |=s φ ⇒ (ω, t) |=w φ).
• Base case μx: by Definition 3, (ω, t) |=s φ ⇔ ∀x ∈ [Φ−t (ε),Φ+t (ε)], f (x) > 0, it indicates that
∃x ∈ [Φ−t (ε),Φ+t (ε)], f (x) > 0⇔ (ω, t) |=w φ.
• Inductive case ¬φ: from inductive hypothesis (ω, t) |=s φ ⇒ (ω, t) |=w φ (and consequently
((ω, t) 	|=w φ ⇒ (ω, t) 	|=s φ), we need to prove that (ω, t) |=s ¬φ ⇒ (ω, t) |=w ¬φ.
We have (ω, t) |=s ¬φ ⇔ (ω, t) 	|=w φ ⇒ (ω, t) 	|=s φ ⇔ (ω, t) |=w ¬φ.
• Inductive case φ1 ∧φ2: from inductive hypothesis (ω, t) |=s φ1 ⇒ (ω, t) |=w φ1 and (ω, t) |=s

φ2 ⇒ (ω, t) |=w φ2, we need to prove that (ω, t) |=s φ1 ∧ φ2 ⇒ (ω, t) |=w φ1 ∧ φ2.
By Definition 3 and Definition 4, we have (ω, t) |=s φ1 ∧φ2 ⇔ (ω, t) |=s φ1 ∧ (ω, t) |=s φ2 ⇒
(ω, t) |=w φ1 ∧ (ω, t) |=w φ2 ⇔ (ω, t) |=w φ1 ∧ φ2.
• Inductive case �Iφ: from inductive hypothesis (ω, t) |=s φ ⇒ (ω, t) |=w φ, we need to prove

that (ω, t) |=s �Iφ ⇒ (ω, t) |=w �Iφ.
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By Definition 3 and Definition 4, we have (ω, t) |=s �Iφ ⇔ ∀t ′ ∈ (t + I ), (ω, t ′) |=s φ, which
indicates that ∀t ′ ∈ (t + I ), (ω, t ′) |=w φ ⇔ (ω, t) |=w �Iφ.
• Inductive case ♦Iφ: from inductive hypothesis (ω, t) |=s φ ⇒ (ω, t) |=w φ, we need to prove

that (ω, t) |=s ♦Iφ ⇒ (ω, t) |=w ♦Iφ.
By Definition 3 and Definition 4, we have (ω, t) |=s ♦Iφ ⇔ ∃t ′ ∈ (t + I ), (ω, t ′) |=s φ, which
indicates that ∃t ′ ∈ (t + I ), (ω, t ′) |=w φ ⇔ (ω, t) |=w ♦Iφ.
• Inductive caseφ1UIφ2: from inductive hypothesis (ω, t) |=s φ1 ⇒ (ω, t) |=w φ1 and (ω, t) |=s

φ2 ⇒ (ω, t) |=w φ2, we prove that (ω, t) |=s φ1UIφ2 ⇒ (ω, t) |=w φ1UIφ2.
By Definition 3 and Definition 4, we have (ω, t) |=s φ1UIφ2 ⇔ ∃t ′ ∈ (t + I ) ∩ T, (ω, t ′) |=s

φ2 and ∀t ′′ ∈ (t , t ′), (ω, t ′′) |=s φ1, which indicates that ∃t ′ ∈ (t + I ) ∩ T, (ω, t ′) |=w

φ2 and ∀t ′′ ∈ (t , t ′), (ω, t ′′) |=w φ1, it is equivalent to (ω, t) |=w φ1UIφ2. �

Additional properties and examples. By applying the rules of the weak/strong semantics for nega-
tion we have that the following properties hold:

(ω, t) |=s ¬¬φ ⇔ (ω, t) |=s φ (ω, t) |=w ¬¬φ ⇔ (ω, t) |=w φ

By applying the De Morgan’s laws we have the following:

(ω, t) 	|=w ¬φ1 ∧ (ω, t) 	|=w ¬φ2 ⇔ ¬((ω, t) |=w (¬φ1 ∨ ¬φ2)) ⇔ (ω, t) 	|=w ¬(φ1 ∧ φ2)
(ω, t) 	|=s ¬φ1 ∧ (ω, t) 	|=s ¬φ2 ⇔ ¬((ω, t) |=s (¬φ1 ∨ ¬φ2)) ⇔ (ω, t) 	|=s ¬(φ1 ∧ φ2)

