
Experiences with a Hardware Description Language
for a CS-major’s Computer Organization Course

Charles Reiss
Department of Computer Science

University of Virginia
Charlottesville, Virginia

Email: creiss@virginia.edu

Luther Tychonievich
Department of Computer Science

University of Illinois, Urbana-Champaign
Urbana, Illinois

Email: luthert@illinois.edu

Abstract—This article presents a novel hardware description
language (HDL) and associated 4-week assignment sequence
for a computer architecture course, with discussion of our
experience developing and using these tools.

At our institution, CS majors take a different computer
architecture course than computer engineering majors. The
CS majors’ course aims to providestudents with an under-
standing of how nontrivial processors can be built out of
simple hardware components. To leverage students’ existing
familiarity with programming languages, we wanted students
to manipulate processor designs using a text-based hardware
description language (HDL). We did not, however, want to
devote instructional time to the low level complexities like
clocking choices or arithmetic logic design.

We developed an instructional hardware description lan-
guage and associated assignments based on Bryant &
O’Halleron’s HCL (and designed to be compatible with their
text) with some inspiration from Verilog. Unlike HCL, our HDL
allows students with flexibility to build and simulate different
processor organizations — for example, pipeline designs with
different pipeline stages as well as non-pipelined designs —
without the differences being hidden in the internal components
of the simulator. By specializing for building a processor, our
tooling prominently to students and our testing infrastructure
how their simulated processors executed programs. Also, using
simple enforcement of signal widths and avoiding floating or
undefined values, our HDL design helped catch many students
errors while still seeming to treat all values as bits.

We also discuss our experience teaching a course using
these tools to several hundred students a semester for the
last eight years.We evaluate our experience through a review
of student and instructor feedback, which suggest increased
student and instructor satisfaction and that the HDL and
assignments provide a solid basis for explaining later topics
such as superscalar processors and processor-aware software
optimization.

I. Introduction
Computer organization courses teach about the design

of computing machinery, including processor design. Lev-
els of detail in such courses vary greatly; for example,
the CS2013 curriculum guidelines suggest programs could
teach anywhere from 16 hours to 3 full courses on
computer organization [1].

Frequently, computer organization courses target a va-
riety of audiences. Some teach computer organization and
architecture to prepare students to engage in processor
design [2]. Some focus on systems programming, teaching

the parts of computer organization needed to understand
the programming tasks [3], [4], [5]. Some focus on the
impacts of hardware design on software performance and
security [6].

At our institution (a large R1 university in the eastern
United States), we switched from having a single course
shared by computer engineering majors and computer
science majors to having separate courses for the two
degree programs. In this article we provide an experience
report about certain aspects of how we designed the
computer science majors course. Since the students taking
our course are generally not those likely to be interested
in the details of circuit design and synthesis, we aimed
to provide a good understanding of the processor design
strategies and tradeoffs without being distracted by the
sort of practical details that our computer engineering
majors would be concerned about.

Our course is required of all CS majors (roughly 650
students per year) and is typically taken in their third year
of the major. Prior to this course students work at a very
substantial level of abstraction. From this abstraction,
processors may seem ‘magical’. Though we teach computer
organization from a software-oriented perspective, we want
students to understand that they could build a processor
— even if our course does not include all of the details.

Beyond understanding how processors are built, our stu-
dents should understand modern processor performance,
including processor design optimizations like pipelining,
other forms of instruction-level parallelism, and specula-
tive execution. To give this broader overview of modern
processor designs and their implications, we included
less detail on some aspects of processor hardware that
would be included in a course focused more on building
processors.

To achieve these goals, we wanted to spend 4–5 weeks
on processor design, enough to give them a thorough
understanding of their design while still leaving time to
apply this understanding to later topics like caching and
optimizations. We also wanted students to experience
two different designs the same instruction-set architecture
(ISA) so they would understand how processor architec-
ture can influence performance. These aims resulted in



our extending a teaching hardware description language
(HDL) with new features and tooling and designing a 4-
week assignment sequence using it.

