Decentralized Federated Learning Framework for the
Neighborhood: A Case Study on Residential Building Load
Forecasting

Jiechao Gao, Wenpeng Wang, Zetian Liu, Md Fazlay Rabbi Masum Billah and Bradford Campbell
University of Virginia, VA, USA
{jg5yen,ww2cg,zl4dc,mb2vj,bradjc}@virginia.edu

ABSTRACT

The fast-growing trend of Internet of Things (IoT) has provided
its users with opportunities to improve user experience such as
voice assistants, smart cameras, and home energy management
systems. Such smart home applications often require large numbers
of diverse training data to accomplish a robust model. As single user
may not have enough data to train such a model, users intent to
collaboratively train their collected data in order to achieve better
performance in such applications, which raise the concern of data
privacy protection. Existing approaches for collaborative training
need to aggregate data or intermediate model training updates
in the cloud to perform load forecasting, which could directly or
indirectly cause personal data leakage, alongside with significant
communication bandwidth and extra cloud service monetary cost.

In this paper, to ensure the performance of smart home applica-
tions as well as the protection of user data privacy, we introduce
the decentralized federated learning framework for the neighbor-
hood and show the study on residential building load forecasting
application as an example. We present PriResi, a privacy-preserved,
communication-efficient and cloud-service-free load forecasting
system to solve the above problems in a residential building. We first
introduce a decentralized federated learning framework, which al-
lows the residents to process all collected data locally on the edge by
broadcasting the model updates between the smart home agent in
each residence. Second, we propose a gradient selection mechanism
to reduce the number of aggregated gradients and the frequency
of gradient broadcasting to achieve communication-efficient and
high prediction results. The real-word dataset experiments show
that our method can achieve 97% of load forecasting accuracy while
preserving residences’ privacy. We believe that our proposed de-
centralized federated learning framework can be widely used in
other smart home applications as well.
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1 INTRODUCTION

Over the past years, IoT devices have been rapidly developed and
frequently used in residential units and buildings all over the world.
Smart home agents like Apple HomeKit, Google Home Assistant,
and Amazon Alexa are connected with smart home devices such as
TVs, cameras, smart lighting, and HVAC systems to achieve better
user experience. As these devices collect various data streams such
as energy, voice and image, which can enable better performance
of smart home applications such as voice assistants, smart cameras,
and home energy management systems by training robust models.

Home energy management systems (HEMS) is one of the most
important smart home applications. As the increasing number of
energy-consuming devices have been installed in residential units,
the energy consumed by socialized miscellaneous electrical loads
(MELSs) has increased [10]. As a result, the increasing electricity
monetary cost and harmful gas emissions to produce this amount
of energy have become a severe problem to the society [18]. Among
all the energy consumption in the building sector, energy waste is
one of the biggest problems. The average energy waste per build-
ing is 20-30% of its total consumed energy [1]. Energy waste from
residential buildings is even worse, accounting for at least 33% of
the total energy consumption [4]. Solving building energy waste
is a vital need to enable energy reduction.

Existing approaches for saving energy use real-time consump-
tion data and machine learning techniques to implement load fore-
casting models to identify energy waste [7, 20]. However, single
user may not have enough data to train such a model. For instance,
if one user just move to a new place, he/she may need to spend
months to collect energy data for training and years to train a ro-
bust model. In order to generate a robust load forecasting model,
users intent to collaboratively train their collected energy data [11].
Traditional approaches require collecting data and transmitting the
data to cloud platforms, then predicting the upcoming usage pat-
terns using machine learning and deep learning methods [5, 12, 28].
Although cloud services can bring high computational power and
gather more data from different users for training, they introduce
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Figure 1: Federated Learning Framework.

the critical risk of potential personal data leakage. Nearly 52% of
users have experienced stolen data while using cloud services [2].
As a result, the number of people willing to share their personal
data fell from 41% to 31% from 2018 to 2019 [14].

