
Is Rust Used Safely by So�ware Developers?

Ana Nora Evans
AnaNEvans@virginia.edu

University of Virginia

Bradford Campbell
bradjc@virginia.edu

University of Virginia

Mary Lou Soffa
soffa@virginia.edu

University of Virginia

Abstract

Rust, an emerging programming language with explosive growth,

provides a robust type system that enables programmers to write

memory-safe and data-race free code. To allow access to amachine’s

hardware and to support low-level performance optimizations, a

second language, Unsafe Rust, is embedded in Rust. It contains

support for operations that are difficult to statically check, such

as C-style pointers for access to arbitrary memory locations and

mutable global variables. When a program uses these features, the

compiler is unable to statically guarantee the safety properties

Rust promotes. In this work, we perform a large-scale empirical

study to explore how software developers are using Unsafe Rust in
real-world Rust libraries and applications. Our results indicate that

software engineers use the keyword unsafe in less than 30% of Rust

libraries, but more than half cannot be entirely statically checked

by the Rust compiler because of Unsafe Rust hidden somewhere

in a library’s call chain. We conclude that although the use of the

keyword unsafe is limited, the propagation of unsafeness offers

a challenge to the claim of Rust as a memory-safe language. Fur-

thermore, we recommend changes to the Rust compiler and to the

central Rust repository’s interface to help Rust software developers

be aware of when their Rust code is unsafe.

ACM Reference Format:

Ana Nora Evans, Bradford Campbell, and Mary Lou Soffa. 2020. Is Rust

Used Safely by Software Developers?. In 42nd International Conference on
Software Engineering (ICSE ’20), May 23–29, 2020, Seoul, Republic of Korea.
ACM, New York, NY, USA, 12 pages.

1 Introduction

Programming languages directly impact the reliability, safety, and

correctness of software, and their features impact the prevalence of

bugs in actual software. A relatively new programming language,

Rust, is explicitly designed to help programmers write more reli-

able software by using the compiler to help reduce memory and

data race errors. Rust is referred to as a “safe” systems program-

ming language, indicating that its type system, ownership model,

automatic memory management without garbage collection, and

static compiler make it well suited for writing lower-level or core

software without the common bugs that can plague code written

in C and C++ [15, 29, 30].

Permission to make digital or hard copies of all or part of this work for personal or 
classroom use is granted without fee provided that copies are not made or distributed 
for profit or commercial advantage and that copies bear this notice and the full citation 
on the first page. Copyrights for components of this work owned by others than ACM 
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, 
to post on servers or to redistribute to lists, requires prior specific permission and/or a 
fee. Request permissions from permissions@acm.org.
ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7121-6/20/05…$15.00
https://doi.org/10.1145/3377811.3380413

The design aspects that make Rust safe, such as no arbitrary

pointers or arbitrary type casting, however, would also make writ-

ing most or all low-level code impossible. Operations such as config-

uring hardware or reading a network socket involve manipulating

memory in ways that the compiler cannot guarantee to be safe.

Therefore, Rust includes an “escape hatch” with the unsafe key-

word1 that allows programmers to deactivate some (but not all) of

the Rust compiler’s checks for certain regions of code. This function-

ality was originally described as “pragmatic safety” [14] when Rust

was first introduced, and allows developers to use their own discre-

tion when writing Rust code. Part of the justification for allowing

Unsafe Rust code is that uses of unsafe would be easy to locate and
audit, and that developers can decide how much unchecked code

they are willing to accept in their software.

Modern software development leverages and builds upon li-

braries, which often use yet other libraries. Auditing software for

uses of unsafe requires auditing all dependent libraries, a poten-

tially cumbersome task. This overhead is mitigated, however, if

usage of unsafe is scarce and easy to locate in the Rust software

ecosystem, or if making a determination about the validity of the

unsafe usage is typically straightforward. Therefore, understand-

ing how developers are actually using unsafe is necessary to eval-

uate whether “pragmatic safety” is valid and if Rust provides a safe

programming environment in practice.

Our study is further motivated by recent interest in Rust as a

safe alternative to C for systems software [3, 6, 8, 20, 21, 24, 33] and

by the development of formal definitions for Rust’s type system

(including Unsafe Rust). For example, the Rust Belt project [18]

proposes formal tools for verifying Unsafe Rust, and Oxide [39]

presents a formalization of a language very similar to Rust. The

Rust open source community recently formed a new Rust working

group to create a “Unsafe Code Guideline Reference” to help guide

developers [36]. These are encouraging steps, and understanding

how Unsafe Rust is being used by developers will help guide the

successful formation of these strategies.

To acquire this understanding, we perform a large-scale study

and an analysis of publicly available Rust libraries and application

code. We first determine how frequently the unsafe keyword is

used. Then we analyze the call graph of every function in our data

set to identify if at any point the function may use code that is

not safe and not checked by the compiler. This analysis enables us

to find code that looks safe, but is actually Unsafe Rust. To better

understand how developers are using unsafe, we also identify the

underlying code behavior that necessitates the use of Unsafe Rust
to analyze the frequency of the various unsafe operations. Further,

we observe the use of Unsafe Rust over time to see if there are

evolving changes in the community.

1Rust keywords are green and boldedwhile the safe and unsafe conditions are italicized.

246

2020 IEEE/ACM 42nd International Conference on Software Engineering (ICSE)



ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Ana Nora Evans, Bradford Campbell, and Mary Lou Soffa

To perform this analysis, we developed and implemented an

algorithm for constructing an extended call graph of Rust functions

that uses the type information to increase the call graph precision.

Building a call graph for Rust is difficult, however, as Rust’s run-

time polymorphism and higher order functions complicate statically

building a call graphwithoutmissing edges or adding extra edges. In

our approach, we identify these ambiguities, and build two versions

of the call graph by applying both a conservative (assume the call

will be to unsafe code) and an optimistic (assume the call we be

to code statically checked to be safe) analysis to help bound the

use of Unsafe Rust in Rust libraries. We then traverse and analyze

the resulting extended call graph to determine how unsafeness

propagates in real-world Rust code.

After analyzing over 85% of the valid Rust libraries available

at the start of our study, we find that 29% contain at least one

explicit use of unsafe. When considering the dependency tree,

however, that number increases to around 50%, meaning half of

Rust libraries use Unsafe Rust or rely on other libraries that use

Unsafe Rust. Narrowing down to just the most used and downloaded

libraries increases the use of Unsafe Rust, as around 60% of popular

crates include Unsafe Rust. The majority of unsafe uses in the

Rust ecosystem are to call other Rust functions that are marked

unsafe. We find that only 22% of these unsafe functions are to

external libraries implemented in C, suggesting that a majority

of the Unsafe Rust is actually from Rust code where the software

developer decided to disable the compiler checks. Finally, we see

negligible increases in the frequency of unsafe used over the past

ten months.

