
Experiences with a hardware description
language

in computer-science-focused architecture class

Charles Reiss and Luther Tychnoveich

1

partial prereq chart
CS2110: Software Development Methods

CS2150: Program and Data Repr…

CS3330: Computer Architecture ECE3430: Intro to Embedded …

ECE4435: Computer Arch…

computer
science

computer
engineering

2

partial prereq chart
CS2110: Software Development Methods

CS2150: Program and Data Repr…

CS3330: Computer Architecture ECE3430: Intro to Embedded …

ECE4435: Computer Arch…

computer
science

computer
engineering

2

two computer arch courses
CS 3330 ECE 4435

common topics
building processors from simpler components

higher-level languages for circuits
fetch/execute cycle

instruction-level parallelism (ILP)

objectives well-supported by
processor design assignments

skip over some low-level details
clocking discplines
ALU design
…

avoid tool-learning overhead

full synthesis of CPU
prep. for real-world chip design

important to use industrial HDL

wanted HDL to support common topics
but didn’t want complexity of full HDL
and wanted text-based language
(since students used to text-based programming)

3

two computer arch courses
CS 3330 ECE 4435

common topics
building processors from simpler components

higher-level languages for circuits
fetch/execute cycle

instruction-level parallelism (ILP)

objectives well-supported by
processor design assignments

skip over some low-level details
clocking discplines
ALU design
…

avoid tool-learning overhead

full synthesis of CPU
prep. for real-world chip design

important to use industrial HDL

wanted HDL to support common topics
but didn’t want complexity of full HDL
and wanted text-based language
(since students used to text-based programming)

3

two computer arch courses
CS 3330 ECE 4435

common topics
building processors from simpler components

higher-level languages for circuits
fetch/execute cycle

instruction-level parallelism (ILP)

objectives well-supported by
processor design assignments

skip over some low-level details
clocking discplines
ALU design
…

avoid tool-learning overhead

full synthesis of CPU
prep. for real-world chip design

important to use industrial HDL

wanted HDL to support common topics
but didn’t want complexity of full HDL
and wanted text-based language
(since students used to text-based programming)

3

two computer arch courses
CS 3330 ECE 4435

common topics
building processors from simpler components

higher-level languages for circuits
fetch/execute cycle

instruction-level parallelism (ILP)

objectives well-supported by
processor design assignments

skip over some low-level details
clocking discplines
ALU design
…

avoid tool-learning overhead

full synthesis of CPU
prep. for real-world chip design

important to use industrial HDL

wanted HDL to support common topics
but didn’t want complexity of full HDL
and wanted text-based language
(since students used to text-based programming)

3

HDL assignments: single-cycle

PC

Instr.
Mem. register file

srcA

srcB

R[srcA]
R[srcB]

dstE

next R[dstE]

dstM

next R[dstM]

Data
Mem.

ZF/SF

Stat

Data in

Addr in
Data out

valC

0xF

0xF
%rsp

%rsp

0xF

0xF%rsp

instr.
length+

ALU
aluA

aluB
valE8

0

add/sub
xor/and
(function
of instr.)

write?

function
of opcode

PC+9

instr.
length+

instr.
length+

supplied: memories + register file
lab 1: increment PC (var. width instrs)
HW 1: simple register transfer, jump
lab 2: simple arithmetic/conditional move
HW 2: flow control, stack instructions
+ similar sequence for pipelined processors (not shown)

4

HDL assignments: single-cycle

PC

Instr.
Mem. register file

srcA

srcB

R[srcA]
R[srcB]

dstE

next R[dstE]

dstM

next R[dstM]

Data
Mem.

ZF/SF

Stat

Data in

Addr in
Data out

valC

0xF

0xF
%rsp

%rsp

0xF

0xF%rsp

instr.
length+

ALU
aluA

aluB
valE8

0

add/sub
xor/and
(function
of instr.)

write?

function
of opcode

PC+9

instr.
length+

instr.
length+

supplied: memories + register file
lab 1: increment PC (var. width instrs)
HW 1: simple register transfer, jump
lab 2: simple arithmetic/conditional move
HW 2: flow control, stack instructions
+ similar sequence for pipelined processors (not shown)

4

HDL assignments: single-cycle

PC

Instr.
Mem. register file

srcA

srcB

R[srcA]
R[srcB]

dstE

next R[dstE]

dstM

next R[dstM]

Data
Mem.