To address the above issues, McMahan et al. [16] proposed a
privacy-preserving distributed machine learning framework called
federated learning (FL) for IoT devices to train a global load fore-
casting model while keeping the training datasets local and without
sharing raw data. Figure 1 shows the structure of FL framework. It
allows IoT devices to collaboratively train a load forecasting model
without compromising privacy. Existing approaches [6, 19, 21, 23]
present a similar framework for load forecasting. First, they train
a model locally and transmit the training gradient to the cloud.
Second, the cloud aggregates the gradients from different devices
into a combined model in the cloud. Then, the updated model is
transmitted to each local device for its own load forecasting jobs.
However, such a framework still faces three problems: (1) Even
though the data is stored locally, the FL framework still needs cloud
service to aggregate a global model. Such a model contains all the
training information from different local IoT devices, which is still
vulnerable to misuse such as reconstructions of the training exam-
ples by model inversion and indirectly face the potential risk of
data leakage. (2) Large-scale FL training requires significant com-
munication bandwidth for gradient transmission, which limits the
scalability of IoT devices in the FL framework. (3) Using a central
server to aggregate the global model incurs a monetary cost. Since
the energy data is generated consistently through time, it is neces-
sary to update the global model with a certain frequency. To keep
updating the model, cloud central server needs to be on all the time,
which can cause a tremendous monetary cost. Such mechanism
will decrease the participants to share their trained model and lead
to a lower load forecasting performance.

In this paper, we introduce a decentralized federated learning
framework for the neighborhood and show the study on residen-
tial building load forecasting application as an example. We pro-
pose PriResi, a privacy-preserved, communication efficient and
and cloud-service-free load forecasting system to solve the above
problems in a private residential building. First, we introduce a
decentralized federated learning (DFL) framework to enable dis-
tributed edge devices to collaboratively train a model. The training
gradients from each local model are broadcasted and aggregated be-
tween the smart home agents owned by each residence at a certain
frequency, which removes the need of using cloud central server
and reduce the possibility of data leakage and monetary cost from
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cloud service. Second, to further improve the communication effi-
ciency of the DFL framework while also increasing the prediction
accuracy for each resident, we propose a gradient selection mecha-
nism based on gradient threshold selection and broadcast frequency
selection. This reduces the size and number of gradients aggregated
by edge devices. We evaluate the proposed PriResi energy manage-
ment system on the real-world Pecan Street dataset. Experimental
results show that the proposed framework can achieve 97% of load
forecasting accuracy while preserving residences’ privacy and our
gradient selection mechanism can speedup the system running time
by 19%. The contributions of this paper are summarized as follows:

(1) We propose a DFL framework which allows to process all col-
lected data locally, and the model gradients are transferred
among the participants network instead of using cloud ser-
vice, which reduce the possibility of data leakage and mon-
etary cost from cloud service.

We proposed a new gradient selection mechanism based on
gradient threshold selection and broadcast frequency selec-
tion to reduce the size and number of gradients aggregated
by each smart home agent which aims to improve the com-
munication efficiency of the DFL framework as well as the
prediction accuracy for each resident. Such a method over-
comes the issue of traditional methods where all gradients
are combined together.

We conduct extensive experiments on real-world dataset to
demonstrate that our proposed method can achieve 97% of
load forecasting which is as good as using cloud service and
in the meanwhile, preserving user privacy.

2 RELATED WORK
2.1 Load Forecasting

Various works in load forecasting majorly focus on two different
aspects: aggregated household-level forecasting or device-level fore-
casting. Due to the fact that device-level forecasting suffers from
high volatility and uncertainty of device usage that is not signif-
icant on aggregated loads, their major approaches are different.
Kong et al. [13] introduced a centralized density-based clustering
technique to evaluate and compare the inconsistency between the
aggregated load and individual loads, then they adopted long short-
term memory (LSTM) and designed a load forecasting framework
for individual residential households. However, they require all
data to be transmitted to a central hub, which can cause privacy
concern on sensitive usage data. Luo et al. [15] proposed a HVAC
energy demand prediction system based on artificial neural net-
work, and adopted a cybersecurity framework to protect data in
the fog computing environment. However, such method focuses on
centralized building scenario with one HVAC system, which can’t
handle the residential building problem.