The remainder of this paper is an experience report.
We describe our hardware design assignments, the tools
we designed to support those, and our experiences with
them. Because this was undertaken over several years
as one of several changes to the associated course, the
effectiveness of these course components are primarily
shown via discussion of student and instructor experiences.

II. Prior Approaches
Undergraduate computer organization course use a

variety of approaches to teach how processors work. Fre-
quently courses use a combination of lectures along with
worksheets and quizzes to help students practice what
they learned. Like many instructors, we wanted a more
hands-on approach that should build lasting knowledge
and be more engaging to students.

To support a hands-on approach, many processor sim-
ulators that have been used [7], [8], [9], [10], [11], [12],
[13], [14], [15]. Many of these provide visibility into the
internal operation of the simulated processor, which is
useful for learning how a given processor design operates
but presents the processor as a fait accompli. We wanted
to prepare student to consider multiple designs, including
some of their own creation, so we opted to have students
build their own processor simulators.

We needed to choose what development environment
students would use to build a simulator. Perhaps the
most straightforward is to use a hardware description
language used in industry or processor design research,
such as Verilog, VHDL, or Chisel [16], [17], [18]. This
approach helps students with future work in processor
design and can allow students to deploy their design
on ‘real’ hardware using FPGAs and similar [19], [20],
[21], [22]. But teaching students how to work with these
industrially focused tools would be time consuming, in
part because of details that are mostly irrelevant to our
course’s more software-focused perspective.

To avoid these difficulties, a number of educational
hardware programming languages exist, both graphical
and text-based.

Graphical programming languages allow students to
draw a graphical representation of a circuit [23], [24], [25].
Previously, our course used one of these tools, Logisim [24].
Though Logisim’s visual design helps visualize circuits
and avoids teaching syntax, students had difficulty making
designs modular in the graphical format. Logisim has tools
to enable this, but students did not use these effectively
when the interface was so different from the programming
abstractions they used in prior courses.

To capitalize on student’s familiarity with text-based
programming, we chose a text-based register transfer
language [26], [27] for our course. In particular, we found
that the HCL, as introduced by the textbook Computer

Systems: A Programmer’s Perspective (CS:APP), sup-
ported our goals well [27]. This language seems inspired
by Verilog, but lacks many of its complexities. In adapting
this language, we made a new version, which we describe
later in the paper.

A different common approach that we did not select
is having students build a simulator from scratch using
a general-purpose programming language they already
know [28], [29]. This avoids the necessity to teach a new
environment. However, in our experience students using
a general-purpose language have trouble seeing how their
code can represent hardware and may not realize when
they use designs that would work poorly in hardware,
such as doing loop-like operations in a single-cycle.

III. Our Assignments
Our assignments have students build a processor, fol-

lowing the textbook Computer Systems: A Programmer’s
Perspective’s design and instruction set. Students did so
in two phases, first building a processor that completes
every instruction in one cycle, then a pipelined processor,
both similar to designs presented in the textbook.

Our assignments are split into 8 parts: 4 staffed, loosely-
graded in-person labs each introducing a following week-
long homework that is graded more completely. The first
two weeks of labs and homeworks have them build a single-
cycle processor, the next two a pipelined processor for the
same ISA.

For the single-cycle processor, we first introduced stu-
dents to our HCL language variant by having them
implement the logic for incrementing the program counter
for non-control-flow instructions. Since we use a variable-
length instruction set, this requires using the instruction
opcode to compute how to increment the program counter.
In the following assignments, students implement the rest
of instruction logic, instruction-by-instruction. The first
homework focuses on instructions requiring basic access
to registers; the second lab introduces instructions with
arithmetic, conditional evaluation (through conditional
moves) and memory accesses; and the final homework
requires handling the control flow instructions and the
stack manipulation instructions in the ISA.