ZF/SF

Stat

Data in

Addr in
Data out

valC

0xF

0xF
%rsp

%rsp

0xF

0xF%rsp

instr.
length+

ALU
aluA

aluB
valE8

0

add/sub
xor/and
(function
of instr.)

write?

function
of opcode

PC+9

instr.
length+

instr.
length+

supplied: memories + register file
lab 1: increment PC (var. width instrs)
HW 1: simple register transfer, jump
lab 2: simple arithmetic/conditional move
HW 2: flow control, stack instructions
+ similar sequence for pipelined processors (not shown)

4

HDL assignments: single-cycle

PC

Instr.
Mem. register file

srcA

srcB

R[srcA]
R[srcB]

dstE

next R[dstE]

dstM

next R[dstM]

Data
Mem.

ZF/SF

Stat

Data in

Addr in
Data out

valC

0xF

0xF
%rsp

%rsp

0xF

0xF%rsp

instr.
length+

ALU
aluA

aluB
valE8

0

add/sub
xor/and
(function
of instr.)

write?

function
of opcode

PC+9

instr.
length+

instr.
length+

supplied: memories + register file
lab 1: increment PC (var. width instrs)
HW 1: simple register transfer, jump
lab 2: simple arithmetic/conditional move
HW 2: flow control, stack instructions
+ similar sequence for pipelined processors (not shown)

4

HDL assignments: single-cycle

PC

Instr.
Mem. register file

srcA

srcB

R[srcA]
R[srcB]

dstE

next R[dstE]

dstM

next R[dstM]

Data
Mem.

ZF/SF

Stat

Data in

Addr in
Data out

valC

0xF

0xF
%rsp

%rsp

0xF

0xF%rsp

instr.
length+

ALU
aluA

aluB
valE8

0

add/sub
xor/and
(function
of instr.)

write?

function
of opcode

PC+9

instr.
length+ instr.
length+

supplied: memories + register file
lab 1: increment PC (var. width instrs)
HW 1: simple register transfer, jump
lab 2: simple arithmetic/conditional move
HW 2: flow control, stack instructions
+ similar sequence for pipelined processors (not shown)

4

CS:APP
Bryant and O’Hallaron’s textbook
seemed to have what we want?
custom hardware description language

similar goal: teaching software-focused students

processor design described in textbook chapter
and formally verified
with Verilog backend option

…but no processor construction assignments
small processor modifications
not clear these were used actively by authors?

…but lots of built-in components

5

CS:APP
Bryant and O’Hallaron’s textbook
seemed to have what we want?
custom hardware description language

similar goal: teaching software-focused students

processor design described in textbook chapter
and formally verified
with Verilog backend option

…but no processor construction assignments
small processor modifications
not clear these were used actively by authors?

…but lots of built-in components 5

CS:APP design/built-ins
hilited: implemented in HDL
(rest built-in to simulator)

problem 1: very fixed design
fixed set of registers
fixed instruction set
diff. simulator if diff. pipeline

problem 2: hidden functionality
machine code parsing
ALU/memory to register connection

6

example: hidden built-ins
ALU → pipeline regs → register file input
textbook HDL:
int aluA = ...;
int aluB = ...;
int aluOp = ...;

/* W_valE = pipeline register output */
int w_valE = W_valE;

7

example: hidden built-ins
ALU → pipeline regs → register file input
textbook HDL:
int aluA = ...;
int aluB = ...;
int aluOp = ...;
MISSING: pipeling register input

set from ALU
MISSING: 2nd pipeline register input

set from piepline register output
/* W_valE = pipeline register output */
int w_valE = W_valE;
NOT CLEAR: w_valE is register file input

7

fixed? hidden-built-ins
e_valE = [

aluOp_is_add : aluA + aluB ;
...

];
register eM {

/* defines e_valE, M_valE */
valE : 64 = 0;

}
m_valE = M_valE;
register mW {

/* defines m_valE, W_valE */
valE : 64 = 0;

}
reg_dstE = W_valE;

ALU operations written out
by student code

no implicit pipeline
register connection

pipeline registers defined
by student code

register file signals
named reg_

avoid confusion with
pipeline register signals

8

fixed? hidden-built-ins
e_valE = [

aluOp_is_add : aluA + aluB ;
...