Furthermore, to clarify the duality of the two semantics, we can interpret the weak semantics using
the interval intersection and the strong semantics using the interval inclusion. For example, let us

define as basic propositions: μf
x s.t. f (x) = x and μ

д
x s.t. д(x) = −x . Then we have:

(ω, t) |=w μ
f
x (ϵ) ⇔ ∃x ∈ [Φ−t (ε),Φ+t (ε)],x > 0 ⇔ [Φ−t (ε),Φ+t (ε)] ∩ (0,+∞) � ∅

(ω, t) |=w μ
д
x (ϵ) ⇔ ∃x ∈ [Φ−t (ε),Φ+t (ε)],x < 0 ⇔ [Φ−t (ε),Φ+t (ε)] ∩ (−∞, 0) � ∅

(ω, t) |=s μ
f
x (ϵ) ⇔ ∀x ∈ [Φ−t (ε),Φ+t (ε)],x > 0 ⇔ [Φ−t (ε),Φ+t (ε)] ⊂ (0,+∞)

(ω, t) |=s μ
д
x (ϵ) ⇔ ∀x ∈ [Φ−t (ε),Φ+t (ε)],x < 0 ⇔ [Φ−t (ε),Φ+t (ε)] ⊂ (+∞, 0)

(ω, t) |=w ¬μf
x (ϵ) ⇔ ∃x ∈ [Φ−t (ε),Φ+t (ε)],x ≤ 0︸����������������������������︷︷����������������������������︸

[Φ−t (ε ),Φ+t (ε )]∩(−∞,0]�∅

⇔ ¬(∀x ∈ [Φ−t (ε),Φ+t (ε)],x > 0)︸���������������������������������︷︷���������������������������������︸
[Φ−t (ε ),Φ+t (ε )]�(0,+∞)

⇔ (ω, t) 	|=s μ
f
x (ϵ)

Following the definition of negation for the weak semantics we have that:

(ω, t) |=w (μf
x (ϵ) ∧ μ

д
x (ϵ)) ⇔ (ω, t) 	|=s ¬(μf

x (ϵ) ∧ μ
д
x (ϵ))

We can show the equivalence consistency using the interval intersection/inclusion interpretation:

(ω, t) |=w (μf
x (ϵ) ∧ μ

д
x (ϵ)) ⇔ (ω, t) |=w μ

f
x (ϵ) ∧ (ω, t) |=w μ

д
x (ϵ)

(ω, t) |=w μ
f
x (ϵ)︸�������������︷︷�������������︸

[Φ−t (ε ),Φ+t (ε )]∩(0,+∞)�∅

∧ (ω, t) |=w μ
д
x (ϵ)︸�������������︷︷�������������︸

[Φ−t (ε ),Φ+t (ε )]∩(−∞,0)�∅

⇔ (ω, t) 	|=s ¬μf
x (ϵ)︸���������������︷︷���������������︸

[Φ−t (ε ),Φ+t (ε )]�(−∞,0]

∧ (ω, t) 	|=s ¬μд
x (ϵ)︸���������������︷︷���������������︸

[Φ−t (ε ),Φ+t (ε )]�[0,+∞)

By applying the De Morgan’s laws shown before:

(ω, t) 	|=s ¬μf
x (ϵ) ∧ (ω, t) 	|=s ¬μд

x (ϵ) ⇔ (ω, t) 	|=s ¬(μf
x (ϵ) ∧ μ

д
x (ϵ))

Proof of Theorem 2 and Theorem 3. Mathematically, we want to show that for any ω and
t , we have ∀ε ∈ ϵs (φ,ω, t), (ω, t) |=s φ under confidence level ε , and for any ω and t , we have
∀ε ∈ ϵw (φ,ω, t), (ω, t) |=w φ under confidence level ε . We prove the Theorem 2 and Theorem 3
inductively. Since in the definition of the strong definition and weak definitions refer to each other,
we prove them together. We study whether Theorem 2 satisfies in every possible case in definition.

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 5s, Article 101. Publication date: September 2021.



Predictive Monitoring with Logic-Calibrated Uncertainty for CPS 101:21

Then, we finish our proof by the axiom of induction. We omit the cases of � and ♦ since they can
be derived from the case ofUI .