For the pipelined processor, we choose not to follow
CS:APP’s approach of starting with a full single-cycle
processor and converting it to a full pipelined processor.
Instead, for all but our final pipelining assignment students
implement only subsets of the ISA. This choice lowers
the complexity of each assignment and allows for easier
incremental testing.

To introduce pipelining in lab, we had students convert a
single-cycle processor supporting only register-to-register
and immediate-to-register moves to a two-stage pipeline.
One stage includes the instruction fetch and register read
operation, and the second includes the register write
operation. With this pipelining assignment, we had two
goals: first, we want students to learn how to pass values



between pipeline stages; and, second, we want to show a
simple example of pipeline hazards and their resolution
with forwarding.1

In the first pipelining homework, students extend their
two-stage design from lab into a five-stage pipelined design
with support for some instructions involving condition
code handling. As students implemented this subset of
the ISA, we encouraged students to add one instruction
at a time, using their complete single-cycle processor as a
reference.

The final lab and homework for the pipelined processor
focus primarily on handling pipeline hazards that cannot
be resolved through forwarding. The lab includes only
load and store instructions to keep the processor simple
while guiding the students to implement stalling to resolve
hazards. The final homework has students combine the
previous lab and homework and implement the rest of the
ISA, notably including branch prediction with an always-
taken strategy (following the design in CS:APP).

Our full set of assignments can be downloaded from
https://github.com/charlesreiss/hclrs-assignments

IV. CS:APP HCL language
The CS:APP textbook describes the operation of the

processor circuit by introducing a language they call
HCL (hardware control language). Though the authors
of CS:APP did use this educational language to make a
complete processor that they formally verified [30], [31],
they did not seem to use it in processor construction
assignments. Instead, their instructor materials include
assignments where students make limited modifications
to existing designs. We revised the language to better
support our processor construction, as described in section
V. To provide context, we first describe the original HCL
language.

In HCL, the storage and computation components are
fixed (chosen by the authors to support their processor de-
sign) and therefore not specified within an HCL program.
Statements in an HCL program focus on selecting inputs
to those components based on the current instruction
being executed. For example, a statement like:

word dstE = [
icode in { IRRMOVQ, IOPQ } : rB;
icode in { IPOPQ } : RRSP;
1 : RNONE

];

would choose the register file destination dstE based on
the instruction opcode icode – choosing between the rB
field of the instruction and the register identifier constants
RRSP and RNONE.

1In some pipelined processor designs, this design would not
require an explicit forwarding implementation because, to support
pipelining, the register file would read new values while they are
being currently written. We provide the same register file for both
pipeline and single-cycle assignments, so students implement this
functionality outside of the register file.

A. Signals
The HCL language operates on a fixed set of signals,

each of which holds one value during each cycle and is
declared as either bool or int. Some signal values are
controlled by functionality ‘built-in’ to the simulator,
including memories, the register file, other registers, the
ALU, and the program counter incrementing logic.

Other signal values are assigned in statements in the
HCL file, using an expression written in terms of other
signals. These expressions are intended to correspond
to some combinatorial circuit. For example foo = bar
makes the value of the signal foo the same as the signal
bar. These expression also support bitwise operations
(such as foo = bar & baz, where & represents bitwise
AND, and bar and baz are other signals), inequalities
(foo = bar < baz), checking membership in a list of values
(foo = baz in {1,3,5,8} to set foo to 1 if and only if the
signal baz is one of 1, 3, 5, or 8), and case expressions
that are intended to correspond to multiplexers. Case
expressions represent an if/else if/else if/…expression. For
example, foo = [ bar == 1 : a ; baz == 2 : b ] sets foo
to a if bar is 1, to b is bar is not 1 and baz 2.

B. Simulation and Timing
To simulate the circuit, the original implementation

parsed and converted HCL assignment statements into
either C code or Verilog code and combined this with
code implementing the built-in functionality. The built-in
functionality code was different depending on whether a
five-stage pipelined processor or a non-pipelined processor
was being simulated.