];
register eM {

/* defines e_valE, M_valE */
valE : 64 = 0;

}
m_valE = M_valE;
register mW {

/* defines m_valE, W_valE */
valE : 64 = 0;

}
reg_dstE = W_valE;

ALU operations written out
by student code

no implicit pipeline
register connection

pipeline registers defined
by student code

register file signals
named reg_

avoid confusion with
pipeline register signals

8

fixed? hidden-built-ins
e_valE = [

aluOp_is_add : aluA + aluB ;
...

];
register eM {

/* defines e_valE, M_valE */
valE : 64 = 0;

}
m_valE = M_valE;
register mW {

/* defines m_valE, W_valE */
valE : 64 = 0;

}
reg_dstE = W_valE;

ALU operations written out
by student code

no implicit pipeline
register connection

pipeline registers defined
by student code

register file signals
named reg_

avoid confusion with
pipeline register signals

8

fixed? hidden-built-ins
e_valE = [

aluOp_is_add : aluA + aluB ;
...

];
register eM {

/* defines e_valE, M_valE */
valE : 64 = 0;

}
m_valE = M_valE;
register mW {

/* defines m_valE, W_valE */
valE : 64 = 0;

}
reg_dstE = W_valE;

ALU operations written out
by student code

no implicit pipeline
register connection

pipeline registers defined
by student code

register file signals
named reg_

avoid confusion with
pipeline register signals

8

output aimed at processor simulation
+------------------- between cycles 0 and 1 ----------------------+
| RAX: 0 RCX: 0 RDX: 0 |
| RBX: 0 RSP: 0 RBP: 0 |
| RSI: 0 RDI: 0 R8: 0 |
| R9: 0 R10: 0 R11: 0 |
| R12: 0 R13: 0 R14: 0 |
| register pP(N) { thePc=0000000000000000 } |
| used memory: _0 _1 _2 _3 _4 _5 _6 _7 _8 _9 _a _b _c _d _e _f |
| 0x0000000_: 10 70 13 00 00 00 00 00 00 00 70 1c 00 00 00 00 |
| 0x0000001_: 00 00 00 70 0a 00 00 00 00 00 00 00 10 10 00 |
+---+
pc = 0x0; loaded [10 : nop]
.------------------- between cycles 1 and 2 ----------------------+
...

built-in register values (permits easy testing)

decoded instruction for debugging (using textbook’s ISA)
contents of user-defined registers

9

output aimed at processor simulation
+------------------- between cycles 0 and 1 ----------------------+
| RAX: 0 RCX: 0 RDX: 0 |
| RBX: 0 RSP: 0 RBP: 0 |
| RSI: 0 RDI: 0 R8: 0 |
| R9: 0 R10: 0 R11: 0 |
| R12: 0 R13: 0 R14: 0 |
| register pP(N) { thePc=0000000000000000 } |
| used memory: _0 _1 _2 _3 _4 _5 _6 _7 _8 _9 _a _b _c _d _e _f |
| 0x0000000_: 10 70 13 00 00 00 00 00 00 00 70 1c 00 00 00 00 |
| 0x0000001_: 00 00 00 70 0a 00 00 00 00 00 00 00 10 10 00 |
+---+
pc = 0x0; loaded [10 : nop]
.------------------- between cycles 1 and 2 ----------------------+
...

built-in register values (permits easy testing)

decoded instruction for debugging (using textbook’s ISA)
contents of user-defined registers

9

output aimed at processor simulation
+------------------- between cycles 0 and 1 ----------------------+
| RAX: 0 RCX: 0 RDX: 0 |
| RBX: 0 RSP: 0 RBP: 0 |
| RSI: 0 RDI: 0 R8: 0 |
| R9: 0 R10: 0 R11: 0 |
| R12: 0 R13: 0 R14: 0 |
| register pP(N) { thePc=0000000000000000 } |
| used memory: _0 _1 _2 _3 _4 _5 _6 _7 _8 _9 _a _b _c _d _e _f |
| 0x0000000_: 10 70 13 00 00 00 00 00 00 00 70 1c 00 00 00 00 |
| 0x0000001_: 00 00 00 70 0a 00 00 00 00 00 00 00 10 10 00 |
+---+
pc = 0x0; loaded [10 : nop]
.------------------- between cycles 1 and 2 ----------------------+
...