• When φ = μx, we show ∀ω,∀t ,∀ε ∈ ϵs (φ,ω, t), (ω, t) |=s φ.

By Definition 5, ϵs (φ,ω, t) = (0,
∫ θt+η

θt−η
φt (x)dx),where η = inf{|x − θt | | f (x) ≤ 0}. By the

definition of confidence interval, we have for ε ∈ ϵs (φ,ω, t), Φ+t (ε) ≤ θt +η and Φ−t (ε) ≥ θt −η,
which indicates [Φ−t (ε),Φ+t (ε)] ⊆ [θt − η,θt + η]. As η = inf{|x − θt | | f (x) ≤ 0}, we have
∀x ∈ [Φ−t (ε),Φ+t (ε)], f (x) > 0. Therefore, (ω, t) |=s φ.
• When φ = μx, we show ∀ω,∀t ,∀ε ∈ ϵw (φ,ω, t), (ω, t) |=w φ.

By Definition 6, ϵw (μx,ω, t) = (
∫ θt+η

θt−η
φt (x)dx , 1), where η = inf{|x − θt | | f (x) > 0}. By the

definition of confidence interval, we have for ε ∈ ϵs (φ,ω, t), Φ+t (ε) ≥ θt +η and Φ−t (ε) ≤ θt −η,
which indicates (θt − η,θt + η) ⊆ [Φ−t (ε),Φ+t (ε)]. Since η = inf{|x − θt | | f (x) > 0}, we have
∃x ∈ [Φ−t (ε),Φ+t (ε)], f (x) > 0. Therefore, (ω, t) |=w φ.
• When φ = ¬φ1, we show ∀ω,∀t ,∀ε ∈ ϵw (φ1,ω, t), (ω, t) |=w φ1 ⇒ ∀ω,∀t ,∀ε ∈ ϵs (φ,ω, t),
(ω, t) |=s φ.
By Definition 5, we have ϵs (¬φ,ω, t) = ϵc

w (φ1,ω, t). Therefore, ∀ε ∈ ϵs (¬φ,ω, t), we have
ε ∈ ϵc

w (φ1,ω, t). Then, by the definition of confidence interval we have (ω, t) 	|=w φ1 under ε .
By the Definition 3, (ω, t) |=s φ.
• When φ = ¬φ1, we show ∀ω,∀t ,∀ε ∈ ϵs (φ1,ω, t), (ω, t) |=s φ1 ⇒ ∀ω,∀t ,∀ε ∈ ϵw (φ,ω, t),
(ω, t) |=s φ.
By Definition 6, we have ϵw (¬φ,ω, t) = ϵc

s (φ1,ω, t). Therefore, ∀ε ∈ ϵw (¬φ,ω, t), we have
ε ∈ ϵc

s (φ1,ω, t). Then, by the definition of confidence interval we have (ω, t) 	|=s φ1 under ε .
By the definition 4, (ω, t) |=w φ.
• (φ = φ1 ∧ φ2) ∧ (∀ω,∀t ,∀ε ∈ ϵs (φ1,ω, t), (ω, t) |=s φ1) ∧ (∀ω,∀t ,∀ε ∈ ϵs (φ2,ω, t), (ω, t) |=s

φ2) ⇒ ∀ω,∀t ,∀ε ∈ ϵw (φ,ω, t), (ω, t) |=s φ.
By Definition 5, ϵs (¬φ,ω, t) = ϵs (φ1,ω, t) ∩ ϵs (φ2,ω, t). Therefore, ∀ε ∈ ϵs (φ1 ∧ φ2,ω, t), we
have ε ∈ ϵs (φ1,ω, t) and ε ∈ ϵs (φ2,ω, t). Then we have (ω, t) |=s φ1 under ε and (ω, t) |=s φ2