The C implementation seems to be the primary one
intended for student use. In this implementation, the
assignment operations run in a fixed order, interleaved
with the simulation of the built-in components. The order
in which signal assignments are run is hard-coded. This
avoids the need to determine an evaluation order for the
simulation, but requires the available signals to be fixed.

In the Verilog version, assignments are converted to
Verilog assign operations and combined with a Verilog
implementation of the built-in functionality.

C. Storage Components
Various built-in circuits store and pass data between

simulated clock cyles. This includes a main memory, with
two combinatorial read ports and one write port, which is
presented to students as an instruction memory and data
memory. It also includes a register file with two read and
two write ports, and several independent registers for the
program counter and registers added for pipelining.

All the storage logic provided in the simulation is
triggered by a clock signal, which updates values at the
end of each simulated cycle.

In the pipelined versions of the simulator, some of the
interactions between pipeline registers and the storage
components were hard-coded: the simulated register file



and simulated data memory both output into a pipeline
register.

D. Simulator Control and Lack of I/O
The built-in functionality includes features to control

the simulation itself. Most notable of these is a Stat signal
which determines whether the simulated processor should
continue, halt, or halt with an error. For simplicity, no
other I/O mechanisms are provided.

V. expanding the simulator
We liked CS:APP’s presentation of processor design and

wanted to use an HCL-like language to be compatible
with that presentation. However we found that HCL was
not well suited to having students build up a processor
from basic components. With so many signal’s effects
and connections predefined, students seemed to have
difficulty connecting their code to the overall operation
of the processor. Course staff reported spending most
of their time explaining why students’ seemingly-valid
designs were incompatible with the predefined parts of
the simulator.

We decided to amend HCL and build our own simulator
to put the internal signals and registers of the processor
more under students’ control. In our simulator, signals are
called wires2, and these signals can be either predefined
or defined by the students’ input file.

One result of this is that students would use the same
interpreter for the sequential and pipelined processor
design. Though we still had built-in functionality it was
not as tied to a particular microarchitecture. This gave
us the freedom to experiment with different number of
pipeline stages, converging on the assignments described
in Section III.

Our full resulting simulator can be downloaded from
https://github.com/charlesreiss/hclrs.

A. Requiring Wire Widths
Instead of having a distinction between bools and ints,

we gave each wire has a particular bit width, similar
to Verilog. Expressions and constants can also have bit
widths. Generally, the bit width of an expression assigned
to a wire must be equal the bit width of the wire. Similarly,
the bit width of the operands to an operator like bitwise
AND must be equal, and the width of the result is equal
to the width of the operands. In a case expression, each
possible result of the case expression must have an equal
width.

Wire widths in effect form a loose type system. In our
assignments, generally students would use values of five
different widths:

• 1 bit: for boolean signals, like whether to enable data
memory writing;

2This terminology is consistent with Verilog. In retrospect, it may
be more appropriate to call these signals or bundles or similar, since
a typical physical implementation would have multiple actual wires.

• 3 bits: for the Stat control signal for simulator;
• 4 bits: for register identifiers, primary opcodes, and

secondary opcodes;
• 64 bits: for register values and addresses (and inter-

mediate values used to compute them); and
• 80 bits: for the output of the instruction memory

This type system serves to catch certain common errors
students made:

• Confusing register identifiers with actual register
values. For example, students often try to use the
extracted register identifier field from the instruction
instead of the output of the register file for an
instruction’s computation.

• Confusing opcodes with simulator control values.
Students would try to use a constant representing the
opcode for HALT instead of the constant representing
the control signal for the simulation to terminate
normally.

Wire widths do not catch all errors that full type
annotations could. For example, a common uncaught
problem is confusing 64-bit addresses with 64-bit values
retrieved from those addresses.

