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ABSTRACT

Energy-harvesting designs typically include highly entangled app-

lication-level and energy-management subsystems that span both

hardware and software. This tight integration makes developing

sophisticated energy-harvesting systems challenging, as developers

have to consider both embedded system development and intermit-

tent energy management simultaneously. Even when successful,

solutions are often monolithic, produce suboptimal performance,

and require substantial effort to translate to a new design. Instead,

we propose a new energy-harvesting power management architec-

ture, Altair that offloads all energy-management operations to the

power supply itself while making the power supply programmable.

Altair introduces an energy supervisor and a standard interface

to enable an abstraction layer between the power supply hardware

and the running application, making both replaceable and recon-

figurable. To ensure minimal resource conflict on the application

processor, while running resource-hungry optimization techniques

in the supervisor, we implement the Altair design in a lower power

microcontroller that runs in parallel with the application. We also

develop a programmable power supply module and a software

library for seamless application development with Altair.

We evaluate the versatility of the proposed architecture across a

spectrum of IoT devices and demonstrate the generality of the plat-

form. We also design and implement an online energy-management

technique using reinforcement learning on top of the platform and

compare the performance against fixed duty-cycle baselines. Results

indicate that sensors running the online energy-manager perform

similar to continuously powered sensors, have a 10× higher event

generation rate than the intermittently powered ones, 1.8-7× higher

event detection accuracy, experience 50% fewer power failures, and

are 44% more available than the sensors that maintain a constant

duty-cycle.
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1 INTRODUCTION

The ubiquitous vision of the Internet-of-Things is greatly ham-

pered by the “battery problem”. As reliable power sources like wall

power are not always available where IoT devices are deployed,

many devices use batteries as their main power source. Batteries,

due to their limited cycle count [5, 35], potential long recharge

times [32, 47], and hazardous nature [25, 29] have become a less

attractive option as a power source for applications that require low

maintenance and life-long service. To eliminate these drawbacks,

certain ubiquitous applications which previously relied on batter-

ies as their power source, have adopted energy-harvesting power

supplies as an alternative. Such applications include building and

home automation, smart industrial monitoring, and smart wear-

able applications. Recent works have even pushed the boundaries

of smart sensing by introducing energy-harvesting medical im-

plants [16, 31], wearable activity tracker [28, 42, 46], micro-satellites

for space observation [27], and industrial and residential monitor-

ing [1, 9, 14]. Though energy-harvesting systems are making their

way into mainstream sensing applications, a vast majority of the

commercial off-the-shelf IoT sensors still rely on batteries [10, 20].

Unfortunately, converting a battery-powered application to energy-

harvesting is not as straightforward as replacing the battery with a

harvester. Harvestable energy is usually very limited, intermittent,

and unpredictable which requires special hardware and software

support to achieve useful operation [8, 11, 17, 48].

The operating principle of battery-less energy-harvesting appli-

cations can be broadly categorized into two approaches: intermittently-

powered and energy-neutral. The first category of sensors harvest

energy from the environment through solar, RF, thermal, and kinetic

sources, store the energy momentarily in a capacitor, operate until

the capacitor is depleted, and repeat this cycle continuously, while

the latter store energy for future use and regulate the operational

frequency of the sensor to ensure that the outgoing energy roughly

matches the combined incoming and stored energy. Various designs

implement these techniques to realize energy-harvesting systems,

including hardware-based [12, 18, 24, 49] and software-based so-

lutions [7, 11, 26, 36]. In both cases, however, energy-harvesting

systems typically consist of a single processor along with an energy-

harvesting front-end and application peripherals, where the proces-

sor is responsible for both energy management tasks (i.e. tracking

the amount of energy stored, controlling the wake-up time in-

terval, turning on peripherals at specific voltage levels, etc.), and

application-specific tasks (i.e. sampling, computation, and trans-

mitting radio packets). While this monolithic architecture can be

simple and efficient for the intended application, adopting these

platforms to build new applications can be quite difficult due to

tightly-coupled implementations of energy-management code and

application code. The intertwined application and energy manage-

ment requires the developer to be responsible for understanding

not only how to manage energy and correctly implement the appli-

cation, but also how the two halves might interact.
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This tight coupling of energy management and application logic

imposes a major limiting factor for energy-harvesting system de-

sign. In this paper, we propose Altair, a modular architecture for

energy-harvesting system design that decouples energy manage-

ment from application execution. We claim that traditional power

supply interfaces (consisting only of one or more voltage rails

and possibly a power available flag) must expand to allow energy-

harvesting power supplies to encapsulate the complex energy man-

agement tasks required of sophisticated energy-harvesting systems

to achieve energy-neutral operation. By requiring the power sup-

ply itself to handle tasks including energy forecasting, allocation,

measurement, and management, the application logic no longer

has to integrate these tasks. Application platforms can focus on

the IoT task (as they would with a battery-based power supply),

and the new “smart” power supply can make intelligent decisions

about when the application should wake up, what operating mode

it should be in, and how long it should stay active, based on its

careful knowledge of the energy state.

To make these decisions, the Altair design incorporates an

energy supervisor that runs energy management protocols (for

example, reinforcement-based learning algorithms for harvesting

prediction and long-term optimizations for energy neutrality) on

behalf of the application. Since the algorithms and power supply

are tightly coupled, they can be highly optimized, and must only be

implemented once. Many application-level platforms can leverage

the same power supply. Further, the energy supervisor can handle

the uncertainty in energy-harvesting system deployment, relieving

each application from needing to consider the range of potential

deployment conditions it might face, and instead allowing the power

supply to adapt to the local conditions post deployment.

Expanding the role of the power supply also requires fundamen-

tally re-thinking the interface between the application processor

and the energy supervisor. Altair includes a much richer interface

that supports a range of potential application platforms. Altair

supports “harvesting-aware” applications that can instead use the

power supply almost as a co-processor to provide hints about the

correct operating mode to use to meet the application’s overall

operational goals. By supporting a range of use cases, Altair can

help many IoT devices embrace the benefits of energy-harvesting

operation.

While implementing Altair architecture, we ensure minimal

resource conflict on the application hardware by offloading the

energy management algorithm to a power-optimized microcon-

troller. Using a separate core also allows decoupling in the time

and power domain and flexibility to be re-used across a variety

of devices. To realize Altair design and evaluate its extensibility,

we create a prototype implementation of the platform with a func-

tional power supply interface. To demonstrate a potential complex

energy management algorithm, we implement a lightweight rein-

forcement learning (RL)-based duty cycle adaption technique that

can run entirely inside the power supply. We provide a bus-based

power supply interface, as well as a software library that application

platforms can use to interface with the power supply.