Based on these findings, we propose several recommendations

to help realize the original vision of “pragmatic safety” in Rust, in-

cluding programmer-assisted automated checks, additional tooling

to help developers identify uses of unsafe, and more visible code

reviews to audit uses of unsafe. These changes would allow devel-

opers to better exploit the benefits of Unsafe Rust while managing

its risks to overall software reliability.

The contributions of this paper are:

• A large-scale study and analysis of unsafe use in the Rust

software ecosystem.

• A call graph construction algorithm which handles generic

polymorphism.

• Findings that indicate that a majority of crates are not guar-

anteed by the compiler be memory-safe and data-race free.

• Highlights of our findings indicate that unsafe function calls

are the most common use of unsafeness, which is caused

through library dependencies rather than the use of the

unsafe keyword, and the most downloaded crates have more

unsafe code than other other crates;

• Recommendations to enhance the Rust compiler and its

ecosystem to help developers understand when they are

using Unsafe Rust in their software.

Section 2 contains a brief introduction to Rust, Unsafe Rust (see
Section 2.3), the Rust software ecosystem (see Section 2.6), and the

terms we define to facilitate discussion throughout of paper (see

Section 2.5). In Section 3 we present the research questions that

guided our experiment and the selection criteria for the Rust code

that comprises our data set. Section 4 contains the approach to

answering the research questions. In Section 5 we define the data

set we used in the experiments, and the answers to the research

questions based on the experimental results. We conclude with our

recommendations (see Section 6), threats to validity (see Section 7),

related work (see Section 8) and conclusions (see Section 9).

2 Background

First, we provide a working example that will be referenced through-

out the paper. We then describe the key features of Safe Rust and
Unsafe Rust that are relevant to our study. Next, we define terms

that we use to categorize Rust code. Finally, we provide some back-

ground information about the general Rust software ecosystem.

2.1 Working Example

Figure 1(a) shows a set of functions in pseudocode from several

libraries selected to illustrate how unsafety can propagate in a code-

base. We will use these functions to explain concepts throughout

the paper.

The functions are organized in five different libraries. The start-

ing point is function foo() in Library1, which calls the function

bar() in Library2. The symbol :: separates the library name from

the function called from that library. In function bar() from Li-

brary2, the call to my_object.baz() is a run-time polymorphic

call to the method baz() of an instance implementing the interface

HasBaz. The interface HasBaz has two implementations in Library3

and Library5.

Figure 1(b) shows the resulting library dependency graph from

the example functions. A library depends on other libraries if it

uses functions from those libraries, and therefore requires the other

libraries to completely compile a binary.

For functions with run-time polymorphism we generate two

call graphs: conservative and optimistic (see Figure 1(b)). We will

explain this further in Section 4.

2.2 Safe Rust

Rust includes a few basic concepts that enable the compiler to en-

force safety guarantees. The ownership mechanism in Safe Rust
requires that a unique variable is the owner for every memory lo-

cation. Memory locations are immutable unless explicitly declared

otherwise. Variable assignment results in a copy or a transfer of

ownership, and once the variable loses ownership of the memory

location, that variable becomes unusable. To enable sharing, the

borrow mechanism allows creating memory aliases which permit

any number of read-only references and exactly one mutable one.

The foo() function in Figure 1(a) shows an example borrow oper-

ation. Together, the ownership and borrow mechanisms prevent a

large class of memory-safety errors and data races.

The definition of memory-safety used by Rust is similar to the

one proposed by Szekeres et al. [30]. A Rust program is memory-

safe if it is free of any memory errors such as dereferencing a null

or dangling pointer, reading or writing unaligned pointers, and

reading uninitialized memory [34]. Memory leaks are explicitly

considered defined behavior, and thus not memory errors.

247



Is Rust Used Safely by So�ware Developers? ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

fn foo() {
x = MyObject::new() // x owns the object
y = x               // Borrow occurs here
…
library2::bar()

}

fn bar() {
// my_obj implements
// “HasBaz”
HasBaz my_obj
my_obj.baz()

}

!"#$%$&'

!"#$%$&(

Impl HasBaz {
fn baz() {

a += 1
}

}

!"#$%$&)
Impl HasBaz {
fn baz() {
unsafe {
my_global = 4
qux()

}
}

}

!"#$%$&*

unsafe fn qux(b) {
my_obj = (Obj) b
return my_obj

}

!"#$%$&+

,%-.

/.0!%$./123,%-.

45,,"#!&123,%-.

(a) Working example functions.

!"#$%$&'

!"#$%$&(

!"#$%$&) !"#$%$&*

!"#$%$&+

(b) Library1 dependency
graph.

!""

#$%&'&()**%'&

+',-'.**%'. /0'!12

3
4
5$
6
$,
5$
7

!""

#$%&'&()**%'&

+',-'.**%'. /89,'!12:
"
9
,1
&;
'
5$
;
1

(c) foo() extended call
graph.

Figure 1: Working example of Rust functions in multiple libraries that are either safe, unsafe, or only appear safe.

For instances where program operation requires violating these

constraints, Unsafe Rust allows developers to assert to the com-

piler that they are manually implementing the necessary checks to

preserve memory-safety and data-race freedom.

2.3 Unsafe Rust

Unsafe Rust provides the necessary operations for low-level systems

programming, such as arbitrary memory accesses with C-style

pointers, invoking system calls, calling foreign functions (usually C

functions), executing inline assembly instructions, eliding bounds

checks for performance, and accessing global static memory. To

use any of these features, developers must mark the code with the

unsafe keyword. In Listing 1, unsafe is necessary for casting an

address to a Rust struct for memory-mapped IO, and to use global

variables to reference unique resources (e.g., COM1 port).

1 impl SerialPort {

2 pub unsafe fn new(base: usize)

3 -> &'static mut SerialPort {

4 &mut *(base as *mut Self)

5 }

6 }

7 pub static COM1: Mutex<SerialPort> =

8 Mutex::new(SerialPort::new(0x3F8));

9 pub unsafe fn init() {

10 COM1.lock().init();

11 }

Listing 1: Transmute

Within an unsafe region, the compiler still checks the Safe Rust
types, but the operations listed above are permitted as well. Unsafe
Rust does not grant the programmer complete freedom, but sub-

verting overall system safety is certainly possible. Programmers

using Unsafe Rust are responsible for writing code free of safety

violations and undefined behavior; however, what constitutes un-

defined behavior is currently not well specified and can change

with different versions of the compiler. This situation makes safely

using Unsafe Rust difficult.

2.4 Sources of Unsafe Rust

There are several sources of Unsafe Rust, including unsafe opera-
tions, unsafe functions, and unsafe traits.

2.4.1 Unsafe Operations A developer may directly use Unsafe
Rust by creating a code block labeled with the keyword unsafe,

which is required for the following operations:

(1) Calling a function marked unsafe, non-Rust external func-

tion, or a compiler intrinsic (a function whose implementa-

tion is handled specially by the compiler).