2.2  Energy Data Privacy

With more smart devices brings into residential homes, and the
widely use of load forecasting systems, various sensors will be able
to collect data of all kinds. This creates a new issue as these fine-
grained data can be possibly used to identify consumers’ specific
activity or behavior patterns, thereby giving rise to serious privacy
concerns. Only a few works in building load forecasting systems
have considered data privacy [8, 15, 26]. Most of their work aims
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to deal with the tradeoffs between energy data privacy and en-
ergy costs, for example, in [26], they developed an online control
algorithm using Lyapunov optimization technique to balance the
problem between cutting down electricity bill and keeping the pri-
vacy of load requirement and electricity bill processes. Our work
differs from previous work as we maximize the energy privacy
while not sacrificing the overall performance on energy reduction,
where all data collected on the edge by various sensors will be pro-
cessed locally, and only policy gradient that contain zero personal
data is transferred in the network.

2.3 Federated Learning

A recent trend in maintaining user privacy is using federated learn-
ing approach, where each agent process its own collected data
locally, and only transmit the calculated gradient to a center node.
This reduces the amount of data transmission and preserves the user
privacy. There have been several papers using federated learning.
[25] trains the machine leaning model by distributing data across
multiple edge nodes instead of sending them to a center node. Their
proposed approach adaptively finds the best trade-off between local
parameter update and global parameter aggregation under a given
resource budget. Edge Federated Learning is also proposed to sepa-
rate the process of model training into multiple mobile devices [27].
However, all previous FL frameworks require cloud central server
as a global model aggregator, which can indirectly leak the local
training data and require extra monetary cost.

3 SYSTEM DESIGN
3.1 System Overview

We present PriResi, a decentralized federated learning (DFL) frame-
work for load forecasting. Our proposed DFL framework removes
the requirement for cloud services. Figure 2 shows the structure of
the proposed DFL framework. First, each agent collects the device
load data from every IoT device deployed in its local residence and
trains a load forecasting model with a default machine learning
method. Second, the agents broadcast the gradients of each device
at certain time frequency f, so that each agent has the gradient
information from the same kind of device in other residences. Third,
in the first cycle, every agent will broadcast their gradient to each
other, then each agent calculates a gradient threshold « using gradi-
ent selection mechanism located in each agent for each device. If the
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gradient of certain device exceeds the threshold, the gradient will
be selected as the aggregated gradient. If the gradient of a certain
device is smaller than the top « of the total gradients, such gradient
of certain device will be labeled as held gradient and not be used as
aggregated gradient and will not be broadcasted in the second cycle.
Finally, after each agent updates its local model by aggregating the
qualified gradient for each device, the agent predicts the future
power draw for each device. In the meantime, the devices are still
recording load data for the next training phase, and this process
happens at same interval, by default once per hour.

Specifically, our building load forecasting problem is as follows:

Given a multi-tenant building with multiple residents, the system
should be able to accurately forecast load consumption for all res-
idences in the building while preserving user privacy, and making
efficient use of the communication channel.