In our experiments, we integrate six IoT sensors with the Altair

power supply and compare the performance of a variety of energy

supervisor control algorithms. By demonstrating the performance

of several energy-management techniques on a single hardware

platform, integrated with a number of existing devices, we show

the generality, flexibility, and robustness of the energy supervisor

architecture. Our results show that the event capture rate of sensors

when optimized by the RL-based Altair energy supervisor is com-

parable to using a traditional reliable power source, and the capture

rate is 10× higher compared to the intermittently powered ones.

Sensors can achieve 1.8-7× higher event detection accuracy with

opportunistic duty-cycling. We also find that our system incurs

50% fewer power failures and has 44% more availability than the

statically duty-cycled sensors.

To summarize, the main contributions of the paper include:

• We propose, Altair, an energy supervisor architecture for IoT

sensing applications that executes energy management decisions

separately from the application. We claim that this separation is

crucial for better energy optimization and independent applica-

tion design of energy-harvesting battery-less devices.

• We propose a new power supply-application interface that sup-

ports building on top of unreliable power sources and implement

a flexible software library to demonstrate the efficiency of the

proposed system.

• We implement the proposed architecture as a standalone PCB that

can be easily incorporated into new as well as already existing

battery-powered devices. The platform is open source.

2 SYSTEM DESIGN CHALLENGES

Energy-harvesting devices must balance an unreliable source of

energy with application-level goals. Coupling an application’s task

flow to an unreliable source of energy makes energy-harvesting

systems difficult to develop and debug, and can result in poor per-

formance. Often, the application’s task i.e., sensing, computing, or

transmitting, is carefully mapped to the recent energy state of the

energy storage. This tight integration between an application’s task

flow and energy availability significantly limits today’s battery-less

systems in several ways.

Suboptimal performance.With a high degree of energy-applic-

ation coupling, an application’s execution becomes highly energy-

dependent. With unreliable energy, the application needs to per-

form complex software checkpointing techniques to ensure forward

progress, which is not always guaranteed. Application programs

can enter an endless inactive loop [30, 36], producing suboptimal

performance. The complexity, uncertainty, and software overhead

induced in intermittent computing indicate a need for alternative

approaches to design energy-harvesting systems.

Runtime energy optimization.When an application’s task

execution is directly mapped to its energy status, this mapping is

often performed at design time and is not optimized or re-evaluated

during runtime. Decisions made at design time fail to scale post

deployment. Since the nature of harvestable energy is time, space,

and source dependent, modeling accurate energy states for all pos-

sible scenarios apriori is non-trivial. Figure 1 shows two co-located

intermittently-powered solar energy-harvesting nodes that both

transmit a radio packet each time their capacitor reaches a certain

voltage. Though deployed in relatively similar environments, the

harvesting rate of the sensors varies quite significantly resulting

in different throughput and availability, which is hard to model at

design time. Non-linear device parameters are another source of
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Figure 1: Two energy-harvesting sensors in room a) trans-

mit at a rate shown in b). Performance varies significantly

indicating high energy variability of indoor solar energy. Dif-

ferent duty cycles in c) result in different event detection

percentage in d).

stochasticity in energy-harvesting design. For example, two sensors

deployed nearby and powered by the same PV cell could operate

at different points on its PV curve at a given time and therefore,

produce different output power. Different output power results in

different capacitor recharge times. Both of these two relations are

stochastic and non-linear and fixed design time decisions produce

suboptimal performance in post-deployment phases indicating the

importance of runtime energy modeling.

Impedes development. Developing applications with unstable

power requires more expertise, development time, and rigorous

testing and debugging than with reliable power. With the appli-

cation’s behavior being energy-coupled, developers have to care-

fully implement everything from the low-level energy-harvesting

hardware circuitry to writing optimized code within the system’s

limited energy budget. This creates a large burden on an IoT ap-

plication developer. Moreover, finding the optimal design strategy

often takes multiple design-test-deployment cycles. Successful and

smooth battery-less development requires a well-balance between

providing enough abstraction as well as control into the underlying

energy optimization mechanism [38].

This combination of challenges suggests that a different design

architecture for energy-harvesting is required.

3 OVERVIEW OF ALTAIR

We propose Altair, a new energy-management architecture for

energy-harvesting applications that decouples energy related deci-

sions from an embedded application’s task execution. This separa-

tion introduces an abstraction layer between the application and

powermanagementwhich enables independent, modular, and faster

design of both subsystems. Altair hides the low-level complex-

ity of energy measurement and management from an application

developer, while exposing critical energy parameters through the

Altair energy API.

Figure 2: Overview of Altair energy supervisor architecture.

Figure 2 depicts the high-level overview of the Altair energy su-

pervisor architecture. The design consists of three core components:

the energy supervisor, the energy-application interface, and the

main application. The energy supervisor monitors the energy states

of the storage along with load energy consumption and determines

the optimal duty-cycle to achieve energy-neutral operation within

the limited energy budget. The supervisor works as a wrapper func-

tion that implements power supply functionality and an interface

to facilitate calls between the supervisor functions and main appli-

cation. The main application implements the application specific

tasks of an IoT sensor such as sampling, computation, and data com-

munication, and makes call into the energy supervisor using the

interface. The energy-application interface handles requests from

the main application, defines the function-specific input/output

parameters, and ensures reliable data communication. Algorithm 1

outlines how the application and the supervisor can interact. The

function MAIN invokes ENERGY_SUPERVISOR specifying applica-

tion requirements (𝑝1, 𝑝2, ..) to receive the rate at which a task is
performed. Instead of tying an application’s task with the specific

energy status of the storage as done in many battery-less appli-

cations, the main application offloads the decision to determine

an optimal wake-up rate of the sensor to the energy supervisor.

This way, the dependence between the energy supervisor and the

application is reduced.

3.1 Enabled Properties

Altair enables several desired properties of energy-harvesting

system design that traditional implementations often cannot. It in-

troduces a general, reusable, and reliable application-power supply

interface for energy-harvesting applications and achieves indepen-

dent and modular design. Since the energy supervisor and the main

application are separate modules of code and the application’s task

flow is not directly logically dependent on the outcomes of the

supervisor, development can be performed in a parallel fashion.