built-in register values (permits easy testing)

decoded instruction for debugging (using textbook’s ISA)

contents of user-defined registers

9

output aimed at processor simulation
+------------------- between cycles 0 and 1 ----------------------+
| RAX: 0 RCX: 0 RDX: 0 |
| RBX: 0 RSP: 0 RBP: 0 |
| RSI: 0 RDI: 0 R8: 0 |
| R9: 0 R10: 0 R11: 0 |
| R12: 0 R13: 0 R14: 0 |
| register pP(N) { thePc=0000000000000000 } |
| used memory: _0 _1 _2 _3 _4 _5 _6 _7 _8 _9 _a _b _c _d _e _f |
| 0x0000000_: 10 70 13 00 00 00 00 00 00 00 70 1c 00 00 00 00 |
| 0x0000001_: 00 00 00 70 0a 00 00 00 00 00 00 00 10 10 00 |
+---+
pc = 0x0; loaded [10 : nop]
.------------------- between cycles 1 and 2 ----------------------+
...

built-in register values (permits easy testing)

decoded instruction for debugging (using textbook’s ISA)
contents of user-defined registers

9

with debugging info
i10bytes set to 0x137010 (reading 10 bytes from memory at pc=0x0)
pc = 0x0; loaded [10 : nop]
Values of inputs to built-in components:
pc 0x0000000000000000
Stat 0x1

Values of outputs of built-in components:
i10bytes 0x00000000000000137010

Values of register bank signals:
P_thePc 0x0000000000000000
p_thePc 0x0000000000000001

Values of other wires:
dest 0x0000000000001370
icode 0x1
valP 0x0000000000000001

signal values for each cycle
actions taken by built-in components

10

with debugging info
i10bytes set to 0x137010 (reading 10 bytes from memory at pc=0x0)
pc = 0x0; loaded [10 : nop]
Values of inputs to built-in components:
pc 0x0000000000000000
Stat 0x1

Values of outputs of built-in components:
i10bytes 0x00000000000000137010

Values of register bank signals:
P_thePc 0x0000000000000000
p_thePc 0x0000000000000001

Values of other wires:
dest 0x0000000000001370
icode 0x1
valP 0x0000000000000001

signal values for each cycle

actions taken by built-in components

10

with debugging info
i10bytes set to 0x137010 (reading 10 bytes from memory at pc=0x0)
pc = 0x0; loaded [10 : nop]
Values of inputs to built-in components:
pc 0x0000000000000000
Stat 0x1

Values of outputs of built-in components:
i10bytes 0x00000000000000137010

Values of register bank signals:
P_thePc 0x0000000000000000
p_thePc 0x0000000000000001

Values of other wires:
dest 0x0000000000001370
icode 0x1
valP 0x0000000000000001

signal values for each cycle
actions taken by built-in components 10

changes over time
first CS:APP offerings (2014)

used CS:APP’s language

initial version (2015-2017)
targeted for processor construction assignments
some built-in components + CPU-specific debugging
otherwise supported multiple processor designs in one simulator

rewrite (2017-2023)
better error messages
strict value width enforcement
avoid floating/default values

11

changes over time
first CS:APP offerings (2014)

used CS:APP’s language

initial version (2015-2017)
targeted for processor construction assignments
some built-in components + CPU-specific debugging
otherwise supported multiple processor designs in one simulator

rewrite (2017-2023)
better error messages
strict value width enforcement
avoid floating/default values

12

a common student error
two natural decisions:

machine code: bits 12–16 contain RA (register index)
rA = instr_mem_output[12..16];

code for “add RA, RB”
reg_inputE = rA + rB;

oops: rA is index of RA, not value from register file

“type error”: mixing up register index + value

13

a common student error
two natural decisions:

machine code: bits 12–16 contain RA (register index)
rA = instr_mem_output[12..16];

code for “add RA, RB”
reg_inputE = rA + rB;

oops: rA is index of RA, not value from register file

“type error”: mixing up register index + value
13

types?
don’t want full type system

wires in hardware don’t “know” what type they are

solution: check for widths (number of bits) matching

conversion between widths needs to be explicit

14

wire widths
reg_inputE = rA + rB;
error: Mismatched wire widths.