B. Supporting Instruction Decoding
In the CS:APP HCL language, decoding the fields of

an instruction (a non-trivial task for the variable-length
Y86 instruction set) was done by built-in functionality.
We wanted students to understand this process in more
detail so we required this functionality to be implemented
explicitly in the HCL code.

To enable variable-length decoding in HCL, we provide
a bit-subsetting operation – using something like foo[5..8]
extracts bits (numbered with 0 being the least significant
bit) 5 (inclusive) though 8 (exclusive) of the signal foo as
a 4-bit signal.

C. Exploring Dependencies
Unlike the template for students in the original HCL

assignments, we permitted students to define their own
signals and registers. In addition to requiring us to choose
a syntax for register and wire declarations, this also
required a more complex simulator. Where previously
the simulator could hard-code an order of evaluation, we
needed to determine the order of execution based on the
actual dependencies between components.

In determining the order of evaluation, we also search
for and report any cyclic dependencies. This often happens
due to student error: for example, students implementing
the jump instruction will sometimes attempt to set the
current program counter rather than the next program
counter.

Along with determining dependencies for evaluation
order, we also detected when built-in functionality could
be omitted. For example, this allowed us to support a two
write port register file for assignments that required it, but



not require any extra boilerplate for earlier assignments
that only use one write port.
D. Defining Registers

Rather than fixing the set of pipeline registers and the
functionality for the program counter, we added the ability
to define arbitrary registers. This allowed us to support
assignments that used a different set of pipeline stages
than in the book. It also allowed us to give students the
task of deciding what values needed to be passed within
pipeline registers.

Following the conventions of the textbook, aimed pri-
marily at implementing pipelines, registers are defined in
groups we called ‘register banks’, and each register bank
was identified by a lowercase and uppercase letter. For
example, fD might be a register bank, conventionally the
one for pipeline registers between a ‘fetch’ and ‘decode’
stage. In each register bank, multiple ‘registers’ can be
defined, each with their own bit-width. For example,
following the CS:APP design, a fD would include (among
others) a 64-bit valP (PC value) register and a 4-bit rA
(first register ID) register. Each of the registers would
have their own input and output signals prefixed with the
lowercase and uppercase letter from the register name,
such as f_valP for input of the register (computed by the
students’ code) and D_valP for output of the register. In
each simulated cycle, the previous cycles values for the
input signals would become the output for that cycle.

1) Register Control Signals and Values: Following the
design of CS:APP, each register bank also had a control
signal that would disable writing, called ‘stall’, and that
would reset the registers to a default value, called ‘bubble’.
These signals are useful for (and named after their roles
in) pipeline control operations, for example to implement
a pipeline stall.

2) Non-Pipelined Storage: Students use custom-defined
registers for pipeline registers and for the program counter
and condition code registers. This allowed us to teach the
concept of how registers work within in our first HDL
assignment, even though more extensive use of registers
would come later.

We elected not to use our custom register functionality
for the architectural registers (the registers visible to
assembly). For these we supplied a register file. This was
primarily due to two practical concerns. First, having
readily available register values made it practical to grade
and provide debugging output when students only imple-
ment simpler register-to-register instructions. Second, our
course was not the one where students would learn about
register file or memory design, so we would rather spend
our time on other topics. Using a supplied register file may
have also helped explain the similar built-in data memory
component.

VI. Output and Debugging Support
Since the ISA in our assignments do not support any

input or output operations, our simulator’s output must

include some information about the ‘internal’ state of our
simulated machine. The default output shows the contents
of storage – memory, the register file, and program-
defined registers – and what instructions were fetched.
To aid debugging, the default output also disassembled
the fetched instruction using the Y86 instruction set.

To further support debugging, we also optionally sup-
port detailed output showing the operation of the sim-
ulated processor. Broadly, there are two parts to this
debugging output: showing how memories and the register
file are read and written; and listing the values of every
named signal. In initial versions, debugging output wrote
signal assignments in the order they were simulated, but
that proved confusing for students. To aid students in
locating specific signals, later versions show values in
alphabetical order after categorization by type (input or
output to built-in component, input or output to register,
or other).