This decoupling also simplifies adding new APIs to the energy-

supervisor and new functionality in the application. A standard

interface between the energy-harvesting power supply hardware

and the IoT sensor enables integrating a variety of sensors with a

single power supply without re-designing the harvesting circuity

or energy management logic, enabling reusability and scalability of

the platform. Also, since the application does not interact with the

underlying energy-harvesting power supply hardware, the IoT ap-

plication developer does not need to implement power-supply spe-

cific drivers in the application code. Moreover, though we propose

Altair for energy-harvesting applications, the general architecture

can be adopted in battery-powered IoT and mobile applications as

well as for advanced power optimization.
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Algorithm 1

function energy_supervisor (𝑝1, 𝑝2, .., 𝑝𝑛)
return action_rate

function app_routine (𝑟𝑎𝑡𝑒), // application task code
return

function main
After each 𝑡𝑝𝑒𝑟𝑖𝑜𝑑 {

rate = ENERGY_SUPERVISOR (𝑝1, 𝑝2, .., 𝑝𝑛)
APP_ROUTINE (rate) }

4 ALTAIR SYSTEM DESIGN

An IoT application interfaces with the energy supervisor of Altair

to maximize its energy utilization. In this section, we discuss the

core components of the architecture and how they interact. We also

investigate the design choices to understand the trade-offs in the

design space.

4.1 Design Space Trade-off

We note that the isolation between the energy management and

application sub-blocks proposed by Altair can be implemented

in both software and hardware. In software, this isolation would

be possible by delegating the energy management portion in a

separate module with the implementation of appropriate interface

functions accessed by the main application. In the hardware ver-

sion, the energy management functionality could be executed in

a separate core or a processor with dedicated hardware resources.

We identify some crucial factors when choosing between these

various design points. While implementing Altair as a software

component would provide the desired logic detanglement and inde-

pendent code development, we advocate for the hardware version

of Altair design to take advantage of several benefits.

4.1.1 Minimal resource conflict. Today’s IoT devices are extremely

resource-constrained due to their size and power restrictions, yet,

they are expected to perform a diverse range of processing-intensive

applications. Such applications include critical real-time processing,

multi-radio wireless communications, and even running machine

learning inferences. Typically these computation-intensive tasks

are handled in real-time by a low-end microcontroller causing sig-

nificant burden on the shared memory and CPU bandwidth. Adding

an online energy management algorithm would exacerbate these

concerns. Instead, we leverage an ultra-low power microcontroller

with dedicated clock, memory, and I/O bandwidth to execute the

energy supervisor in parallel with the application.

4.1.2 Decoupling in the power domain. Using hardware isolation

and adding additional hardware components to the system might

impose an additional energy cost in an energy-harvesting appli-

cation. However, we argue that the average energy overhead can

actually be reduced by leveraging a lower power core than the main

application. As these two cores are decoupled in the power domain

and they can be turned on/off independently, one can reduce the

overall energy cost. This architecture has been implemented by

silicon vendors in many low power dual-core processors [43, 45].

Furthermore, the energy-management core can be further power-

optimized with the recent growth of ultra-low power chip technol-

ogy.

Table 1: List of Altair APIs.

Energy Supervisor Main Application

c_param_t

get_critical_parameters()

dc_t get_optimal_dutycycle()

list_param_t get_app_list() double

get_current_energy_status()

mode_param_t

get_power_modes()

int get_update_period()

model_array_t

get_energy_model()

4.1.3 Reusability and generality. A hardware implementation of

Altair accelerates the development phase and reduces developer

effort by providing modularity and reusability across multiple appli-

cations. To promote reusability, we adopt the hardware-accelerated

software energy management of Altair and implement the energy

supervisor in a lower powermicrocontroller taking inspiration from

the ARM’s big.LITTLE technology [4] that leverages a smaller lower

power core to enable power optimization. In the evaluation, we

test the performance with a variety of IoT sensors and demonstrate

the composability and generality of the platform. This enables fu-

ture embedded designers to rapidly develop their own applications

while adopting energy-harvesting functionality.

4.2 The Energy Supervisor

The energy supervisor of Altair handles the tasks of energy man-

agement, prediction, and allocation, and makes decisions indepen-

dently from the application logic. To accomplish this, the energy

supervisor has two key components. First, the supervisor interacts

with an energy-harvesting front-end to collect useful information

about the harvesting conditions. This information includes the aver-

age input power, the charging rate of the storage, and instantaneous

and average stored energy. The energy-harvesting front-end typ-

ically accommodates an energy-harvester (e.g. solar, RF, thermal,

or piezoelectricity), a charge controller, and an energy storage (e.g.

capacitor). Second, the supervisor implements the dynamic power

management scheme and the interface presented to the main ap-

plication. For dynamic energy management, the application can

specify the parameters (i.e., duty-cycle) to be optimized and an

optimization algorithm among the supported ones. The supervisor

can also inform the application about which operating mode the

application peripherals should be running in, or the recommended

order of priorities for multiple applications.

The supervisor makes power management decisions by keeping

track of system’s past experience and predicting future expected en-

ergy incomes. Learning and adapting the optimization parameters

at runtime, as opposed to fixed design time or datasheet parameters,

makes the energy supervisor more robust to real-world deployment

conditions. The supervisor attempts to support any type of appli-

cation workload. However, as the underlying hardware can only

buffer a finite amount of energy, the average energy consumption

of the application must be below the maximum buffered energy.
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int main (){
…..

configure_supervisor();
….

get_current_energy_status();
set_timer = get_update_period();
// once set_timer expires
get_optimal_duty_cycle();

…..
}

int main (){
…..

wait_for_cmd_from_app ();
get_critical_parameters();
get_ app_list();
get_ power_modes();

…..

}

Energy supervisor code App code

Figure 3: Exampleworkflowdiagrambetween the application

and energy supervisor. The direction of the arrow specifies

the direction of API calls.

4.3 Energy-Application Interface

The energy-application interface enables the abstraction layer be-

tween the main application and the energy supervisor module.

It facilitates communication between the energy supervisor and

the main application by implementing a set of useful APIs. This

standard interface enables updates and improvements to the en-

ergy supervisor and any optimization algorithms without requiring

direct changes in the application.