The wire 'reg_inputE' is declared as 64 bits wide.
But a 4 bit wide value is assigned to it:

-> test.hcl:5
|

5 | reg_inputE = rA + rB;
| ^^^^^^^

15

results
students often credited assignments with letting them really
understand pipelining
complaints re: workload lower over time

from improved error reporting/testing support?
from better TA support?
minor tweaks to assignment writeups?

improved grades over time
…but mostly from autograder availability

made instructors comfortable teaching more advanced ILP
(out-of-order)

16

future
https://github.com/charlesreiss/hclrs-
assignments

for unrelated reasons, our Comp Arch courses have changed

no longer split comp sci/computer engineering

less detailed pipelining/HDL coverage in core

17

18

our HDL
multi-bit signals

“connections” via assignment syntax
signalName = expression
expression can include C-like arithmetic

built-in storage components (w/ in+out signals)

declared “register banks” (w/ in+out signals)

case expressions (copied from CS:APP) represents MUXes
[cond1: value1; cond2: value2; ...]
avoids procedural-like syntax for combinatorial circuits

19

register banks
register xY {

foo : 64 = 0;
bar : 64 = 0;

};
declares 2 registers ‘foo’, ‘bar’
inputs: x_foo, x_bar
outputs: Y_foo, Y_bar
64-bit width, initial value 0

meant to allow following CS:APP’s naming:
d_foo set by decode stage, E_foo read by execute stage 20

learning goals
purpose of clock in synchronous digital logic

hardware is inherently parallel

making decisions with multiplexors

critical path length and clock rate

parallelism via pipelining

data and control hazards in a pipelined processor

21

assignment sequence
week 1–2: single-cycle CPU

lab 1: incrementing PC (variable-width instruction)
HW 1: simple register transfer instructions, jump
lab 2: simple arithmetic/conditional move
HW 2: flow control, stack instructions

week 3–4: pipelined CPU
lab 1: two-stage pipeline
HW 1: five-stage pipeline (hazard handling w/ forwarding)
lab 2: memory instructions (hazard handling w/ stalling)
HW 2: rest (branch prediction, more stalling handling)

22

built-in components
customized to our assignments

two-port main memory
80-bit “instruction” read port
64-bit “data” read+write port

two read port, two write port register file
15 64-bit registers + 1 zero register

“Stat” simulation control signal
for halting simulator

23

changes over time
first CS:APP offerings (2014)

used CS:APP’s language

initial version (2015-2017)
targeted for processor construction assignments
some built-in components + CPU-specific debugging
otherwise supported multiple processor designs in one simulator

rewrite (2017-2023)
better error messages
strict value width enforcement
avoid floating/default values

24

error message refinement
wire foo = bar;
(intended to be: “wire foo : 64; foo = bar;”)

first version: “syntax error on line XX”

error: Wire declaration missing width:
-> test.hcl:5
|

5 | wire foo = bar;
| ^^^^^^

error: Wire declaration must be separate from assignment:
-> test.hcl:5
|

5 | wire foo = bar;
| ^^^^^^

25

error message refinement
wire foo = bar;
(intended to be: “wire foo : 64; foo = bar;”)

first version: “syntax error on line XX”
error: Wire declaration missing width:

-> test.hcl:5
|

5 | wire foo = bar;
| ^^^^^^

error: Wire declaration must be separate from assignment:
-> test.hcl:5
|

5 | wire foo = bar;
| ^^^^^^

25

error message fixes
specific generic error messages (“expected one of X, Y, Z after ...”)

custom error messages for special cases

parsed common error patterns
didn’t expand HDL language to keep it simple to explain
…but did necessary parsing work

26

changes over time
first CS:APP offerings (2014)

used CS:APP’s language

initial version (2015-2017)
targeted for processor construction assignments
some built-in components + CPU-specific debugging
otherwise supported multiple processor designs in one simulator

rewrite (2017-2023)
better error messages
strict value width enforcement
avoid floating/default values

27

case expressions
CS:APP syntax for “case expressions”
destination = [

conditionOne : valueWhenConditionOne;
conditionTwo : valueWhenConditionTwo;
conditionThree : valueWhenConditionThree;
conditionFour : valueWhenConditionFour;