To handle such problem, we propose a residential building load
forecasting system with the following three steps:

(1). For each smart home agent in each residence, the system
starts with the same structured training models which allow the
agent to train their own model locally for each load. The train-
ing gradients generated from each locally trained model then are
recorded for each load. (Section 3.2.1)

(2). The system then decides the gradient threshold and broadcast
frequency to reduce the size and number of gradients aggregated
by each agent. (Section 3.2.2)

(3). Upon receiving gradients, each agent integrates the gradients
to update their local model to improve the prediction accuracy for
each device in the residence for load forecasting. (Section 3.2.3)

3.2 Decentralized Federated Learning

3.2.1 Local Training Process. In our system, we consider a residen-
tial building which includes N residences. Each residence n has an
agent such as Google Home or Amazon Alexa which is connected
to the IoT devices in certain residence n, where n € {1,2,...N}. We
denote A, as the agent in the system which represents that it’s
residence n. For each agent A,, we have the same default training
model initially, such as Long Short Term Memory (LSTM). We de-
note Dx, as different IoT devices in different residences, X refers to
the type of certain IoT device. Since each IoT device Dx, has their
own local dataset (i.e., sensing time-series data from IoT nodes), we
train the model separately for each device on the connected agent.

For example, in Figure 2, the TV in residence one, defined as
Dty 1, TV in residence two, defined as Dty 2, the lighting in res-
idence one, defined as Dy;gp;1, etc. We train the model for each
device in each residence on the connected agent locally and sep-
arately. Thus every device has a certain gradient, for example, a
gradient Gty is calculated for the TV in residence one in a certain
time period. In each resident’s home, an agent will record the gradi-
ent for all the resident’s devices. As an instance, for residence one,
the agent A; has the gradient information Gyv1, Gjighr1, GHVAC1
and all the other devices that are connected to A;.

Given a local dataset recorded by an IoT device Dy, our goal is
to predict the future energy consumption for this certain device for
the following hour. An LSTM model is used in training set to learn
the usage pattern of the device, and the testing set is used to predict
the estimated energy consumption after the gradient aggregation.
For each device Dx,, we first predict the energy consumption Vxp,



in every minute for the next hour. Then, we calculate and record
the gradient for each device Dx,.

3.2.2 Gradient Selection Mechanism. Traditional large-scale FL
training requires significant communication bandwidth to broad-
cast gradients in high frequency. However, in our DFL framework,
the gradients are broadcasted across all agents instead of cloud
servers. This in effect mitigates the requirement of frequent up-
dates and large communication bandwidth problem.

To reduce the high-bandwidth requirement, in our DFL approach
we first apply gradient quantization to quantify gradients to low-
precision values. Then we set « as the threshold of the gradient
to determine which gradient can be aggregated to other agents.
For gradient quantization, since we are using LSTM as the default
training model in the DFL framework, the fully connected (FC)
layer in LSTM can be defined as out = f(W xin+b), where in is the
input, b is the bias, W is the weight, f is the nonlinear mapping, and
out is the output. So for each speciﬁc neuron i, the above equation
can be simplified as out; = ReLU (X" lem]) where ReLU [17]
is the activation function in LSTM model, and i, j represent the
position information of the weight element in the weight matrix
W. In order to quantize the gradients to low-precision values, we
compress the corresponding weight matrix into a sparse matrix,
and hence the gradient is the derivative of the sparse weight matrix.
The corresponding formula is given as follows:

out; = ReLU( Z Sparse [I,-j] inj) (1)

JEXiNY
where ) jcx,ny Sparse [1i] represents the compressed weight ma-
trix. Such a method reduces the size of the gradient by sparsing the
weight matrix W to reduce communication bandwidth requirement.

For the number of aggregated gradient, after each agent A, trains
the model locally for each device Dxp, the agent will broadcast the
calculated gradients to the other agents labeled with Dy . Since
each agent has the gradient value of each device from all the resi-
dences after the broadcast, the top « of the total gradients can be
determined respectively. In order to improve the communication
efficiency of the DFL framework as well as the prediction accuracy
for each resident, we must ensure that there is no information loss
in the above scheme. In order to prevent the information loss, there
are two circumstances for each gradient. First, if the gradient of
a certain device is larger than or equal to the top a of the total
gradients, it will be selected as aggregated gradients. Such a device
will use all the selected gradients as aggregated gradients to update
their model. Second, if the gradient of a certain device is smaller
than the top @ of the total gradients, such gradient of certain device
will be labeled as held gradient and not be used as aggregated gradi-
ent. Such a device will use all the selected gradients as aggregated
gradients plus their own held gradient to update their model. In
this process, only in the first cycle each agent will all broadcast
their gradient, from second cycle and further iteration, only the
gradient of a certain device is larger than or equal to the top « of
the total gradients will be broadcasted. In our experiments, we will
determine the hyperparameter « that can achieve the best result.