4.3.1 Altair Energy API. Table 1 shows the list of available APIs

provided byAltair. The energy supervisor calls get_critical_parame-

ters, get_app_list, and get_power_modes to acquire application or

device specific information. These are fixed configuration parame-

ters of the application that are not expected to change at runtime.

get_critical_parameters returns an array of permitted duty-cycles of

the running application, according to which the energy supervisor

optimizes for long term energy neutrality, and which energy opti-

mization algorithm from the supported ones to use. Currently, the

platform implements three duty-cycling mechanisms (described in

Section 6.2). To understand how energy is being spent, get_app_list

provides the list of energy-atomic operations performed by the ap-

plication. Energy-atomic operations are categorized into sampling

a sensor, computing and analysing the sampled data, transmitting

data, or receiving data. Each of these operations is associated with

a unique operation ID. The application specifies the required op-

erating power modes using get_power_modes. Altair saves this

information into the non-volatile memory of the energy supervisor

to eliminate the need to repeat the APIs calls after a power failure.

On the application side, Altair provides another four APIs,

namely get_current_energy_status, get_optimal_dutycycle, get_update-

_period, and get_energy_model. get_optimal_dutycycle returns the

calculated optimal duty-cycle which is one of the values specified

by get_critical_parameters and the power modes of each operation.

The application performs sensor sampling, computation, and com-

munication at this optimal rate and enters sleep mode in between

operations. The get_update_period returns at what interval the ap-

plication should check for the updated duty-cycle. This depends on

how variable the incoming energy profile of the device is (defaults to

15 minutes). The get_current_energy_status and get_energy_model

offer finer insight into the system’s energy status. By calling these,

the application receives the current stored energy on the capaci-

tor and the current numeric input values used by the duty-cycle

algorithm to calculate the duty-cycle, respectively.

4.3.2 Hardware Energy Interface. The hardware energy interface

consists of the hardware abstraction layer that configures the hard-

ware interface between the supervisor and the application. Each

API call is executed by a set of hardware signals and a data com-

munication channel. The interface consists of voltage, control, and

data channel as shown in Figure 2. The data channel enables a syn-

chronous communication channel between two processors where

the application processor provides the clock signal. When the ap-

plication processor makes a call into the API functions, it sends an

interrupt signal to the energy processor. The energy processor uses

the interrupt to configure the communication hardware and initiate

data transfer. The energy API calls described in the previous section

are translated into data packets. The first byte of energy API packet

encapsulates header information specifying the intended API call

and a read/write bit, and the next two bytes specify the message

length. To invoke the energy supervisor to call an API, the main

application sends a write request and an API call from the applica-

tion is sent as a read request. Both processors avoid sending a new

request if there is any previous unresolved or pending request. We

also keep a timeout timer to avoid a communication deadlock.

Figure 3 shows a flow diagram between the energy supervisor

and the application code using Altair energy API. Upon startup,

the main application uses the configure_supervisor to send write re-

quests and prompt the energy supervisor to call the next three func-

tions for configuration. get_current_energy_status and get_energy_m-

odel is called at any time application, while, the get_optimal_dutycycle

is invoked according to get_update_period.

4.4 The Main Application

The main application is a piece of software that performs the typical

workload of an IoT sensor, i.e. sampling, computing, processing,

and transmitting.

5 ALTAIR PLATFORM IMPLEMENTATION

We implement the Altair energy-harvesting power supply module

in a custom PCB.

5.1 Hardware Components

The Altair hardware consists of two primary modules: a power

system module and an external application module. The power

system module implements the energy supervisor, low level energy-

harvesting hardware, and the hardware interface between the en-

ergy supervisor and the main application. The main application is

representative of a typical IoT sensing application that is powered

through the power supply interface.

Power supply module. The power supply module of Altair

hardware accommodates an energy-harvesting front-end and a

companion microcontroller that implements the energy supervisor

software. Figure 4 shows the power supply module and the block

diagram of the core components.

An ultra-low power battery charger IC SPV1050 charges the

supercapacitor from a solar or TEG harvester until it reaches 3.1 V.
A nano-power boost regulator MAX17222 with > 70% efficiency

at 10 µA of input current regulates the supercapacitor voltage after

its voltage reaches 2 V. The platform currently uses a monocrys-

talline IXYS solar cell as the harvester and a 470 mF supercapacitor
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(a) Altair Power supply board inter-

facing with a sensor.

(b) Hardware block dia-

gram.

Figure 4: The Altair hardware platform consists of a power

supply module that implements the energy supervisor and

a discrete power supply application interface that can be

plugged in directly with an external application.

with an ESR value of 25Ω as electrical storage. We size the capacitor

empirically to ensure that it can supply the highest system peak

current.

The energy supervisor uses an ultra-low power 32-bit ARM

Cortex-M0+ with a 8 kB of SRAM and 64 kB of flash with different

low power modes. The power supply consists of a current-sense

amplifier MAX9634 to keep track of the load energy consumption.

A nano-power power gating IC TPL5110 with reconfigurable time

interval allows the MCU to duty cycle the application in hardware

with minimal calibration. The MCU leverages a digital potentiome-

ter to dynamically reconfigure the time interval according to the

calculated duty cycle.

The interface. The interface of the power supply module pro-

vides two voltage rails of 3.3V and 1.8V, one duty-cycled voltage
rail, capacitor voltage output. We use SPI to exchange information

between the two microcontrollers and one GPIO to trigger inter-

rupts. For debugging and evaluation, the interface exposes a UART

channel that can be used to log the instantaneous capacitor voltage

state and current measurement channel.

Application module. The application module of Altair plat-

form is an externally attached sensor. We implement an air quality

and pressure sensor board as a part of the platform.

5.2 Energy Supervisor Implementation

We implement an example energy supervisor to show how the

architecture can be leveraged to optimize the duty-cycle of the con-

nected application. With the dedicated hardware resources of the

energy supervisor microcontroller, processing-intensive on-device

energy optimization can be implemented without imposing signifi-

cant resource conflict on the application microcontroller. One of the

useful properties of the energy supervisor is its capability to learn

to behave optimally post deployment without explicitly modeling

the harvesting environment pre-deployment. To demonstrate this,

we implement an on-device energy supervisor using reinforcement

learning. Reinforcement learning has shown promising results as a

power management technique since it can enable the sensor node

to learn to adjust its duty cycle in a completely unknown environ-

ment [3, 21, 41]. The RL-based energy supervisor reacts to changes

in available energy to update an application’s operation, in this

Algorithm 2 RL Algorithm for Energy Management

Initialize 𝑆 , 𝐴, 𝑄 (𝑠, 𝑎) = 0, 𝛼 , 𝛾 , 𝜖 , 𝛿
while true do

for each episode do
𝑠 ← Sample current states
𝑎 ← Choose current action from 𝑠 using 𝜖-greedy policy
wait for a duration of 𝑡𝑤𝑎𝑖𝑡
for each step of the episode do

Perform action 𝑎 for the duration of 𝑡𝑠𝑡𝑒𝑝
wait for a duration of 𝑡𝑤𝑎𝑖𝑡
𝑠 ′ ← Sample next states
𝑟 ← reward (𝑠 ′, 𝑎) according to equation (3)
𝑎′ ← Choose next action using 𝜖-greedy policy
𝑄 (𝑠, 𝑎) ← 𝑄 (𝑠, 𝑎) + 𝛼 ∗ [𝑟 + 𝛾 ∗ (𝑄 (𝑠 ′), 𝑎′) −𝑄 (𝑠, 𝑎)]
𝜖 ← 𝜖 − 𝛿
𝑠 ← 𝑠 ′
𝑎 ← 𝑎′

implementation, the rate of sending packets to report an event. The

goal of the algorithm is to maximize the application sensing rate

while avoiding critical energy depletion.

