
Poster Abstract: Enabling Elasticity on the Edge using
Heterogeneous Gateways

Nabeel Nasir
University of Virginia

Charlottesville, VA, USA
nabeeln@virginia.edu

Bradford Campbell
University of Virginia

Charlottesville, VA, USA
bradjc@virginia.edu

ABSTRACT
Edge computing for the Internet of Things prescribes executing ap-
plications on server machines closer to devices rather than depend-
ing on the cloud. However, server machines are expensive, are not
flexible to adapt to varying application requirements, require gate-
ways to interact with IoT devices, and follow a centralized model
which increases traffic and application latency. Special-purpose
hardware for the edge is becoming increasingly sophisticated, with
support for machine learning, secure enclaves etc., and this work
is an attempt to leverage such hardware to cooperatively execute
edge applications, rather than relying on expensive edge servers.
To do so, our design relies on a distributed middleware which can
seamlessly scale up with new hardware, and a task scheduler which
best matches application requirements with the hardware capabili-
ties available. We have built a prototype middleware that operates
on multiple gateways in our testbed of 250 IoT devices, and we plan
to further improve our platform to support more varying use cases.

CCS CONCEPTS
• Networks→ Cyber-physical networks.

KEYWORDS
Edge Computing, Internet of Things, Cloud Computing, Task Sched-
uling
ACM Reference Format:
Nabeel Nasir and Bradford Campbell. 2021. Poster Abstract: Enabling Elas-
ticity on the Edge using Heterogeneous Gateways. In The 19th ACM Con-
ference on Embedded Networked Sensor Systems (SenSys’21), November 15–
17, 2021, Coimbra, Portugal. ACM, New York, NY, USA, 2 pages. https:
//doi.org/10.1145/3485730.3492890

1 INTRODUCTION
The Internet of Things (IoT) is growing rapidly and is expected
to have 41 billion connected devices by 2025 [2]. Handling data at
such massive scales require solutions like edge computing, which
prescribes shifting applications closer to the devices than on the
cloud. Current edge computing solutions use server machines de-
ployed in the local network to execute applications which interact
with IoT devices on the network. The applications can still utilize

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SenSys’21, November 15–17, 2021, Coimbra, Portugal
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9097-2/21/11.
https://doi.org/10.1145/3485730.3492890

the cloud, but only do so if necessary, usually for long term storage,
computation heavy tasks etc. This tiered architecture has been uti-
lized for a plethora of applications like AR/VR, traffic monitoring,
smart irrigation etc.

However, relying on server machines for edge computing has
its downsides. First, edge servers are expensive, usually costing
upwards of $1000 even with minimal specifications. Second, pro-
visioning a server to match edge application requirements is hard,
since the edge application spectrum is vast, from small-scale sens-
ing and actuation apps to supporting rich interactive streams for
VR devices. Unlike the cloud, edge servers are not elastic resources,
and a “one size fits all” server leads to resources being underutilized
while being expensive, whereas under provisioning necessitates
future upgrades leading to wasted resources. Third, they don’t have
the requisite wireless radios to communicate with IoT devices, and
require additional IoT gateways to do so. Fourth, requiring all data
to be brought from gateways to a central server increases network
traffic and application latency.

Our work investigates the possibility of supporting edge comput-
ing using multiple inexpensive IoT gateways (single board comput-
ers), instead of depending on expensive servers. This is motivated
by the rise in specialized edge hardware, which we believe can sup-
port the heterogeneous requirements of edge applications. Boards
like the Raspberry Pi [3] are becoming increasingly performant,
others offer GPU support on the edge [1], and some provide secure
code enclaves [5]. These gateways also have the wireless radios
to communicate with devices, and executing applications locally
on the gateways would reduce traffic and further improve latency.
What is missing is an edge platform that can leverage such hetero-
geneous gateways to cooperate together to execute applications,
instead of limiting their usage to only ad-hoc solutions.

The key piece in building such a platform is a middleware that
operates on the gateways to easily scale up when adding new gate-
ways, and also maximizes utilization of the limited resources that
are available. The central idea is to enable edge computing on as
minimal a hardware as a single gateway, and allow scaling up by
addingmore gateways to handle theworkload, or adding specialized
gateways to support more complex requirements. The middleware
has to identify the requirements of the applications and match
them with the available capabilities of the gateways, while maxi-
mizing the overall utilization of the platform. Prior works on task
scheduling either use homogeneous hardware [4], or [6] require
information on execution times and deadlines of tasks, making it
impractical for real world use cases.

395

https://doi.org/10.1145/3485730.3492890
https://doi.org/10.1145/3485730.3492890
https://doi.org/10.1145/3485730.3492890

SenSys’21, November 15–17, 2021, Coimbra, Portugal Nabeel Nasir and Bradford Campbell

connected
devices

distributed
middleware

Task Scheduler

Capability Monitor Capability Monitor Capability Monitor

application requirements

another distributed service

special
capabilities

capabilities devices execution
App1 App2

Gateway Gateway Gateway

long runningshort task secure enclave

usage
data

scales horizontally

Figure 1: Task scheduler matches apps of diverse require-
ments with gateways that offer heterogeneous capabilities.

2 PROPOSED APPROACH
In this section, we describe the design of the middleware and task
scheduler used for our edge platform.