(2) Dereferencing a C-style pointer.

(3) Accessing a mutable global variable.

(4) Using inline assembly instructions.

(5) Accessing a field of a union type.

Function baz() in Library5 contains an example of Unsafe Rust
operation: an assignment to a global variable my_global, enclosed

in an unsafe block.

An example of a possibly dangerous unsafe function call is the

mem::transmute() function used to coerce the contents of an ar-

bitrary memory location into a specific Rust type. This is necessary

when raw data (such as from a network socket), but can easily vio-

late type-safety if used improperly. Further, the mem::transmute

function also makes use-after-free memory errors possible when it

is used to extend the compiler calculated code bounds where the

variable is live.

1 let mut hello = String::new();

2 let hello_ref: &mut String =

3 {let r: *mut String = &mut hello;

4 unsafe { &mut *r }}; //Undefined Behavior! A second mutable reference

5 hello.push_str("Hello ");

6 hello_ref.push_str("world!");

7 println!("{:?}", hello);

Listing 2: Multiple Mutable References

Using unsafe also makes mutable reference aliasing possible,

leading to undefined behavior. In the Rust Listing 2, using simplified

Rust syntax, two mutable references (hello and ref1) are created

to the same memory location using an unsafe block. Different

Rust versions are free to handle this differently, and do, as the

248



249



Is Rust Used Safely by So�ware Developers? ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

unsafe blocks and declared unsafe functions separately. The moti-

vation for RQ3 is to understand if interactions with C are the main

source of Unsafe Rust. If yes, then most Unsafe Rust can be elimi-

nated by implementing the libraries in Rust. If not, then the reason

for Unsafe Rust lies within Rust code itself, and may be necessary

for achieving the desired performance or for implementing low-

level libraries that interact with the operating system or directly

with hardware.

RQ4: What abstract binary interfaces (programming languages)

are used in the declared unsafe functions?
The motivation for RQ4 is to understand if most called unsafe

functions are from external libraries implemented in C or from

other Rust libraries.

RQ5: Does the use of Unsafe Rust change over time?

The motivation for RQ5 is to understand if the increased attention

in the past year from the research community and the efforts by

Rust language team to define and develop guidelines for use of

unsafe changed the habits of the Rust developers.

RQ6: Why do Rust developers use unsafe?

We surveyed Rust developers to understand their reasons for using

unsafe.

3.2 Data Selection

To understand unsafety in Rust, we analyze real-world, publicly

available Rust code. As the Rust tool chain provides robust sup-

port for libraries, Rust software extensively leverages community-

provided libraries to create larger projects. As such, we target

our analysis towards the libraries that comprise the Rust software

ecosystem.

To provide as wide of an analysis as possible, we include as many

libraries (Rust crates) in our study as possible. However, as with any

open ecosystem, there exists a “long-tail” of crates in Rust that are

small, largely unused projects, and these may not be representative

of the ecosystem at large. Therefore, we also perform our analysis

on only the “popular” crates in our data set as defined as having

the most downloads from the central Rust repository to identify

any differences between the entire data set and the subset that is

more frequently used.

Additionally, to compare crates contributed by the larger Rust

community with those developed by members of the core Rust

development team and Mozilla Research [32], we analyze the appli-

cation Servo [3], a web browser engine fromMozilla. Servo, endemic

of the larger Rust ecosystem, itself is implemented as a collection

of about fifty discrete crates, and together with all its dependencies,

compiling Servo involves compiling almost 400 different crates.

We include all Servo crates and their external dependencies in

our analysis of Servo because they are implicitly vetted by the Servo

team to be included in one of the flagship Rust applications.

4 Approach

Our approach to answer the research questions is to identify all oc-

currences of unsafe in Rust codebases, and then determine how the

unsafeness propagates to caller functions. First, we parse Rust code

from libraries to identify the keyword unsafe in blocks, functions,

traits, and trait implementations in a single crate, which can be ana-

lyzed independently of other crates. Next, we develop two versions

of an extended call graph for each library; one that is optimistic

and one that is conservative in terms of whether a polymorphic

function is safe or unsafe. Finally, we develop an algorithm to an-

alyze the extended call graph to propagate the unsafe condition

through the call graph to determine if a function is safe or possibly

unsafe. In this way, we can identify libraries that appear safe but

actually have potentially unsafe conditions that have propagated

up the call chain. Sources of imprecision in our analysis include

potential inclusion of dead code.

4.1 Extended Call Graph

In general, a program call graph [28] is a directed graph with a

node for each program function and an edge (f ,д) for one or more

potential calls of д from the function f . This simple construction

needs to be expanded if the language has polymorphism and high

order functions, as Rust does. Several algorithms for call graph con-

struction for other languages which have these features have been

proposed with different trade-offs between precision and running

time [5, 11, 25]. Our approach is similar to the one by Petrashko et
al. [25] in using the type information available at call site of not

only the Self type, but also of the static types of the parameters.

Each node of the call graph is extended to contain not only the func-

tion, but a list of generic type parameters and type substitutions

for those when available.

To generate a call graph, we use the Rust compiler to compile

the crate to an intermediate representation of Rust known as MIR

(Middle Intermediate Representation). We then use the "control flow

graphs" of functions obtained directly from the MIR representation

to run a context-sensitive analysis which uses type inference to

find the precise functions that can be called. This analysis starts at

the leaf terminal nodes of the control flow graph of a function. For

each terminal leaf node of the type “function call” we use the type

inference to determine the function call, given the type substitutions

in the calling context. If the method has no Self type or has a

Self (this) type that it is statically known, then only one edge is

introduced in the call graph in the actual implementation. If a node

with the calculated substitutions for generics of the called function

does not exist in the call graph, then we apply the substitutions

recursively and introduce new nodes in the call graph as needed. If

the Self type (i.e., this) is still unknown, then an edge to a node

parameterized by the Self type is introduced. In building the call

graph, when we encounter functions with generic type parameters,

we parameterize the call graph based on the generic type parameters

and instantiate a call with actual types available at the call site. The

nodes in our call graph are functions together with a set of type

substitutions of the generic type parameters when statically known.

If the precise functions of the call graph cannot be resolved at

compile-time (due to virtual dispatch and higher order functions),

we split into two approximations, and create two versions of the

call graph. We create a call graph of a conservative approximation

assuming that the unknown function is unsafe, and an optimistic

approximation of a call graph that assumes the potential function

is safe.

For efficiency, our call graph construction for a function termi-

nates when any unsafe usage is found, as the original function

must now be marked possibly unsafe and further calls will have no

250



ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Ana Nora Evans, Bradford Campbell, and Mary Lou Soffa

impact. Similarly, we stop when we reach a virtual call or a function

pointer as our two approximations cover the two possible cases.