At a given time, the energy-harvesting node acts as an agent

in different states (𝑠𝑡 ∈ 𝑆) corresponding to the available stored
energy, incoming energy, and energy consumed by the load. The

environment in this scenario consists of the stochastic harvestable

energy source and the randomness inherent in the sensor hardware.

The node interacts with the environment in time-slotted episodes by

selecting a sensing rate (𝑎𝑡 ∈ 𝐴), and receives feedback in the form
of reward (𝑅 : 𝑆 × 𝐴 → 𝑅). Through a series of such interactions
with the environment, the agent finds its optimal policy (𝜋∗) to
select future actions.

RL algorithm.We define the state space for the algorithm to

capture the energy profile of the system. At a given time-step 𝑡𝑘 of
an episode, the energy supervisor collects all the following state

information,

𝑆 = {𝑒𝑠𝑡 (𝑡𝑘 ), 𝑒𝑖𝑛 (𝑡𝑘 ), 𝑒𝑙𝑜𝑎𝑑 (𝑡𝑘 )} (1)

where 𝑒𝑠𝑡 (𝑡𝑘 ), 𝑒𝑖𝑛 (𝑡𝑘 ), and 𝑒𝑙𝑜𝑎𝑑 (𝑡𝑘 ) denotes the supercapacitor
voltage at 𝑡𝑘 , average input energy, and the load energy consump-
tion during 𝑡𝑘 . These parameters are indicative of the system’s
overall energy dynamics for which the supervisor finds an optimal

action for the sensor. We consider a 24-hour long episode with a

time step of 20 minutes.

The action space consists of a set of discrete sensing rate,

𝐴 = [𝑟𝑚𝑖𝑛, ..., 𝑟𝑚𝑎𝑥 ] (2)

where 𝑟𝑚𝑖𝑛 and 𝑟𝑚𝑎𝑥 are the minimum and maximum rate for

the application. At each time step 𝑡𝑘 , the agent selects an action
𝑎(𝑡𝑘 ) ∈ 𝐴 according to the underlying policy. The goal of the reward

function is to inspire the agent to choose the actions that maximize

the sensing rate of the application andmaintains minimum required

energy on the energy storage. To model the reward function we

adapt the reward function proposed by Aoudia, et al. [3] as follows:

𝑅 = (𝑒𝑠𝑡 − 𝑒𝑚𝑖𝑛)/(𝑒𝑚𝑎𝑥 − 𝑒𝑚𝑖𝑛) ∗ 𝑎(𝑡𝑘 ) (3)

We assign a negative reward of -400 if capacitor voltage falls

below the minimum required voltage level of 2.0 V. We choose this
number so that the maximum cumulative reward over an episode
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Figure 5: Spectrum of IoT sensors on a scale of hardware and software flexibility. The left-most category has maximum

flexibility, whereas to the right-most has fixed hardware and software. We evaluate the Altair platform with different points

on this scale to demonstrate generality.

Figure 6: Altair device deployments.

does not exceed the negative reward. Algorithm 2 lists the pseu-

docode showing how we implement the SARSA reinforcement

learning technique [44] to calculate the optimum duty cycle of an

application.

Parameter setup. Though states and actions are continuous

functions, we discretize those to restrict the size of Q-matrix. The

discrete action space is A = [1,2,3,4,5] s, which denotes the time

between two consecutive tasks.We set 𝜆 = .99, 𝛾 = .8, 𝜆𝑚𝑖𝑛 = .1, 𝛿 =
.001, 𝛼 = .1 after explicit testing. To enable faster convergence, we
ensure that the learned Q-table is saved before a power failure

happens by polling the capacitor voltage in the background.

6 EVALUATION

To evaluate the Altair design, we investigate the usability of the

energy supervisor architecture and develop a set of different IoT

applications. To demonstrate the versatility of the architecture, we

run the applications using different energy supervisor algorithms

and compare their performance. We tested the platforms across

four categories of IoT hardware and evaluated how well these appli-

cations perform in terms of event generation frequency for periodic

sensing and percentage of accurate detection for event-based ap-

plications. We integrated six sensors with the Altair hardware

platform. We also explore the performance of the reinforcement

learning based energy supervisor to understand how well the sys-

tem adapts in terms of cumulative active time and reactivity—an

inherent feature of the energy supervisor that shows the online

adaptability of the system in post deployment situations.

6.1 Methodology

Categorizing existing IoT devices. Altair uses its standard

hardware and software interface to enable different applications. To

test the usability of the Altair power supply interface, we broadly

categorize existing IoT devices into four groups based on the hard-

ware and software interface exposed by the device: 1) sensors that

are custom built specifically to use with Altair platform ensur-

ing ideal interfacing, 2) sensors with open source hardware and

optimized applications, 3) sensors that have available hardware

design with somewhat modifiable software stacks, 4) off-the-shelf

sensors with non-modifiable hardware and software. This spectrum

is shown in Figure 5. Of these four groups, the first group of sensors

is best suited for use with Altair. However, embedded software

developers typically use the second and third categories of sensors.

We select six IoT sensors from these four categories to perform

our experiments. These sensors are 1) a Pascal sensor board that

Test platforms Processor Peak current (mA) Default power supply Available interface

Pascal Cortex-M4 nRF52840 13.6 flexible power supply, SPI

BLEES Cortex-M0 nRF51822 15 Non-rechargable battery power supply

Herald Cortex-M0 nRF51822 14.8 Intermittently powered power supply

LPCSB Cortex-M0 nRF51822 14.6 USB-powered power supply, I2C

Nordic Thingy:52 Cortex-M0 nRF52832 10 Rechargable battery
power supply, I2C,

SPI, MOSFET drivers, IO

SensorBug BR-LE4.0-S3A 17 Non-rechargable battery power supply

Table 2: Specifications of test applications.
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Figure 7: Performance of different sensors when optimized by different variants of the energy supervisor and their default power

supply. The Altair energy supervisor implements reinforcement learning to choose between a set of transmission intervals.