To avoid high frequency gradient broadcasting, we set f hours as
the gradient broadcast rate to reduce the frequency of broadcasting
gradients. In our experiment we will determine the hyperparameter
p that has the best result.
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3.2.3 Gradient Aggregation. After each agent A,, determines the
selected gradients from other agents for each device Dxp,, the agent
will update the model with such gradients Gx . To do so, we use
DSGD for iterative updates, and the loss function to be optimized

is defined as follows:
Z f(n,w) @)

F(w) =
where F(w) is the loss functlon for ﬁ;e updated model, f(n, w) is
the loss function for the previous model and w are the weights of
the model.
In the gradient aggregate phase, the agents use Federated Aver-
aging (FedAVG) algorithm [26] to obtain an updated model wy11
for the next iteration, thus we have:

Wra1 = Wi = U—Z Z V£ (x,we) 3)

where 7 is the learning rate, Bn, k 1s the data sample for the k;p,
round of training, and each local dataset size of b.

All the collaborated agents repeat the above process until the
model reaches convergence. Then we use the updated model to pre-
dict the energy consumption for the certain device for the next hour.

4 PERFORMANCE EVALUATION

4.1 Datasets and Experiment Settings

4.1.1  Energy Consumption. We apply the proposed framework
PriResi to the real-world Pecan Street dataset [3] for performance
demonstration. The Pecan Street dataset contains minute-level en-
ergy consumption for home appliances such as bedrooms lights,
dryers, TVs, HVAC, etc. in 1641 residences in Texas from 2013 to
2017. Since the recorded data has some missing data points, also the
devices in each residence are not exactly the same, we randomly se-
lect 100 residences that have the lights, TVs and HVAC load records
as our default experiment dataset. In our experiment, we first use
80% of the energy consumption dataset as the training set to calcu-
late the gradients and aggregate the gradients from other agents to
get an updated model. Second, we use the other 20% of the dataset
as testing data. For the RL hyperparameters, we set the learning rate
as 0.001, discounted rate as 0.9, memory capacity as 2000, and target
replace iteration as 100. We also experiment with different numbers
of residences joining the system and different system running days
to test the performance and robustness of our PriResi system.

4.2 Compared Methods

To evaluate PriResi, we choose the following three methods for
comparison. We train the models with the same Pecan Street dataset
with parameters as mentioned in the individual papers.

(1) Smart Energy Management and Demand Reduction [22]
(SEM) studies the usage behavior of consumers from their his-
torical data and predicts the demand for energy every hour for
the individual consumer using seasonal auto regressive integrated
moving average (SARIMA).

(2) Cloud forecasting system for monitoring and alerting [9]
(CFS) proposes an efficient cloud-based energy information man-
agement system home appliances that monitors the load of resi-
dences, predict energy consumption based on a machine learning
method called SARIMA-MetaFA-LSSVR.

(3) Forecasting Multi-Appliance Usage and Energy Management [24]

(FMA) developes a prediction algorithm based on a graphical model
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that captures the everyday habits and the interdependency between

appliances by exploiting their periodic features.

4.3 Performance Metrics

(1) Hyperparameters selection. We measure the DFL framework

hyperparameter a and f to determine the threshold for gradient

selection and broadcast frequency which have the best accuracy.
(2) Prediction accuracy. To measure the prediction accuracy of

energy consumption, we measure the prediction accuracy as below:

Acy = 1 Va0l

prediction, Vj, is the predicted value of n'” prediction and RV, is

where Acy, is the prediction accuracy of nth

the true value of n'” prediction.