We generate extended call graphs for every function in every

crate, enabling this approach to work even for libraries which do

not contain a main function. These extended call graphs are for

individual libraries, and function calls to other libraries are explicitly

marked. In our analysis, we can then combine the extended call

graphs as needed without having to generate the call graphmultiple

times. Note, we stop our call graph construction at calls into the

Rust standard library. If the functions are declared unsafe we mark

them as unsafe; however, we consider the standard library trusted

and consider all other functions safe, even if their implementations

contain uses of unsafe.

To aid future reproducibility studies and extensions of our work,

we publish all the code used for this paper at h�ps://github.com/

ananevans/icse2020, including the call graph construction available

in the unsafe-analysis/src/implicit_unsafe/rta.rs folder.

4.2 Analysis on the Call Graph

Data: call graph

Result: list of possibly unsafe functions

for all function definitions do
if function has unsafe in body then

add function to possibly unsafe list;

add function’s call graph node to worklist
end

end

reverse the call graph;

while worklist not empty do
current_func = pop the first element of the worklist for

each neighbor of current_func do
if neighbor not in possibly unsafe list then

add function to possibly unsafe list;

add neighbor to worklist
end

end

end

Algorithm 1: Analysis on Call Graph

After the extended call graphs are constructed, we use them

to identify potentially unsafe functions in the Rust libraries. Our

approach starts at the bottom of the call graph with all functions

that contain unsafe blocks. We then work back up the call graph

to identify functions that may call any of these initial functions.

Our goal is to mark every function as either safe or possibly unsafe.
We start with a worklist initialized with all functions that con-

tain an unsafe block in their body. Note that we do not need to

consider the declared unsafe functions because they will necessarily
be called from within an unsafe block in another function. We iter-

atively remove a function from the worklist, and perform a reverse

propagation on the extended call graph to mark all of its callers as

possibly unsafe, and then add them to the worklist. The algorithm

completes when the worklist is empty, and all functions that have

not been marked possibly unsafe are deemed safe.

4.3 Example

Consider our working example from Figure 1 and assume we are

analyzing the safety of Library1. The library dependency graph

is given in Figure 1(b) and shows the order of compilation and

analysis in building the extended call graph. Function foo() in

Library1 calls a function bar() in Library2 and thus an edge is

placed between Library1 and Library2. Library2 specifies libraries

3 and 5 as dependencies, making the call to polymorphic function

baz() ambiguous. Finally, Library5 contains a call to qux() and

therefore Library4 is a dependency of Library5.

The extended call graph with external libraries merged is shown

in Figure 1(c). Because bar() calls the polymorphic function baz(),

we cannot precisely determine the exact call graph and split into an

optimistic call graph that assumes the unknown implementation of

HasBaz::baz() is in fact safe, and a conservative call graph that

assumes it is unsafe. To determine unsafety in the conservative

case, we start with the unknown function HasBaz::bar() in our

worklist since it is marked possibly unsafe. We then find all callers, in

this case library2::bar(), mark them as possibly unsafe, and add

them to the worklist. Iterating, we determine foo() calls bar()

and mark foo() possibly unsafe. This tells us that even though

foo() appears safe, in a conservative analysis it may in fact call

code which is not statically checked by the compiler.

5 Experiments and Results

We start with describing the experimental setup in Section 5.1

and continue with the detailed description of the data sets used

in our experiments (Section 5.2). We conclude with the results in

Section 5.3.

5.1 Experimental Setup

We execute the experiments using version “nightly-2018-09-11” of

the Rust compiler on Ubuntu 18.04. The 2019 version of the most

downloaded data set is compiled with version “nightly-2019-07-01”.

5.2 Data Sets

Our data selection criteria are presented in Section 3.2. Here we

present the libraries actually included in our study and describe

reasons why we are unable to include all Rust crates in our data

set.

At the start of our study, September, 2018, there were a total of

18,478 crates registered with the central Rust software repository.

We eliminated all of the crates that could not compile or was no

longer available. Note that Rust is under active development, and

a particular crate may compile with one version of the compiler

but not another. Afterwards, our data set contains 13,096 crates,

which represent 70% of the total registered crates, and 85% of the

registered crates that contain some Rust code and are syntactically

correct.

To obtain a “popular” subset, we fetch the per-crate downloads

numbers from crates.io and select the most downloaded crates that

account for ninety percent of the downloads from crates.io. These

500 or so crates form a group we call most downloaded. From these

most downloaded crates we were able to compile 462 crates.

To create a group of perhaps “higher quality” crates, we use the

crates that comprise the application Servo, a web browser engine

251



Is Rust Used Safely by So�ware Developers? ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

Abstraction
crates.io

(%)
Most

Downloaded (%)
Servo
(%)

Any 29.4 52.5 54

Blocks 28.2 49.4 51.7

Declared Unsafe
Functions

15.1 15.1 39.7

Traits 1.2 4 4.4

Trait

Implementations
6.0 13.0 18.2

Table 1: Percentage of Rust crates with Unsafe Rust based

on abstraction type.

fromMozilla, as another group. Servo is implemented as a collection

of approximately fifty crates and together with all its dependencies,

it comprises almost four hundred crates. As Servo is created by

many of the same developers actively developing the Rust language

itself, we posit that it represents a more expertly developed piece of

Rust software. Note that the crates in this group do overlap partially

with the most downloaded and complete groups.

Finally, our fourth group contains the same crates as in the most

downloaded group, but with the crate’s contents as it existed in

June 2019 on crates.io, approximately ten months after the first

analysis.

5.3 Results

We provide answers the research questions from Section 3.1 based

on the results of our experiments.

5.3.1 RQ1: How much do developers use Unsafe Rust? Ta-

ble 1 shows the percentages of the crates use unsafe, broken down

by the type of abstraction. Overall, 29% of crates directly include

some sort of Unsafe Rust in them. More popular crates are more

likely to use unsafe as 52.5% of the most downloaded crates contain

Unsafe Rust. Of these, only a few crates (about 15-17%) explicitly

mark functions as unsafe (which then propagate the unsafe to

other portions of code). The unsafe trait and trait implementations

are used by only a relatively small number of crates. Compared to

the larger ecosystem, the crates that comprise the Servo project are

more likely to use Unsafe Rust.
Blocks: Figure 3 shows the cumulative distribution of unsafe blocks

per crate, with crates.io set in black and the most downloaded crates

in grey, and the maximum value capped at 99.5% of the crates for

clarity. The long tail of the CDF (Cumulative Distribution Function)

exists primarily because of autogenerated code, either from C to

Rust translators, hardware description files, or “safe” Rust wrappers

around C library functions.

The number of unsafe blocks per crate is small for the majority

of the crates, more than 90% of the crates have fewer than ten

unsafe blocks. The most downloaded crates use unsafemore often

than all crates. This occurs because these crates are more likely to

use unsafe to extract performance optimizations, and they often

exist to help interface with existing C libraries.