BLEES, LPCSB, and Thingy:52 sensors using Altair produce a similar distribution of packet frequencies as the continuously

powered version. For intermittently-powered Herald beacons however, Altair produces denser packet distribution.

monitors ambient air quality and pressure (category 1), 2) the BLEES

platform [1] that senses temperature, humidity, light, pressure, and

movement, (category 2), 3) the LPCSB [40], an ambient light sensor

that categorizes natural light from sunlight, (category 2), 4) Herald,

an intermittently-powered energy harvesting Bluetooth Low En-

ergy (BLE) beacon [39] (category 2), 5) the Nordic Thingy:52 [33], a

multi-sensor prototyping platform (category 3), and 6) the Sensor-

Bug [6], a BLE beacon for smart homemonitoring with temperature,

light, and acceleration sensors (category 4). While BLEES, LPCSB,

Herald hardware have limited hardware interfaces, the Pascal and

Thingy platform includes a relatively richer interface with ports for

communication including I2C and SPI. For the devices that do not

have a data channel or open software that we can reprogram, we

use the duty-cycled voltage terminal of the power supply interface

to turn on/off the sensor according to the calculated duty-cycle.

This exhibits the benefit of using the hardware version of the energy

supervisor as discussed in Section 4.1.3.

The selected devices are designed to work on different powering

options including rechargeable/non-rechargeable batteries, con-

stant power, and intermittent source of energy. Also, these sensors

use different application microcontrollers and their energy con-

sumption varies. Table 2 lists the characteristics of these hardware

platforms. Altair’s strength lies in its ability to take a battery-

powered sensor and convert it to a self-powered energy-harvesting

device. We envision that this will pave the way to many future

battery-less applications.

Interfacing with Altair. To interface with Altair, we simply

deactivate the default power supply of the sensor and jumper the

power rails and SPI channel to the Altair power supply. In the

Thingy:52 board, we connect the voltage rails bypassing the battery

monitoring circuitry. The application uses the energy API library

at runtime to interface with the energy supervisor. The application

developer implements the mapping between the API and their

corresponding request id as an initial configuration for both the

application and energy supervisor.

Sensing applications. We consider periodic and event-based

sensing tasks from the above four categories to understand how

well the adaptive power management algorithm captures useful

events. The sensors use Bluetooth Low Energy (BLE) radio to report

events. An always-on BLE receiver scans for advertisement packets

and advertisements are sent with short intervals in between, in the

range of milliseconds to a few seconds.

Deployment.Our deployment scenario consists of four different

indoor locations in a building space that are exposed to variable

light levels across different times of a day: on three walls, on a desk,

a door, and a window. Figure 6 shows some of the deployed devices.

A gateway device collects the BLE packets sent by the deployed

sensors and logs them for post-processing. We train the energy

supervisor reinforcement learning agent before beginning the data

collection unless specified otherwise.

6.2 Energy Supervisor Performance

Event frequency. In this section, we compare the performance

of the six test sensors in terms of the captured event frequency

with respect to their default power source and different variants of
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Figure 8: The percentage data yield of each sensor normalized

to their default power supply. The Altair energy supervisor

produces better data yield than the Altair-max variant that

always selects the high sampling rate.
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Figure 9: Percentage active time comparison across different

energy supervisors. Active time denotes the percentage of

time within an interval the sensor was continuously trans-

mitting data. Altair outperforms the other variants.

the energy supervisor running on the power supply. The different

variants of the energy supervisors are: Altair that runs the energy

supervisor as discussed in Section 5.2, Altair-Min which always

chooses the minimum duty cycle, hence maximum delay between

packets (5s), and Altair-Max which chooses the minimum delay

between packets (1s). We evaluate the cumulative distribution func-

tion (CDF) of the time between packets received by the receiver.

Figure 7 compares the results. The time between two consecutive

samples is a helpful parameter to understand overall how respon-

sive the system is to an external event. The denser the samples, the

more likely is the system to report critical events.

The sensor workload consists of taking a sample and reporting

the data in BLE packet. When powered with the default supply,

we program the BLEES, LPCSB, Thingy:52 sensor to send a BLE

packet with the sensor data every second and SensorBug has a

pre-programmed advertising interval of 1636 ms. For the herald

beacon, however, the rate at which a packet is sent is proportional

to its rate of harvesting energy. When connected to the Altair

power supply, the sensors dynamically change the packet sent rate

reacting to the changes in available energy.

We observe from the distributions of packet intervals in Figure 7

that for BLEES, LPCSB, and Thingy:52 sensors, the distribution

curve of Altair and the default power supply follow closely, and

the 95th percentile of the inter-packet times are within ten seconds.

The SensorBug, in contrast, achieves 111 s. The packet interval

distribution of SensorBug with Altair follows similar pattern as

the default power, however, it undergoes longer occasional power
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Figure 10: Packet distribution with Altair. Sensors with Al-

tair opportunistically choose between five allowable rates,

prioritizing the higher rate.
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Figure 11: Packet distribution with the default power source.

outages due to its relatively high peak current (Table 2). Altair

achieves overall higher captured event frequency than Altair-Min,

the intermittent power supply, but worse than Altair-Max. For the

intermittently-powered herald beacons, the time between consecu-

tive samples is directly affected by the availability of harvestable

energy and charge time of the storage capacitors resulting in larger

delays. Altair system however masks the irregularity of energy by

storing it in a sufficiently sized capacitor and ensures samples are

collected evenly at the desired rate. According to Figure 7, Herald

achieves 10× higher captured event frequency with Altair than

with its intermittent power supply.

Altair produces better percentage data yield and active time

than both baselines as shown in Figure 8 and Figure 9, as Altair

optimizes for better sensing rate and fewer power failures. The

percentage data yield signifies the amount of produced data nor-

malized with respect to constant power sources and the percentage

active time denotes the time in a fixed time interval for how long

the sensor was active.

Figure 10 compares the distribution of inter-sample times of

the sent packets. Altair distributes the sample rate among the

allowable rates reactively based on the decision of the energy su-

pervisor. The RL agent chooses more and more actions that sample

packets at a high rate when there is an energy surplus and re-

laxes the rate when the system is likely to see a power outage.