(3) Communication efficiency. To analyze the communication
efficiency of the system, we calculate the running time speedup
percentage as below: Speedup = (Ty — T,;) + Ty where Tj is the run-
ning time for system 1% time running, T, is the running time for
system n'f time running. Since we fix the communication overhead
of each round in the gradient selection and aggregation section, so
we can compare the running time of the system to compare the
communication efficiency.

4.4 Experimental Results

4.4.1 Hyperparameters Selection of the DFL Framework. Figure 3
shows the accuracy of the DFL framework with different thresh-
old a. We use a€{0.1,0.2,0.3,0.5,0.6,0.8, 1} to determine the best
threshold of the proposed framework. We observe that « = 0.5 and
0.6 have the best prediction accuracy for load forecasting, which
means 50% or 60% of the total gradients for each device should
be aggregated to update the model. Therefore, to achieve a good
trade-off between the communication efficiency and accuracy, we
choose a = 0.5 as the best threshold of our DFL framework.

Figure 4 shows the accuracy of DFL framework with different
broadcast frequencies 5. We employ f€{0.1,0.5,1, 2, 6, 12, 24} to ad-
just the best frequency of the proposed framework. We observe that
p =0.5 and 1 have the best prediction accuracy for load forecasting,
which means the gradients should be broadcasted every 30 minutes
or 1 hour. Due to the same reason as in Figure 3, we choose f = 1
as the best frequency of our DFL framework.

4.4.2  Load forecasting Accuracy. Figure 5 shows the cumulative
distribution function (CDF) of the load forecasting result. The result
follows: SEM<FMA <CFS~PriResi. The reason is that, for SEM, it
uses SARIMA as load prediction method. Such method can only
deal with short-term prediction, which is good at the time when
the load is in certain pattern in a short term. However, for each time
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the load can’t be defined as certain pattern, the prediction accuracy
of SEM will be much lower than average. So the accuracy of SEM
is lower than the others. For FMA, it uses the graphical model to
capture the load changing for each device. Such method can still
achieve high prediction accuracy when facing unexpected load
patterns. However, FMA only considers the devices in one resident,
which will face the shortage of data. If a certain residence only
has the energy data from a device within a short time range (i.e., a
month), the accuracy for that certain device will drop dramatically.
So the accuracy of FMA is lower than CFS and PriResi. For CFS, it
applies cloud service and gathered all the data from each device into
the cloud for prediction which can improve the average prediction
accuracy for all devices. Their proposed method SARIMA-MetaFA-
LSSVR can also handle the unexpected load for different devices.
For PriResi, we apply FDL framework with the gradient selection
mechanism, which can enhance not only the average prediction
accuracy, but the accuracy for each device in each resident.

Figure 6 shows the load forecasting accuracy in a day at different
times. The result follows: SEM<FMA <CFS~PriResi due to the same
reason as explained in Figure 5. We also observe that, the accuracy
from 2 AM to 6 AM and from 12 PM to 16 PM are higher than
the other time in a day. The reason is that, in such time frame,
residences usually have the same energy usage patterns for each
device. From 8 AM to 10 AM and evening time, the energy usage
in different residences is vary depending on the date.

Figure 7 shows the prediction accuracy while we accumulatively
train the DFL framework with different number of days. We set the
number of residences as 100 in this experiment. The result follows:
SEM<FMA <CFS~PriResi due to the same reason as explained in
Figure 5. Since we accumulatively train the DFL framework, for
each hour, each agent has the aggregated gradient for each device.
The updated gradient will be used for the next training period,
which will improve the prediction accuracy over time. On the other
hand, from day 1 to day 30, the growth of the accuracy is higher
than from day 70 to 100. The reason is that, the aggregated gradient
tends to approach the best value for the load forecasting.