Functions: Figure 4 shows the cumulative distribution of declared
unsafe functions per crate for the crates.io set (in black) and most

downloaded crates (in dark grey), capped at 99%. A very small

number of crates have thousands of declared unsafe functions. These

✻�✁�✂

✻✄✁�✂

✼�✁�✂

✼✄✁�✂

✽�✁�✂

✽✄✁�✂

✾�✁�✂

✾✄✁�✂

✶��✁�✂

✵
✺
✵

☎
✵
✵

☎
✺
✵

✷
✵
✵

✷
✺
✵

✸
☎
✷

❯✆✝✞✟❡ ✠✡☛☞✌✝

P
✍
✎✏
✍
✑
✒
✓
✔
✕
✎❛
✒✍
✖

Figure 3: RQ1: Cumulative Distribution of Unsafe Blocks

✗✘✙✘✚

✛✜✙✜✚

✛✢✙✜✚

✣✜✙✜✚

✣✢✙✜✚

✤✜✜✙✜✚

✥
✦
✥

✧
✥

★
✥

✹
✥

✩
✥

✪
✥

✫
✥

✬
✥

✭
✥

✦
✥
✥

✦
✦
✥

✦
✧
✥

✦
★
✥

✦
✹
✦

❉✮✯✰✱✲✮✳ ✴✿❀✱❁✮ ❂❃✿✯❄❅❆✿❀

❇
❈
❊❋
❈
●
❍
■
❏
❑
❊▲
❍❈
▼

Figure 4: RQ1: Cumulative Distribution of Declared Unsafe

Functions

crates are typically low-level support crates for embedded devices

or C library bindings.

As in the unsafe blocks case, the per-crate number of declared
unsafe functions is small with 90% of the crates containing fewer

than two declared unsafe functions.
While there is a compiler warning if a block is unsafe without

using any unsafe operation, no such warning is generated for func-

tions. One use of an unsafe function is to warn the library user

that preconditions must be satisfied, otherwise memory corruption

or a data-race may occur. We performed an additional analysis on

the declared unsafe functions to determine if the function uses an

unsafe operation. From all the crates with at least one declared

unsafe function, 69% of all crates.io and 53% of most downloaded

crates, all the declared unsafe functions are entirely Safe Rust. We

identity two possible reasons for which a declared unsafe function

executes no unsafe operations: (1) the library developer performed

a careful analysis and determined that preconditions are necessary

to prevent memory corruption and data races; or (2) the unsafe

attribute was incorrectly placed.

252



ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Ana Nora Evans, Bradford Campbell, and Mary Lou Soffa

Analysis
crates.io

(%)
Most

Downloaded (%)

Conservative 44.8 38.9

Optimistic 53.8 43.9

Table 2: Percentage of Crates With Only Safe Functions

Traits: Declaring an unsafe trait is rare in the Rust ecosystem, with

only a little over one percent of crates making use the feature.

Implementations: As seen in Table 1, only six percent of all crates

provide an implementation of an unsafe trait. Almost 40% of those

are of two traits from the Rust standard library: Send (30%) and

Sync (13%). These traits are fundamental for Rust’s concurrency.

They do not have any declared methods, and they are used as a

declaration by the programmer that the objects implementing them

are safe to change ownership to another thread (Send) or can be

shared between threads (Sync).

Summary: Unsafe Rust is used in a little more than a quarter of

all crates, but the number of explicit unsafe uses per crate is small

for most crates. Despite the potential issues with using unsafe, the

most downloaded crates are more likely to use unsafe than the

average crate. In general, developers tend to avoid exposing the

unsafety to other code by rarely marking functions as unsafe and

typically avoiding unsafe traits. However, the crates for Servo use

unsafe functions and unsafe traits two or three times as frequently

as general crates, which is consistent with the growing preference

in the Rust community that unsafe is encapsulated at a higher

level than individual functions. That is, exposing unsafe functions

is acceptable as long they are eventually enclosed within a safe

interface.

5.3.2 RQ2: Howmuch of the Rust code is Safe Rust? Table 2

presents the percentage of crates containing only safe functions,
when the unsafe generated by compiler is ignored and the standard

Rust library is considered entirely safe.

Figure 5 shows the cumulative distribution of the possibly unsafe
functions for all crates, capped at 95%. The optimistic analysis is

shown in light grey and the conservative analysis is shown in black.

The difference between the results of the two analyses is about 10%

for crates with a small number of possibly unsafe functions, and gets
smaller than 1% for crates with tens of possibly unsafe functions.

To better understand the difference between the perceived safety

(more than two thirds of the crates do not contain an unsafe ab-

straction, Table 1) and the static safety guarantees (less one third of

crates are entirely Safe Rust) of Rust, we inspected crate dependen-

cies. On average, across all crates in our dataset, a crate depends on

twelve other crates. As shown in Table 3, only 27% of total crates

contain no Unsafe Rust and only use dependencies which contain

no Unsafe Rust. Importantly, 38% of crates include no unsafe in

their own implementation, but rely on dependencies which do use

unsafe.

Summary: While only less then one third of crates directly use

unsafe, over half of crates include Unsafe Rust somewhere in the

aggregate source code once dependencies are considered. This illus-

trates the difference between Rust’s perceived safety and what is

actually statically guaranteed. This also burdens developers trying

✹✹�✁✂

✺✄�✁✂

✻☎�☎✂

✼☎�☎✂

✁☎�☎✂

✾☎�☎✂

✶☎☎�☎✂

✵
✆
✵

✷
✵

✸
✵

✝
✵

✞
✵

✟
✟

P♦✠✠✡☛❧☞ ✌✍✠✎✏❡ ✑✒✍✓✔✡♦✍✠

✕
✖
✗✘
✖
✙
✚
✛
✜
✢
✗❛
✚✖
✣

Figure 5: RQ2: Declared Safe and Possibly Unsafe Functions

Distribution

Dependencies

With Unsafe (%)

No Unsafe in

Dependencies (%)
Crate With
Unsafe 23 12

No Unsafe
in Crate 38 27

Table 3: Unsafe in Crate and Dependencies

crates.io

(%)

Most

Downloaded (%)

Servo

(%)

Unsafe

Function Call
79.2 66.3 74.9

Dereference

C-Style Pointer
16 19.8 21.5

Global Variable 4 11.4 0.21

Table 4: Unsafe Operations in Unsafe Blocks

crates.io

(%)

Most

Downloaded (%)

Servo

(%)

Unsafe

Function Call
88.8 64.1 78.2

Dereference

C-Style Pointer
6.38 25.9 19.1

Global Variable 3.9 8.0 1.1

Table 5: Unsafe Operations in Unsafe Functions

to understand their software’s exposure to Unsafe Rust as 38% of

crates appear to avoid unsafe, yet contain it in their dependencies.

5.3.3 RQ3: What Unsafe Rust operations are used? Table 4

and Table 5 present the most frequent Unsafe Rust operations in
unsafe blocks and declared unsafe functions, respectively. Only
the Unsafe Rust operations present in more than 1% of crates are

displayed.