The distribution shows that for all the sensors more than 35% of

the total samples have a rate of one sample per second. Figure 11

shows the distribution for the default power supply. In the case
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Figure 12: Event detection accuracy for time critical applica-

tions.

of intermittently-powered systems, the samples are more sporadic

and the sensor is spending majority of the time in charging the

energy storage. Such systems are likely to miss events than Altair

that prioritizes higher sample rates when possible.

Event detection accuracy. To investigate howwell applications

can detect external events with Altair, we classify event-based

applications into two categories: time critical and non-time crit-

ical. For the time critical scenario, detecting an event should be

instantaneous (i.e., less than a few seconds) since some external

agent might need to react that event, for example, door sensors and

motion-based light switch. For the non-time critical applications,

detecting an event in a reasonable time interval is sufficient, for

example, temperature sensors for HVAC systems. We deployed one

BLEES sensor to detect door events, one to detect motion in two

different locations and one Thingy:52 to detect temperature events.

We connected one BLEES board with the Altair power supply

and deployed it on a door to detect each time the door has been

opened or closed, and two of them in a hallway and on a desk to

detect movements for one week. With the default power supply,

when the sensor gets an interrupt due to an event, BLEES wakes up

to report the event. When connected with Altair, the power sup-

ply processor fully controls the turn on/off the BLEES application

processor. For the Thingy:52 board, the sensor is configured to go

to the sleep mode and wake up when an event happens and report

that event only if the capacitor has sufficient voltage. We chose to

detect motions in two different locations to emulate two real-life

scenarios: spaces that are usually lit most of the time of a day like a

hallway, and spaces that have sporadic light exposure and sensing

and harvesting is likely to happen simultaneously such as at a desk.

To ensure we have enough data for statistical reasoning, we expe-

dited the data collection process at the end by manually generating

events as capturing organic events takes significant time. We used

a constantly powered version of the sensors to collect the ground

truth for events. We compared the performance of Altair with two

variants: ALTAIR-Min that always chooses minimum duty-cycle

and ALTAIR-Max that selects maximum duty-cycle.

Figure 12 shows the percentage of correctly detected events and

compares the result across three power management algorithms

in three of the deployment scenarios. We find that sensors with

Altair achieves 70% and 80% detection accuracy in the hallway

and on the door respectively, higher than the other two variants.

This happens since Altair spreads out the system active time by
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Figure 13: Non-time critical event detection using Altair.
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Figure 14: When moved to a new environment, the system

increases its activity as it learns the new harvesting condi-

tions.

optimally choosing the duty-cycle and is likely to capture events

correctly, whereas, ALTAIR-Max sees frequent power failure events

and ALTAIR-Min misses events for spending much time in time

between wake-ups. However, in the work-desk space ALTAIR-min

detects more events than Altair as it aggressively selects higher

sampling rate. This signifies that careful decisions should be made

for applications where the event of interest can happen before the

device can harvest enough energy. In such scenarios, predicting

such events beforehand can improve detection accuracy. We plan

to investigate such cases for future study.

As a candidate of non-time critical event detection, we deployed

one Thingy:52 to monitor the temperature of a home in two differ-

ent locations: on a window and on an indoor wall. We analyze how

many times the sensor can correctly report when the temperature

falls below 76°F or exceeds 79°F (selected according to the comfort

level of the occupants). Figure 13(a) shows that with Altair the de-

vice reports 79% and 83% of the events accurately. To determine the

latency between the event has occurred and successfully reported,

we show the CDF of detection latency in Figure 13(b). We find that

the 95th percentile latency remains within 12 s.

6.3 RL Supervisor Robustness

System active time. Altair uses a 470mF supercapacitor as an

energy-reservoir of the system. The larger the size of the capacitor,

the more time it takes to recharge after a power failure. In this

section, we aim to analyze the active time of a sensor connected

to Altair. We define the duration of the time a sensor samples

continuously before exhausting its energy buffer as the active time.

To evaluate how much time the system spends in recharging

the capacitor in a dynamic energy environment, we moved the
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Figure 15: With time, the energy supervisor learns to avoid power failure by adjusting the time between samples, though

experiences a few power failures at the beginning. The blue trace plots the instantaneous capacitor voltage, and the orange

corresponds to the to the time between packets.
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Figure 16: The histogram of the delay in servicing the mes-

sage request by the energy supervisor in clock cycles.

Thingy:52 sensor from its original window position to a wall. Fig-

ure 14(a) shows the active time of the sensor during each progres-

sive power cycle. After being exposed to a new environment with

a different harvesting scenario, at first the system explores to find

the optimal set of actions that avoids power failure. The system

active time progressively increases as it sees less power failures

with occasional dips. Figure 14(b) shows the cumulative active time

of the sensor.

Reactivity. In this section, we analyze how the energy supervi-

sor reactively changes the rate responding to the available energy.

A sensor that runs at a constant duty-cycle suffers from multiple

consequences: 1) in case of an energy surplus, the system underper-

forms by not sampling more, and 2) in case of an energy drought,

the system runs the risk of frequent power failures by not backing

off. Figure 15 shows how Altair adjusts the time between samples

reacting to the capacitor voltage. We set the episode interval as

2 min for this experiment. In the beginning, the system experiences

frequent power failures around 8, 15, 22 and 25 minutes, spends sig-

nificant time in power failure, but learns to adjust the time between

samples allowing the sensor to sleep. A falling capacitor voltage

results in an increase in the time between samples and a steady or

rising capacitor voltage encourages frequent samples. Throughout

this experiment, the harvester was kept under a stable harvesting

environment which ensures that the capacitor voltage was only the

system variable. By vary its rate of operation, the system incurs

50% fewer power failures with an increased availability of 44%.

6.4 Energy Supervisor Responsiveness

As the energy supervisor processor receives the energy API request

from the main processor through a hardware GPIO interrupt, we

investigate the number of clock cycles needed to serve the interrupt.

We characterize the delay to wake up the energy supervisor from

a low power sleep and the delay to respond to an interrupt while

performing its routine task. We show the histogram of delays of 100

Table 3: Power draw overhead of Altair.

Component Active current Sleep current

MCU STM32L010R8 585 µA@16Mhz 4.7 µA
Charger SPV1050 2.6 µA 1 nA

Current Sensor Max9634 1 µA 1 nA

Power Gating TPL5110 35 nA N/A

interrupts in Figure 16(a) and Figure 16(b), respectively. Though

the delay in terms of clock cycle varies, the distribution shows the

delay can be bounded within a few clock cycles.