2.1 Middleware Design
These are the main characteristics of our middleware:
Distributed: It operates without a central node having to orchestrate
the platform. This is achieved by distributing services across the
gateways, and also provides useful services like distributed storage.
Scalable: It allows seamless addition or removal of gateways, by
allowing gateway discovery using an out-of-band wireless radio.
Supports IoT devices: It supports software modules to obtain sensor
data from and send control messages to IoT devices.
Supports applications: Developers use simple abstractions to inter-
act with IoT devices, and can deploy applications on the platform.
Monitors capabilities: It runs a capability monitor which identifies
capabilities of gateways, and periodically monitors their resource
usages. This allows the scheduler to make more informed decisions.
Resilient: Each application is to be spawned in a lightweight con-
tainer on whichever gateway it is run on. If a gateway fails, the
application can be re-spawned on another gateway.

2.2 Task Scheduler Design
The task scheduler uses application requirements and gateway re-
sources usages to make decisions (Figure 1). When deploying an
application, these requirements are collected: 1) execution time:
whether it’s a short-term task or an indefinitely running task, 2)
device requirements: which IoT devices the application needs to in-
teract with (to schedule the app as close to the devices as possible), 3)
special capabilities required: GPU, secure enclave, long-term storage,
etc. The capability monitor learns capabilities of gateways when
they are discovered. It also periodically checks the resource usages
(CPU load, available memory, storage, GPU usage, connected de-
vices etc.) of gateways and informs the scheduler. This service also
aids in deciding if an application is eating up too much resources,
in which case it can be transferred to a different gateway.

The optimization function for the scheduler is still being devel-
oped, but is based on the following requirements: i) don’t under

Device Interaction Distributed
Interaction

Application APIs Management Support
App

Deployment
Network

Management

Core Services

Sensor Stream Manager Device Manager App Manager

data streams control messages apps, debug streams

Link Graph GenerationDevice Handling

Handlers Controllers

control msgs network topology

Gateway Discovery Service

registration, data streams

device
info gateway info

Application
&

Management
Layer

Platform
Layer

Hardware
Layer

Apps Auxiliary
Devices

Other
Gateways

IoT
Devices

Figure 2: Middleware that runs on each gateway

provision: minimize executing applications on gateways where they
will under perform, ii) don’t over provision: ensure that gateways
with specialized capabilities don’t execute applications which don’t
require those capabilities, iii) ensure minimal transfer of applica-
tions from one gateway to another.

We plan to evaluate this system using the following experiments:
i) performance comparison of some diverse edge applications on
gateways versus on an edge server, ii) comparing our task sched-
uler’s performance versus other baselines.

3 PRELIMINARY RESULTS
We have designed a middleware that currently works for homoge-
neous gateway hardware, but only accommodates limited applica-
tion requirements (Figure 2). We have successfully deployed this
middleware design on multiple Raspberry Pi 4B [3] boards deployed
in a floor of our building, supporting around 250 IoT devices. We
have also built a simulator to test out different task deployment
strategies to design an optimal heuristic for our task scheduler. We
plan to converge on a deployment strategy that would satisfy maxi-
mum application requirements, ensure gateways are not overloaded,
and increase overall utilization of the platform.

4 CONCLUSION
Our work attempts to democratize edge computing by using inex-
pensive edge hardware which can be scaled up to satisfy application
requirements, without requiring server machines. We discussed
the design of the middleware and a task scheduler that are key in
building an edge platform which can operate independent of the
cloud, or offer optimized task deployment for other edge platforms.

REFERENCES
[1] NVIDIA Corporation. 2021. Jetson Xavier NX Developer Kit. Retrieved Mar 20,

2021 from https://developer.nvidia.com/embedded/jetson-xavier-nx-devkit
[2] Larry Dignan. 2019. IDC - IoT devices. https://www.zdnet.com/article/iot-devices-

to-generate-79-4zb-of-data-in-2025-says-idc/
[3] The Raspberry Pi Foundation. 2021. Raspberry Pi 4. Retrieved Mar 20, 2021 from

https://www.raspberrypi.org/products/raspberry-pi-4-model-b
[4] Karim Habak, Mostafa Ammar, Khaled A Harras, and Ellen Zegura. 2015. Femto

clouds: Leveraging mobile devices to provide cloud service at the edge. In 2015
IEEE 8th international conference on cloud computing. IEEE, 9–16.

[5] NXP Semiconductors. 2021. EdgeLock Secure Enclave. https://www.nxp.com/
products/product-information/nxp-product-programs/edgelock-secure-enclave

[6] Daniel (Yue) Zhang, Tahmid Rashid, Xukun Li, Nathan Vance, and Dong Wang.
2019. HeteroEdge: Taming the Heterogeneity of Edge Computing System in Social
Sensing (IoTDI ’19). ACM, New York, NY, USA. http://doi.acm.org/10.1145/3302505.
3310067

396

https://developer.nvidia.com/embedded/jetson-xavier-nx-devkit
https://www.zdnet.com/article/iot-devices-to-generate-79-4zb-of-data-in-2025-says-idc/
https://www.zdnet.com/article/iot-devices-to-generate-79-4zb-of-data-in-2025-says-idc/
https://www.raspberrypi.org/products/raspberry-pi-4-model-b
https://www.nxp.com/products/product-information/nxp-product-programs/edgelock-secure-enclave
https://www.nxp.com/products/product-information/nxp-product-programs/edgelock-secure-enclave
http://doi.acm.org/10.1145/3302505.3310067
http://doi.acm.org/10.1145/3302505.3310067

	Abstract
	1 Introduction
	2 Proposed Approach
	2.1 Middleware Design
	2.2 Task Scheduler Design

	3 Preliminary Results
	4 Conclusion
	References