253



Is Rust Used Safely by So�ware Developers? ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

✸�✁✂

✷✷�✄✂

✹✷�☎✂

✻✄�✻✂

✄✹�✷✂

✁�✹✂

❈
❘
✆✝
✞

❘
✆✝
✞✟✠
✞✡✐
✠✝
✐☛

❆☞✌✍✎❛✏✍ ✑✒✓❛✎② ✔✓✍✕✎✖❛✏✕

P
❡
✗✘
❡
✙
✚✛
✜
❡

✢✣✣ ▼✤✥✦ ✧✤✇★✣✤✩✪✫✪

Figure 6: RQ4: Calls of Declared Unsafe Functions

Primarily, a function may be declared unsafe because it contains
Unsafe Rust operations that are not enclosed in an unsafe block.

Other reasons for declaring a function unsafe are: it is imposed by

a trait, it has a precondition that must be satisfied, and it has a

C-Style pointer argument that can be invalid. These cases are not

directly using any Unsafe Rust operations, and thus were excluded

from the analysis.

We observe that calls to declared unsafe functions are a majority

of the Unsafe Rust operations used. The most downloaded crates

and Servo use C-style pointers with greater frequency. One possible

explanation is that these applications interface with C libraries for

speed or because those libraries are not yet available in Rust.

Summary: Calls to unsafe functions are the majority of the Unsafe
Rust operations. We need to understand if the functions are unsafe

because they are implemented in C or they are Rust functions. This

is investigated in the next research question.

5.3.4 RQ4: What type of unsafe functions are called? Fig-

ure 6 presents the distribution of the abstract binary interface of

the declared unsafe functions called from both declared unsafe func-
tions and unsafe blocks.

Among all crates from crates.io the most frequent calls are to

Rust unsafe functions (65%), followed by calls to C functions (22.5%)

and Rust intrinsics (special functions made available by the Rust

compiler). Among the Rust unsafe calls, 47.6% are calls to the Rust
Core Library. Of these unsafe functions in Core, 36.4% are of func-

tions in the ptr module used to manually manage memory through

C-style(raw) pointers and 40% are calls of functions that are unsafe

wrappers to SIMD instructions and architecture-specific intrinsics.

Thus, a significant source of Unsafe Rust is caused by the defini-

tion and use of C-style pointers, either by direct dereferencing or

by calling unsafe functions from the core::ptr module that allow

pointer arithmetic and access to the values stored at the pointer

location.

The most downloaded crates use the Rust intrinsics much more

frequently because intrisics provide operations used for I/O mem-

ory access and common atomic operations. The most downloaded

crates include more libraries that extend Rust with I/O access and

concurrency primitives. The very small number of C-style calls

Abstraction
Same

(%)

Increase

(%)

Decrease

(%)

Blocks 82 10 8

Functions 87 7 6

Table 6: Unsafe Use in Most Downloaded Crates

in most downloaded crates is explained by the fact that the most

downloaded crates are more likely to contain crates that are wrap-

pers for commonly used libraries. From all the calls to Rust unsafe

functions, 47.2% are to function from the Rust Core Library of which

27% are to core::ptr functions. The wrappers to SIMD instructions

are significantly used, as the calls to Rust intrinsics are much higher.

Summary: Calls to C functions are not the majority of the calls

to unsafe functions. Implementing some C libraries in Rust, will

remove some Unsafe Rust operations, but the majority of unsafe

function calls are to Rust functions and Rust intrinsics. We conclude

that the unsafe code is not encapsulated behind the public interface

and the developers use the unsafe function when available.

5.3.5 RQ5: Does the use of Unsafe Rust change over time?

To answer RQ5, we count the number of unsafe blocks and func-

tions in the same set of most downloaded crates at two different

time points: September 2018 and June 2019. Since the Rust compiler

API changes frequently, we modified the Rust plugin to be able to

compile updated crates. However, unsafe is counted in the same

way, despite using two different versions of the tool.

A majority of crates (over 80%) contained the same number of

unsafe blocks and functions in both versions. Of the crates that

did change their unsafe usage, approximately half increased while

the other half decreased.

Summary: We conclude that there are no significant trends in

the use of unsafe over a period of ten months, with only a small

increase in the use of unsafe.

5.4 RQ6: Why do Rust developers use unsafe?

To answer the RQ6 research question, we created a survey and

posted it on the Rust Subreddit [1], and collected data from twenty

respondents. The survey asked why they use unsafe and how they

ensure correctness when using unsafe.

The first question asked Rust developers to select one or more

reasons for why they use unsafe in their code. A majority (55%) in-

dicated the use Unsafe Rust for higher performance, with Safe Rust
being too restrictive as the next most common reason (40%). The

other reasons selected include: the Safe Rust alternative is too ver-

bose or complicated (25%), needed to make the code compile (10%),

and faster to write code with Unsafe Rust (5%). Further, respondents
provide other reasons, including: implementing fundamental data

structures, custom concurrency primitives and system calls, inter-

action with specialized hardware, and integration with C or other

languages.

To expand on the general reasons for using Unsafe Rust, the next
question asked what operations the developers use that require the

unsafe keyword. Of the respondents, 45% report using unsafe to

call a non-syscall external C function, 25% to call an unsafe Rust

function, 25% to work with C-style pointers, and 5% to work with

254



ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Ana Nora Evans, Bradford Campbell, and Mary Lou Soffa

SIMD intrinsics. No respondents selected to perform a system call

or to access a static variable.

The final question asked the Rust developers for the steps they

take to increase their confidence that their Unsafe Rust code is

correct. Most respondents (65%) indicated they read the code very

carefully, until they convince themselves that the code is correct.

Another frequently used technique (55% selected this option) is

adding runtime checks to prevent memory corruption. Half of the

respondents write more unit tests for the function or method that

uses unsafe Rust. Other steps developers take to increase confidence

in the correctness of their unsafe code include: having discussions

with experienced Rust developers in person or online, reading the

documentation and Rust books, creating theoretical proofs, using

available test generation, running fuzzing and analysis tools, and

using Miri [17].

Summary:We conclude that the Rust developers use Unsafe Rust
mostly because Safe Rust is too restrictive and to achieve better per-
formance, but they are aware of the potential challenges when using

unsafe and they use more care, test more thoroughly, and deploy

tools and analysis to increase confidence in their code correctness.

6 Towards a Safer Rust

Our analysis shows that while publicly available Rust libraries rarely

use the unsafe keyword (even very popular libraries), most of them

are still not Safe Rust, because of unsafe use in dependencies.

For Rust users that require more robust and reliable checking

of their code, future improvements to the Rust compiler or the

associated tool infrastructure are required. A particularly ambitious

mechanism would be to require an automatic correctness proof (in

the style of Verifiable C [4]) for every use of unsafe. Jung et al. [18]
used this approach to formally prove the correctness of a handful

of Rust functions. The Rust functions were manually translated

to a simplified version of the language, called λRust and using

the Iris framework [19] the authors provided machine-checked

proofs of correctness of several libraries and uncovered a previously

unknown soundness bug in Rust. This approach is unlikely to scale

to all Rust code, but may be feasible for the standard library or other

commonly used libraries to help minimize the amount of code that

is not checked for safety.