VII. Compilation Feedback and Common Errors
One of the most serious sources of frustration for

students in early versions of our HDL tool was error
messages. Frequently students would write code that had
syntax errors or semantic errors. In early versions of our
tool, we did not spend much effort diagnosing these. Until
we started to fix this issues, a great deal of course staff
time was spent helping identify syntax errors or helping
find likely causes of runtime errors.

A. Syntax Errors and Parsing Issues
The initial implementation used an implementation of

a PEG [32] grammar generator [33]. Though this made it
fairly simple for us to make an efficient parser, like many
parsing libraries, error recovery was not a well-supported
feature. This meant that often student errors would appear
as a message identifying the line number with no other
information, and the line number was often the beginning
of the invalid statement instead of the line of the missing
semicolon or square bracket within it.

Later, we rewrote our implementation being mindful
of error handling supported by our choice of parsing
tool. We used an LALR-based parser generator[34] which,
when parsing failed, would identify expected possible next
tokens that would have continued a valid parse. This
allowed us to write a default error message that precisely
identified a location in the file, including showing an
excerpt of the line identifying the invalid token.

B. Special Patterns Identified
Based on our observations from early versions of the

assignments, we identified common syntax errors and
extending our language grammar to parse them, such as
the cases listed in Figure 1. For these, we elected not to
extend our actual language to support these alternative
syntaxes; instead, we made our interpreter generate special
error messages for each of these cases.



correct syntax parsed incorrect examples

wire NAME : WIDTH;
wire NAME;
wire NAME = VALUE;
wire NMAE : WIDTH = VALUE;

const NAME = VALUE; const NAME : WIDTH = VALUE;
NAME = [ COND1: VALUE1; ]; NAME [ COND1: VALUE 1; ];

register aB { NAME : WIDTH = VALUE; }
register aB { wire NAME : WIDTH = VALUE; }
register aB { wire NAME = VALUE; }
register aB { NAME = VALUE; }

Fig. 1. special incorrect syntax that we parsed to produce custom error messages.

We also found it useful to identify several common
misuses of case expressions. There were two common
errors we found. One was that students would fail to
handle some cases in their case expressions. In our initial
implementation, case expressions defaulted to 0 when no
condition matched, so this error would often be hard
to diagnose. Another problematic pattern arose from
students treating case expressions as something more akin
to a switch statement, so they would write something like:
[ FIRST : ...; SECOND : ...; ... ]
when they meant to write something like
[ signal == FIRST : ...; signal == SECOND : ...; ...].
(Most commonly, the signal in question would represent
an opcode.) This would silently fail because the constants
FIRST and SECOND would be treated as boolean ex-
pressions, and as boolean expressions, they were usually
always true.

To help students diagnose these issues we treated
‘default’ cases in case expressions specially. A default case
was one with a constant which was is true. We required
the last case and no other cases in each case expression
be a default case. This change made a substantial amount
of existing code invalid, since it was common for students
to write solutions where all possibilities were explicitly
handled. We decided that requiring a ‘dummy’ default
case for those solutions was worth avoiding other silent
errors.

C. ‘Did You Mean?’ Messages

In addition to identifying error messages, we also spent
effort to include common resolutions in existing error
messages. In particular, when a signal that was not defined
was used, if there was another signal whose name matched
except for capitalization, the error message would ask if
students meant to use that. Otherwise, the error message
would ask if students meant to declare a signal with
that name. We also included some similar suggestions
when students did not set signals needed for built-in
functionality, mention what other signals they may have
meant to set.