Figure 8 shows the prediction accuracy with different number
of residences participating the DFL framework. We set the number
of days as 365. For the number of residences under 100, the result
follows: SEM<FMA <CFS~PriResi due to the same reason as in
Figure 5. For the number of residences above 100, the result follows:
SEM<FMA<CFS<PriResi. The reason is that, for SEM, FMA and
CFS, they use all the gradients or data to train the model together.
Such methods can indeed improve the average accuracy when the
number of total participants is small. When the number of resi-
dences goes up, the number of different kinds of load patterns also
goes up. In this case, using all the gradients or data to train the
model may cause prediction accuracy drop to some devices. For
PriResi, we proposed gradient selection mechanism which allows
only the qualified gradients (i.e., larger than certain threshold) to
be aggregated as the updated training model, which can lower the
possibility of prediction accuracy drop.

Figure 9 and Figure 10 compare different sharing methods in
the DFL framework with different number of days and different
number of residences respectively. We try sharing the real data,
sharing all the gradients and sharing gradient with our proposed
selection mechanism. Figure 9 has the same experiment as Figure 7
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and Figure 10 has the same experiment as Figure 8. For Figure 9, the

result follows: Share Data~Share Gradient~Share Selected Gradient
due to the same reason as explained in Figure 7. For Figure 10, the
result follows: Share Data~Share Gradient~Share Selected Gradient
for the number of residences under 100, due to the same reason as
explained in Figure 5. For the number of residences above 100, the
result follows: Share Data~Share Gradient<Share Selected Gradient
due to the same reason as explained in Figure 8.

4.4.3 Communication Efficiency Comparison. Figure 11 shows the
running time speedup percentage versus different number of train-
ing days to compare the communication efficiency. We set the num-
ber of residences as 100 in this experiment. We observe that the
running time speedup percentage of DFL with gradient selection
mechanism can achieve 19% at 100 days comparing with the 15
time system running which is much higher than without gradient
selection mechanism. The reason is that gradient selection mech-
anism can reduce the number of gradients exchanged between the
smart home agents and speed up the local model convergence time.
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Figure 12 shows the running time speedup percentage versus
different number of residences to compare the communication ef-
ficiency. We set the number of days as 365 in this experiment. We
observe that the running time speedup percentage of DFL with
gradient selection mechanism can achieve 19% with 90 residences
comparing with the 157 time system running which is much higher
than without gradient selection mechanism due to the same rea-
son as mentioned in Figure 11. However, for DFL without gradient
selection mechanism, we observe that the running time is slower
than the 15/ time system running after the number of residences
is larger than 130. The reason is that, number of residences in the
system can directly increase the number of gradients. Without the
gradient selection mechanism, the DFL model will calculate all the
gradients that are broadcasted from each residence, which make
the local model convergence time longer.

5 CONCLUSION

In this paper, we propose PriResi, a privacy-preserved, communi-
cation efficient and cloud-service-free federated learning system
to achieve accurate load forecasting in a residential building. First,
we propose a DFL framework that doesn’t require cloud service
to aggregate gradients and update the prediction model. Such pro-
posed framework is privacy-preserved and can still achieve high
prediction accuracy while saving the monetary cost from cloud
service. Second, we propose a gradient selection mechanism which
includes three steps: gradient quantization, selecting aggregated
gradient and gradient broadcasting frequency to solve the com-
munication efficient problem. Experimental results validate that
our proposed system can achieve 97% prediction accuracy which
is comparable to cloud service without compromising residences’
private data leakage. We also achieve higher accuracy when fac-
ing more participants in our system. We believe that our proposed
decentralized federated learning framework can be used not only
in energy load forecasting scenario, but potentially in other smart
home applications as well. In our future work, we will further study
how to utilize our decentralized federated learning framework to
solve collaborative training problems in privacy-sensitive scenarios.
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