Another more feasible short-term approach is to address only

unsafe function calls, which is the most common use of unsafe.

Here, programmers could annotate function calls with suitable pre-

and post-conditions they expect to hold when calling the func-

tion. Various static and dynamic checks then check the code to

ensure the conditions are satisfied. This annotation would enable

programmers to safely use functions that are intrinsically unsafe

(i.e., configuring a hardware peripheral) or optimize performance

with unsafe. However, this approach does add an additional burden

for programmers and, possibly, run time overhead.

Another approach is to aid programmers in reasoning about

the safety of any external code they use. Rust already includes a

compiler directive that generates an error if unsafe is used, yet

we discovered a library that included the directive but still used

unsafe by overriding it at the function-level. Strengthening tools

so programmers have automated checks on unsafe code in depen-

dencies would significantly help programmers manually audit their

codebase to better enable “pragmatic safety”. For example, the Rust

compiler should be able to identify functions in a given library that

are implicit safe, and print a possible call chain that includes calls

to Unsafe Rust. Implementing this in the compiler would make this

tool easy to use, and it would remain up to date as the internal

compiler API changes.

The development of the above mentioned tools requires a defini-

tion of what Unsafe Rust actually means and which behaviors are

undefined. Despite Rust 1.0 being around for four years, the guide-

lines on how to write unsafe Rust code are still preliminary [35].

As this effort progresses, developing tools around Unsafe Rust will
be more manageable and maintainable.

The Rust library ecosystem tool, crates.io, should also help alert

developers to uses of unsafe. Anecdotally, over 100 unsound uses

of unsafe in a popular Rust web framework, Actix [31], were only

discovered and partially fixed by the Rust community after an

online post by a concerned user [37]. Even a year later, the library

still contains uses of unsafe, with soundness concerns still present.

Motivated by this example, we propose the following changes to

the crates.io interface: i) a new tag or badge for crates that include

Unsafe Rust; ii) a dependency tree for each library with the crates

that use Unsafe Rust clearly marked; and iii) a list of code reviews

for any Unsafe Rust. Previous research established that code review

in open source software communities is common and successful in

eliminating a large number of errors [7, 26, 27]. Alami et al. [2] find
that open source software developers develop a mature attitude

to negative feedback and improve their code through a cycle of

review, rejection, and improvement.

The implementation of our proposals will help the community

inspect libraries and help guide new Rust developers onwhatUnsafe
Rust code to trust.

7 Threats To Validity

The internal validity threats we identify are confounding factors

and sampling bias. The Unsafe Rust segments we identify may be

in unreachable or dead code that may not ever be executed for a

particular library. Future work can use additional static analysis

tools to identify uses of unsafe that reside in unreachable code.

Sampling bias is also a possibility. We intended to be inclusive in the

libraries we analyze, and we believe the way we segmented crates

is makes our analysis representative of the larger Rust ecosystem.

The crates included in our study are the ones that could be compiled

on an Ubuntu operating system, and doe not include crates that

need Windows and MacOS libraries.

Rust is under active development and it is possible that program-

ming style and use of Unsafe Rust changes in time. We identify this

as an external validity threat. The percentage of safe libraries may

change when considering only “newer” libraries.

8 Related Work

We present throughout the paper related work relevant to the mo-

tivation and techniques used. In this section, we focus on related

work that investigates how software engineers use various features

in other programming languages.

255



Is Rust Used Safely by So�ware Developers? ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

C/C++ language features: Eyolfson et al. analyze the use of

const annotations in seven medium and large open source C++

projects and find that software developers use correct annotations

in most cases, missing immutability labels in only 6% of the unanno-

tated methods [13]. In Rust, the variables are immutable by default,

and the programmers opt-in by labeling a variable as mutable. This

study suggests that C++ programmers are using language features

to write software with fewer errors. In our study, we observe the

same tendency as the majority of crates are free of direct uses of

Unsafe Rust.
Casalnuovo et al. [9] studied many C/C++ projects to measure

the programmers’ use of assert. They find that a majority of the

projects use more than a minimal number of assert statements.

The use increases with the length of time the developer is directly

involved with that function. If Rust developers behave similarly,

then over time the number of assertion statements in Rust code

should increase, helping to protectUnsafe Rust operations. However,
developers may instead view assertions as not needed in Rust.

Undefined behavior can be particularly problematic in code as the

compiler can correctly generate machine code that does not match

the programmer’s expectations. As with the case of using undefined

integer overflow to check a buffer’s length [12], undefined behavior

can lead to security vulnerabilities. Wang et al. [38] implement a

tool to detect undefined behavior based on differences resulting

from the compiler optimization level used. They find that 40% of

the 8,575 DebianWheezy packages that contain C/C++ code exhibit

this behavior, and identify 160 real bugs in production open source

code.

Further, understanding undefined behavior can be difficult, as

Memarian et al. [23] demonstrate by surveying over 200 experienced

C developers and asking 85 difficult questions about the semantics

of C. The researchers conclude that in many instances there was

no agreement among the participants on the actual code behavior.

As Unsafe Rust can easily introduce undefined behavior into Rust

code, these case studies suggest Unsafe Rust should be used very

cautiously.

Java: Java is a safe language, but the runtime provides a “back-

door” that permits the circumvention of Java’s safety guarantees to

enable high-performance systems-level code. Mastrangelo et al. [22]
perform a large-scale analysis of Java bytecode to determine how

these unsafe capabilities are used in real world. The authors deter-

mine that 25% of the Java code analyzed depends on unsafe Java

code. One explanation for why the 25% of the analyzed Java code

lacks safety because of use of unsafe API may be that it is not an

integral part of the language, like in Rust, and it is not exposed by

the java standard libraries. Huang et al. [16] study unsafe crash

patterns and implement a bytecode-level transformation that intro-

duces runtime checks to help diagnose and prevent some memory

errors caused by the use of the unsafe API.

Swift: Swift, introduced byApple, is intended to replaceObjective-

C, introduced a new error handling mechanism using exceptions

that is not present in Objective-C. Cassee et al. [10] execute a large-
scale study to identify if Swift developers switched to the new

mechanism. They find that about half of the projects do not use

the new error handling mechanism. Of the projects that do, some

follow some guidelines, but most do not follow the more complex

error-handling recommendations. This fallback to known patterns

may also exist in Rust systems code, as many Rust systems develop-

ers likely have experience writing C. That is, Rust developers may

use Unsafe Rust to enable using the C-style code patterns they are

familiar with. Further studies are required to understand if this is

the case.