VIII. Reflections

A. Good: Better Processor Understanding
Having a more complete hardware description language

seemed to help our students better understand processor
design. Spending effort on the toolchain’s error reporting
for assignments meant that our course staff time was used
relatively effectively – student questions related to the
assignments are mostly be about the processor designs
topics being covered. These could either be high-level
questions about overall strategies for functionality like
branch prediction or stalling, or lower-level questions
related to understanding the operation of their simulated
processor in order to fix a bug.

After completing the processor development assign-
ments, students showed competence in answering ques-
tions about processor design. This included, for example,
identifying what type of changes particular new instruc-
tions would require to the microarchitecture they learned,
or identifying what pipeline hazard handling would be
needed in alternate microarchitectures.

Students in course feedback often attributed the assign-
ments with being helpful in their understanding of course
material, though some students felt it took too much time.
Overall, having students build a pipelined processor in a
simulator made us confident that we could support more
advanced material, like superscalar processor design, that
requires a substantial background in simpler pipelined
processor designs. As discussed in the next section, other
changes to our course and its assessment unfortunately
do not allow us to usefully comparing student scores
between semesters to quantitatively confirm or refute our
confidence in students’ preparation.

After introducing our HDL and its associated assign-
ments, instructors of subsequent courses also reported
students were “better prepared” for their courses.

B. Effect on Scores
We did not see direct impacts of our introducing a new

HDL and assignments on student scores. Our changes to
the HDL assignments took place shortly semesters after
the change from a common course for a computer engi-
neering and computer science major to separate courses,
so we have limited data from before the new HDL to



Semester Median HW score Mean HW score
Fall 2016 70.2 56.3
Spring 2017 75.6 65.4
Fall 2017 98.4 83.3
Spring 2018 96.4 84.6
Fall 2018 96.4 84.6
Spring 2019 98.5* 90.2*
Fall 2020 95.8 82.8
Fall 2021 91.0 81.3
Spring 2022 86.1 97.3
Fall 2022 94.2 81.7
Spring 2023 96.7 86.4

TABLE I
Scores on final pipelined processor design assignment computed

using the Fall 2022 test suite, except for the Spring 2019 semester,
where the requirements of the assignment omitted several stack

instructions.

compare with. In addition, the course underwent other
major changes to their curriculum, exams, and instructors,
over that time that make score comparisons not useful.

We did see an increase in student scores on the HCL
assignment themselves after we improved the implemen-
tation as shown in Table I. The improvements in the
Fall of 2017 included both changes to error reporting
and the supplying students scripts to more easily test
their submissions on the supplied test cases. We cannot
tell to what extent these two changes improved scores,
but the lack of change from later additions intended to
further improve error feedback, like better handling of case
expressions, suggests that the ease of running tests was
likely the primary factor.

Outside of this dramatic change, we saw few changes in
overall student scores. This lack of impact was anticipated
based on two observations. Especially after the Fall of
2017, the simulation assignments themselves included
extensive testing suites the students can run for themselves
as often as they wish, allowing them to put in the
time needed to get the score they want. Quiz and exam
questions were designed each semester to match the level
of coverage given to topics that semester; as we refined our
HDL and improved the coverage of concepts in the asso-
ciated assignments, we also increased the level of detail in
the related questions on quizzes and exams. For example,
our quiz and exam questions on pipelining switched from
focusing on understanding the definition of pipelining and
the mechanics of registers to understanding the flow and
timing of instructions in a pipelined processor.

C. Bad: Growing Pains

We had some difficulties in transitioning to these as-
signments.

One issue was with staffing. At our institution, most
of our teaching assistants (TAs) are undergraduates who
work less than 10 hours per week. When TAs had not used
our simulator before, they needed to spend a substantial
amount of this time familiarizing themselves with the tools
rather than helping students. While iterating the tool and

assignments improved their quality, each change we made
added a new transition cost.

Our initial versions of the assignments did not divide
work between them appropriately. Because labs were
loosely graded and time on homeworks was not readily
visible to us, we relied on TAs to provide feedback on
student workload. Several times that resulted in moving
tasks between assignments.