under ε , which indicates (ω, t) |=w φ by Definition 3.
• When φ = φ1 ∧ φ2, we show (∀ω,∀t ,∀ε ∈ ϵw (φ1,ω, t), (ω, t) |=w φ1) ∧ (∀ω,∀t ,∀ε ∈
ϵs (φ2,ω, t), (ω, t) |=w φ2) ⇒ ∀ω,∀t ,∀ε ∈ ϵw (φ,ω, t), (ω, t) |=w φ.
By Definition 6, ϵw (¬φ,ω, t) = ϵw (φ1,ω, t) ∩ ϵw (φ2,ω, t). Therefore, ∀ε ∈ ϵw (φ1 ∧ φ2,ω, t),
we have ε ∈ ϵw (φ1,ω, t) and ε ∈ ϵw (φ2,ω, t). Then we have (ω, t) |=w φ1 under ε and
(ω, t) |=w φ2 under ε , which indicates (ω, t) |=w φ by Definition 4.
• When φ = φ1UIφ2, we show (∀ω,∀t ,∀ε ∈ ϵs (φ1,ω, t), (ω, t) |=s φ1) ∧ (∀ω,∀t ,∀ε ∈
ϵs (φ2,ω, t), (ω, t) |=s φ2) ⇒ ∀ω,∀t ,∀ε ∈ ϵs (φ,ω, t), (ω, t) |=s φ.
By Definition 5, we have ϵs (φ1UIφ2,ω, t) =

⋃
t ′ ∈(t+I )

{ϵs (φ2,ω, t
′) ∩ (

⋂
t ′′ ∈(t,t ′)

ϵs (φ1,ω, t
′′))}.

Therefore, for ε ∈ ϵs (φ1UIφ2,ω, t), we have ∃t ′ ∈ (t + I ), ε ∈ ϵs (φ2,ω, t
′) ∩

(
⋂

t ′′ ∈(t,t ′)
ϵs (φ1,ω, t

′′)). Therefore, for this t ′ we have ε ∈ ϵs (φ2,ω, t
′) and ∀t ′′ ∈ (t , t ′), ε ∈

ϵs (φ1,ω, t
′′)). By the inductive assumption, we have (ω, t ′) |=s φ2 and ∀t ′′ ∈ (t , t ′), (ω, t ′′) |=s

φ1. Finally, by definition Definition 3, we have (ω, t) |=s φ1UIφ2.
• When φ = φ1UIφ2, we show (∀ω,∀t ,∀ε ∈ ϵw (φ1,ω, t), (ω, t) |=w φ1) ∧ (∀ω,∀t ,∀ε ∈
ϵw (φ2,ω, t), (ω, t) |=w φ2) ⇒ ∀ω,∀t ,∀ε ∈ ϵw (φ,ω, t), (ω, t) |=w φ.
By Definition 6, we have ϵw (φ1UIφ2,ω, t) =

⋃
t ′ ∈(t+I )

{ϵw (φ2,ω, t
′) ∩ (

⋂
t ′′ ∈(t,t ′)

ϵw (φ1,ω, t
′′))}.

Therefore, for ε ∈ ϵw (φ1UIφ2,ω, t), we have ∃t ′ ∈ (t + I ), ε ∈ ϵw (φ2,ω, t
′) ∩

(
⋂

t ′′ ∈(t,t ′)
ϵw (φ1,ω, t

′′)). Therefore, for this t ′ we have ε ∈ ϵw (φ2,ω, t
′) and
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∀t ′′ ∈ (t , t ′), ε ∈ ϵw (φ1,ω, t
′′)). By the inductive assumption, we have (ω, t ′) |=w φ2

and ∀t ′′ ∈ (t , t ′), (ω, t ′′) |=w φ1. Finally, by Definition 4, we have (ω, t) |=w φ1UIφ2. �

ALGORITHM 1: STL-U strong satisfaction
monitoring algorithm StrongSat(φ,ω, t)

Function StrongSat(φ, ω, t ):
begin

switch φ do
Case μx(ε )

if minimize(f (x ), Φ−t (ε ), Φ+t (ε )) > 0 then
return True ;

else
return False ;

end

Case ¬φ
return ¬WeakSat(φ, ω, t );

Case φ1 ∧ φ2
return

StrongSat(φ, ω, t ) ∧ StrongSat(φ, ω, t )
Case �I φ

for t ′ ∈ (t + I ) do
if ¬StrongSat(φ, ω, t ′) then

return False;
end

end

return True ;
Case ♦I φ

for t ′ ∈ (t + I ) do
if StrongSat(φ, ω, t ′) then

return True;
end

end

return False ;
Case φ1UI φ2

for t ′ ∈ (t + I ) do
if StrongSat(φ2, ω, t ′) then

for t ′′ ∈ [t, t ′] do
if ¬StrongSat(φ1, ω, t ′′)

then
return False ;

end

end

return True ;
end

end

return False ;
end

end

ALGORITHM 2: STL-U weak satisfaction
monitoring algorithm WeakSat(φ,ω, t)