];
if/else if/else if/else syntax

presented as representing a MUX

28

problems with default values
reg_dstE = [

icode == OPQ : rB;
icode == RMMOVQ : REG_NONE;

];

bug: case missing
get some implicit value (0 in our first tool)

our solution: required default:

reg_dstE = [
icode == OPQ : rB;
icode == RMMOVQ : REG_NONE;
true : some_value_obvious_in_debugging;

];

29

problems with default values
reg_dstE = [

icode == OPQ : rB;
icode == RMMOVQ : REG_NONE;

];
bug: case missing

get some implicit value (0 in our first tool)

our solution: required default:
reg_dstE = [

icode == OPQ : rB;
icode == RMMOVQ : REG_NONE;
true : some_value_obvious_in_debugging;

];

29

problems with default values
reg_dstE = [

icode == OPQ : rB;
icode == RMMOVQ : REG_NONE;

];
bug: case missing

get some implicit value (0 in our first tool)

our solution: required default:
reg_dstE = [

icode == OPQ : rB;
icode == RMMOVQ : REG_NONE;
true : some_value_obvious_in_debugging;

];
29

equality issues?
reg_dstE = [

/* student meant: icode == OPQ : ...*/
OPQ : rB;
/* student meant: icode == RMMOVQ : ...*/
RMMOVQ : REG_NONE;
true : some_value_obvious_in_debugging;

];
bug: missing comparison

non-zero constants (like OPQ) are true (following C semantics)

our solution: compile error: “multiple default cases”

30

equality issues?
reg_dstE = [

/* student meant: icode == OPQ : ...*/
OPQ : rB;
/* student meant: icode == RMMOVQ : ...*/
RMMOVQ : REG_NONE;
true : some_value_obvious_in_debugging;

];
bug: missing comparison

non-zero constants (like OPQ) are true (following C semantics)

our solution: compile error: “multiple default cases”
30

changes over time
first CS:APP offerings (2014)

used CS:APP’s language

initial version (2015-2017)
targeted for processor construction assignments
some built-in components + CPU-specific debugging
otherwise supported multiple processor designs in one simulator

rewrite (2017-2023)
better error messages
strict value width enforcement
avoid floating/default values

31

unintended combinatorial circuit loops

PC

instruction
memory

very common student error pattern
error: Circular dependency detected:

'pc' depends on 'i10bytes' and
'i10bytes' depends on 'pc'

32

why not Verilog/VHDL?
generally: less irrelevant-to-us boilerplate

modules, etc.
worrying about which clock edge triggers logic
memory/register file interface details

avoid procedural-looking logic
“if (a==0) begin …”
emphasize parallel nature of hardware

limit to plausible synthesizable logic

avoid implicitly truncated values

33

following a textbook?
assignments still followed CS:APP textbook’s design

built-in components in simulator followed textbook’s naming

…but some of those we found less-than-ideal:
register write enable/reset signal naming
inconsistent register file/memory interface

34

textbook register control
register xY { foo : 64 = 0; }
register output Y_foo

register input x_foo
changes Y_foo value next cycle

write disable stall_Y
affects Y_foo value next cycle
not only signal needed to implement stalling

reset bubble_Y
affects Y_foo value next cycle

35

textbook register control
register xY { foo : 64 = 0; }
register output Y_foo

register input x_foo
changes Y_foo value next cycle

write disable stall_Y
affects Y_foo value next cycle
not only signal needed to implement stalling

reset bubble_Y
affects Y_foo value next cycle

35

textbook register control
register xY { foo : 64 = 0; }
register output Y_foo

register input x_foo
changes Y_foo value next cycle

write disable stall_Y
affects Y_foo value next cycle
not only signal needed to implement stalling

reset bubble_Y
affects Y_foo value next cycle

35

processor design and HDLs
both courses: computer processor design assignments

use a hardware description language

to describe processor + simulate/test it

typical industrial options: Verilog, VHDL, …

36

	motivation
	two courses
	two courses, part two

	our HDL assignments
	v textbook

	interface
	growing pains
	width enforcement

	student reactions
	current/future
	backup slides
	our HDL language
	assignment goals
	built-in component list
	error message problems
	default values
	loops
	why not verilog?
	things from text we didn't like
	HDLs, generally