It also took us some time to write assignments that
provided an appropriate amount of guidance to students.
Initially we provided too little practical guidance, resulting
in common questions arising during office hours. When
we added answers to these to the assignment descriptions,
they became unwieldy and students stopped reading them.
We converged on descriptions that present the require-
ments first, with advice on completing them indexed with
headers and presented afterwards, which seems to work
well.

We also had issues with how students tested their sub-
missions. Initially we provided a few examples of correct
behavior and expected students to test their own work,
but they were too new to the HDL to feel comfortable
doing so, even when we added testing exercises to a lab.
To correct this, we now supply example correct outputs
and a tool to compare the students’ outputs to those
correct outputs for each assignment This, as discussed
previously, correlated with dramatically increased the
scores students earn on those assignments. By adding
additional intermediate tests for common errors, it also
encourages students continue working on debugging issues
when they would not otherwise.

D. Bad: Adaptability for Other Courses
The success of our assignments depended on how much

time we devoted to them. Since processor design was
one of the most important parts of our course, we spent
several weeks of class time explaining processor design. To
support our assignments, we also spent approximately one
lecture and one lab introducing our hardware description
language. To build up to a full pipelined processor, we
needed several additional homeworks and labs as well
as several weeks of lectures. A course that covered this
material in a more terse manner would have difficulty
adapting our assignments. Including more ‘skeleton’ code
would limit the amount of time needed, but make it
substantially more difficult for students to see the ‘big
picture’ of processor design overall, as was our goal for
these assignments. If less time is available, it may be better
to use a different style of assignment.

E. Bad: Naming Issues
Some features chosen by CS:APP’s HDL we found often

caused student confusion, particularly around naming.
1) Register Bank Control Signals: We copied CS:APP’s

names of bubble (reset) and stall (write-disable), with the
letter of the output of the register bank (for example,



stall_D = 1 write-disables the ‘fD’ register bank). This
led to two confusions. “Stalling” an instruction requires
using both stall and bubble signals, but students often
assume that only the stall signals should be involved in
that operation. Additionally, these signals are processed
with the register inputs, not outputs, so the output-based
naming caused some students to make off-by-one-cycle
errors.

2) Other Signals: The CS:APP authors choose to use
names of the form ‘valX’ for signals representing a 64-bit
value. Since these names were very opaque, they were a
frequent source of student confusion. It did not help that
there were some important 64-bit signals which did not
follow this convention (like pc or aluA) and that some of
these names were also a built-in read or write port of the
register file in the textbook. In our HCL implementation
students did not need to use these names, but in lecture
we generally followed the textbook’s names to avoid more
confusion.

The names given to inputs to built-in components also
caused confusion. One particular source of confusion is pc,
which, consistent with the textbook, is the name we give to
the input of the instruction memory. Students commonly
confuse this value with the input to or output of a register
that stores an instruction address.

Students also would get confused about whether signals
were inputs or outputs to built-in components, though it
is not clear how to improve this situation. The signals
were named from the perspective of the components (for
example mem_output for the output of the data memory)
when some students expected them to be named from the
perspective of the component users. Also, some students
did not understand the meaning of various register index
and address inputs (especially that they did not represent
register or memory values) and so had trouble identifying
whether they were outputs or inputs.

IX. Conclusion
We created an educational hardware description lan-

guage well-suited to supporting processor design assign-
ments. We adapted an existing language from Computer
Systems: A Programmer’s Perspective [6]. To make it
more suitable for our assignments, we made changes to
the language. We primarily focused on exposing more of
the core high-level functionality of the processor, while
still avoiding details of the implementation of storage,
arithmetic, and circuit timing that were not part of our
course. In the process of deploying our custom language,
based on our observations of student difficulties, we
paid particular attention to improving error reporting for
our interpreter. This tool has successfully supported our
hardware design assignments in our computer organization
class for the past several years.
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