Function WeakSat(φ, ω, t ):
begin

switch φ do
Case μx(ε )

if maximize(f (x ), Φ−t (ε ), Φ+t (ε )) > 0 then
return True ;

else
return False ;

end

Case ¬φ
return ¬StrongSat(φ, ω, t );

Case φ1 ∧ φ2
return

WeakSat(φ, ω, t ) ∧WeakSat(φ, ω, t )
Case �I φ

for t ′ ∈ (t + I ) do
if ¬WeakSat(φ, ω, t ′) then

return False;
end

end

return True ;
Case ♦I φ

for t ′ ∈ (t + I ) do
if WeakSat(φ, ω, t ′) then

return True;
end

end

return False ;
Case φ1UI φ2

for t ′ ∈ (t + I ) do
if WeakSat(φ2, ω, t ′) then

for t ′′ ∈ [t, t ′] do
if ¬WeakSat(φ1, ω, t ′′)

then
return False ;

end

end

return True ;
end

end

return False ;
end

end
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ALGORITHM 3: Confidence Level of Strong Sat-
isfaction StrongConfidenceLevel(φ,ω, t)

Function StrongConfidenceLevel(φ, ω, t ):
begin

switch φ do

Case μx

η ← inf
{
|x − θt |

""" f (x ) ≤ 0
}

return (0,
∫ θt +η

θt −η
Φt (x )dx );

Case ¬φ

ϵs ←WeakConfidenceLevel(φ, ω, t )C
return ϵs ;

Case φ1 ∧ φ2
return StrongConfidenceLevel(φ1, ω, t ) ∩

StrongConfidenceLevel(φ2, ω, t )
Case �I φ

ϵs = StrongConfidenceLevel(φ, Ω, 0)
for t ′ ∈ (t + I ) do

ϵs ← ϵs ∩StrongConfidenceLevel(φ, Ω, t ′)
end

return ϵs ;
Case ♦I φ

ϵs ← StrongConfidenceLevel(φ, Ω, 0)
for t ′ ∈ (t + I ) do

ϵs ← ϵs ∪StrongConfidenceLevel(φ, Ω, t ′)
end

return ϵs ;
Case φ1UI φ2

ϵs ← ∅
for t ′ ∈ (t + I ) do

ϵ ′s ← StrongConfidenceLevel(φ2, ω, t ′)
for t ′′ ∈ [t, t ′] do

ϵ ′s ← ϵ ′s ∩
StrongConfidenceLevel(φ1, ω, t ′′)

end

ϵs ← ϵs ∪ ϵ ′s
end

return ϵs ;
end

end

ALGORITHM 4: Confidence Level of Weak Sat-
isfaction WeakConfidenceLevel(φ,ω, t)

Function WeakConfidenceLevel(φ, ω, t ):
begin

switch φ do

Case μx

η ← inf
{
|x − θt |

""" f (x ) > 0
}

return (
∫ θt +η

θt −η
Φt (x )dx, 1) ;

Case ¬φ

ϵw ← StrongConfidenceLevel(φ, ω, t )C
return ϵw ;

Case φ1 ∧ φ2
return WeakConfidenceLevel(φ1, ω, t ) ∩

WeakConfidenceLevel(φ2, ω, t )
Case �I φ

ϵw ←WeakConfidenceLevel(φ, Ω, 0)
for t ′ ∈ (t + I ) do

ϵw ← ϵw ∩WeakConfidenceLevel(φ, Ω, t ′)
end

return ϵw ;
Case ♦I φ

ϵw ←WeakConfidenceLevel(φ, Ω, 0)
for t ′ ∈ (t + I ) do

ϵw ← ϵw ∪WeakConfidenceLevel(φ, Ω, t ′)
end

return ϵw ;
Case φ1UI φ2

ϵw ← ∅
for t ′ ∈ (t + I ) do

ϵ ′w ←WeakConfidenceLevel(φ2, ω, t ′)
for t ′′ ∈ [t, t ′] do

ϵ ′w ← ϵ ′w ∩
WeakConfidenceLevel(φ1, ω, t ′′)

end

ϵw ← ϵw ∪ ϵ ′w
end

return ϵw ;
end

end
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