6.5 Energy Overhead

Using the Altair platform does come with an energy overhead.

However, while implementing the platform, we chose components

with low power options. Table 3 lists the active and sleep current

of the used components. The average active power draw of the

board is 7.8mA and the quiescent power draw is 94.5 µA. We notice
that the significant energy overhead comes from the ADC polling

to observe the system energy as ADC reading over one second

costs 24.3 µJ. This overhead can be reduced by polling the ADC less

frequently.

7 RELATEDWORK

In this section, we review state-of-art designs and architectures

in energy harvesting systems and reactive power management

schemes using reinforcement learning.

7.1 Energy-Harvesting Device Architectures

Existing works for energy harvesting systems can be broadly cate-

gorized into two directions: intermittent systems which perform

operations whenever there is enough energy and non-intermittent

systems which usually store the harvested energy in larger capaci-

tors for future use.

Intermittent systems are often equippedwith small energy buffers

and perform simple tasks whenever the stored energy reaches a

certain threshold. For example, the Gecko [48] and Monjolo [13]

principle performs sense and send type workload whenever the

capacitor voltage reaches certain threshold. Monjolo exploits the

insight that the rate of energy-harvesting is indicative to the sensed

quantity. However such insight fails to scale outside the intended

applications since the source of sensing and harvesting are often

not co-related. One proposed architecture and toolkit for energy

harvesting systems uses a similar principle [9], which masks the

inevitable intermittency with a variety of trigger abstractions that
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activate the device for certain conditions. With Altair, we advo-

cate for the power supply to be standard across different types of

sensing applications.

UFoP [18] introduces the concept of federated energy that charges

a dedicated capacitor for each peripheral which is responsible for

specific individual tasks. By discarding the idea of a central storage

for the whole system, UFoP provides flexibility for each periph-

eral and promotes modular application development. Flicker [19]

further improves modularity and flexibility required for rapid pro-

totyping of battery-less applications by allowing the peripherals

to reconfigure their activation thresholds at runtime. Federating

energy across multiple energy stores decreases the dependency

between the energy availability on a single energy storage and

each peripheral’s task execution. While being motivated by similar

goals of modularity, flexibility, and generality, Altair decouples the

energy logic altogether from the application, dedicating a sophisti-

cated hardware module and introducing a novel software interface

in the battery-less system design. Altair moves away from the

intermittent principle of operation to achieve higher uptime and

to support long running applications. Capybara [24] introduces

a hardware-software approach to match the energy requirement

by a task by dynamically resizing for its banked capacitor, which

reduces cold start and capacitor recharge time. It provides the flex-

ibility to choose from different energy modes and a combination

of capacitors to activate according to the requirements of the ap-

plication. While Capybara adopts a task-based model to map each

tasks to energy modes and energy modes to the dynamic size of the

capacitor, we adopt an interface-based architecture to reduce the di-

rect coupling between the underlying power supply hardware and

the application. The signpost platform [2] is a generalized energy-

harvesting platform for city-scale sensing using a shared backplane

to interconnect and isolate each module, allowing energy to be

used for a particular module. In Signpost, applications virtualize

the amount of stored energy and employ a different duty-cycling

strategy without affecting each other’s execution. In Altair, we

make the power supply itself programmable which continues to

learn and adapt post-deployment to learn new strategies to achieve

optimal duty-cycling strategy.

7.2 Dynamic Energy Management using RL

Reinforcement learning (RL) has been adopted for dynamic energy

management in energy harvesting nodes. Hsu et al. [22] introduce

a dynamic power manager for energy harvesting networks using

Q-learning algorithm. Another work provides dynamic throughput

provisioning according to the battery’s energy level [23]. The RL

agent attempts to avoid specific states of the energy storage, which

include overcharging, deep-discharge, and depletion. Different from

other approaches, Rioual et al. [37] investigate the performance

of different reward functions for energy optimization in energy-

harvesting IoT nodes. Fraternali et al. [15] introduce a day-by-

day learning algorithm using reinforcement learning to maximize

the quality of service of the sensing. Another SARSA algorithm

proposed by Ortiz et al. [34] attempts to learn a power allocation

policy in two-hop communications and maximize the throughput

of a communication system. SARSA (𝜆) was also introduced to
develop an adaptive power management algorithm for solar-energy-

harvesting nodes [41] using large weather datasets. In this paper,

we implemented a SARSA reinforcement learning on a resource-

constrained embedded device to maximize the event generation

and event detection rates of IoT sensing applications.

8 DISCUSSION

Partial decoupling. Though Altair reduces the logical depen-

dency between energy management and application tasks, both

subsystems are required to have a knowledge of the expected in-

formation from each other. Since IoT sensors are typically small

systems with a handful of running applications, we expect the Al-

tair architecture is sufficient. However, for large scale embedded

systems full decoupling may be needed.

Vast heterogeneity of IoT applications. Though we believe

that Altair is a stepping stone in the direction of a “general-

purpose” energy-harvesting power system suited for IoT sensing

applications, the spectrum of sensing is broad in terms of energy

cost and time-sensitiveness. Applications that are susceptible to

occasional power failures might require back-up source of energy

such as rechargeable batteries [24]. In such a case, the RL manager

might reduce the negative reward, if the backup energy source is

available.

Energy storage size. Though an over-provisioned energy reser-

voir can mask unstable available energy and eliminate the need

for complex software support, bigger capacitors suffer from higher

leakage, prolonged cold-start phase, and longer recharge times.

Limited harvester support. Current Altair platform only has

support for harvesting energy using solar and TEG harvesters.

Enabling new techniques.Webelieve that faster testing and de-

velopment plays an important factor when designing novel energy-

harvesting applications and Altair attempts to lower the barrier to

entry. We recognize that there is a lack of prototyping platform for

energy-harvesting application and this work will attract researchers

to build and test new software and hardware techniques for better

power management.

9 CONCLUSION

Managing energy is critical for energy-harvesting systems, and

this burden has been foisted on the IoT application software with

only limited support from the energy-related hardware. We argue

that ad-hoc and implementation-specific interfaces between appli-

cations and power supplies constrain the development of energy-

harvesting devices, and that a new MCU-power supply interface

is critical for restoring proper layering to these systems. In this

paper, we introduce such a system that isolates the energy manage-

ment decisions from a sensor’s workload, and provides a simple

interface for adding new applications to the system. By strictly

separating energy-management from device operation, we believe

we can lower the bar for developing energy-harvesting systems,

helping to realize a fully batteryless IoT.
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