9 Conclusions

In this research, we explore whether Rust is, in fact, being used to

ensure memory safety and avoid concurrency bugs. To answer a

number of research questions, we develop a technique to construct

an extended call graph for Rust and an analysis that determines

whether functions possibly include Unsafe Rust or not, depending
on their dependencies.We conduct a number of experiments on Rust

code, using the results to answer our research questions. Across our

dataset, we find that a majority of crates include functions which

are possibly unsafe. We also find that unsafe function calls are the

most common use of unsafeness, and the unsafeness is through

library dependencies rather than through the use of the keyword

unsafe. Perhaps nonintuitively, we find that the most downloaded

crates have more unsafe code than other crates. From these results,

it is difficult for users to know if their code is safe, and thus we

present recommendations for helping users understand when they

are using Unsafe Rust in their software.

256



ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Ana Nora Evans, Bradford Campbell, and Mary Lou Soffa

References

[1] 2020. Rust Subreddit. h�ps://www.reddit.com/r/rust/. (2020).
[2] Adam Alami, Marisa Leavitt Cohn, and Andrzej Wasowski. 2019. Why Does

Code Review Work for Open Source Software Communities?. In Proceedings of
the 41st International Conference on Software Engineering (ICSE ’19). IEEE Press,
Piscataway, NJ, USA, 1073–1083.

[3] Brian Anderson, Lars Bergstrom, Manish Goregaokar, Josh Matthews, Keegan
McAllister, Jack Moffitt, and Simon Sapin. 2016. Engineering the Servo Web
Browser Engine Using Rust. In Proceedings of the 38th International Conference on
Software Engineering Companion (ICSE ’16). ACM, New York, NY, USA, 81–89.

[4] Andrew W. Appel, Robert Dockins, Aquinas Hobor, Lennart Beringer, Josiah
Dodds, Gordon Stewart, Sandrine Blazy, and Xavier Leroy. 2014. Program Logics
for Certified Compilers. Cambridge University Press, New York, NY, USA.

[5] David F. Bacon and Peter F. Sweeney. 1996. Fast Static Analysis of C++ Virtual
Function Calls. In Proceedings of the 11th ACM SIGPLAN Conference on Object-
oriented Programming, Systems, Languages, and Applications (OOPSLA ’96). ACM,
New York, NY, USA, 324–341.

[6] Abhiram Balasubramanian, Marek S. Baranowski, Anton Burtsev, Aurojit Panda,
Zvonimir Rakamarić, and Leonid Ryzhyk. 2017. System Programming in Rust:
Beyond Safety. In Proceedings of the 16th Workshop on Hot Topics in Operating
Systems (HotOS ’17). ACM, New York, NY, USA, 156–161.

[7] Moritz Beller, Alberto Bacchelli, Andy Zaidman, and Elmar Juergens. 2014. Mod-
ern Code Reviews in Open-source Projects: Which Problems Do They Fix?. In
Proceedings of the 11th Working Conference on Mining Software Repositories (MSR
2014). ACM, New York, NY, USA, 202–211.

[8] Kevin Boos and Lin Zhong. 2017. Theseus: A State Spill-free Operating System.
In Proceedings of the 9th Workshop on Programming Languages and Operating
Systems (PLOS’17). ACM, New York, NY, USA, 29–35.

[9] Casey Casalnuovo, PremDevanbu, Abilio Oliveira, Vladimir Filkov, and Baishakhi
Ray. 2015. Assert Use in GitHub Projects. In Proceedings of the 37th International
Conference on Software Engineering - Volume 1 (ICSE ’15). IEEE Press, Piscataway,
NJ, USA, 755–766.

[10] Nathan Cassee, Gustavo Pinto, Fernando Castor, and Alexander Serebrenik. 2018.
How Swift Developers Handle Errors. In Proceedings of the 15th International
Conference on Mining Software Repositories (MSR ’18). ACM, New York, NY, USA,
292–302. h�ps://doi.org/10.1145/3196398.3196428

[11] Jeffrey Dean, David Grove, and Craig Chambers. 1995. Optimization of Object-
Oriented Programs Using Static Class Hierarchy Analysis. In ECOOP’95 — Object-
Oriented Programming, 9th European Conference, Åarhus, Denmark, August 7–11,
1995, Mario Tokoro and Remo Pareschi (Eds.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 77–101.

[12] C. R. Dougherty and R. C. Seacord. C. 2008. C compilers may silently discard
some wraparound checks. h�ps://www.kb.cert.org/vuls/id/162289/. (2008).

[13] Jonathan Eyolfson and Patrick Lam. 2019. How C++ Developers Use Immutabil-
ity Declarations: An Empirical Study. In Proceedings of the 41st International
Conference on Software Engineering (ICSE ’19). IEEE Press, Piscataway, NJ, USA,
362–372.

[14] Patrick Gaydon. 2010. Project Servo, Technology from the past come to save the
future from itself. h�p://venge.net/graydon/talks/intro-talk-2.pdf. (2010).

[15] David Gens, Simon Schmitt, Lucas Davi, and Ahmad-Reza Sadeghi. 2018. K-
Miner: Uncovering Memory Corruption in Linux. In 25th Annual Network and
Distributed System Security Symposium, NDSS 2018, San Diego, California, USA,
February 18-21, 2018.

[16] Shiyou Huang, Jianmei Guo, Sanhong Li, Xiang Li, Yumin Qi, Kingsum Chow,
and Jeff Huang. 2019. SafeCheck: Safety Enhancement of Java Unsafe API. In
Proceedings of the 41st International Conference on Software Engineering (ICSE ’19).
IEEE Press, Piscataway, NJ, USA, 889–899.

[17] Ralf Jung, Hoang-Hai Dang, Jeehoon Kang, and Derek Dreyer. 2019. Stacked
Borrows: An Aliasing Model for Rust. Proc. ACM Program. Lang. 4, POPL, Article
Article 41 (Dec. 2019), 32 pages. h�ps://doi.org/10.1145/3371109

[18] Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer. 2017.
RustBelt: Securing the Foundations of the Rust Programming Language. Proc.
ACM Program. Lang. 2, POPL, Article 66 (Dec. 2017), 34 pages.

[19] Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Ales Bizjak, Lars Birkedal,
and Derek Dreyer. 2018. Iris from the ground up: A modular foundation for
higher-order concurrent separation logic. J. Funct. Program. 28 (2018), e20.

[20] Amit Levy, Bradford Campbell, Branden Ghena, Daniel B. Giffin, Pat Pannuto,
Prabal Dutta, and Philip Levis. 2017. Multiprogramming a 64kB Computer
Safely and Efficiently. In Proceedings of the 26th Symposium on Operating Systems
Principles (SOSP ’17). ACM, New York, NY, USA, 234–251.

[21] Yi Lin, Stephen M. Blackburn, Antony L. Hosking, and Michael Norrish. 2016.
Rust As a Language for High Performance GC Implementation. In Proceedings of
the 2016 ACM SIGPLAN International Symposium on Memory Management (ISMM
2016). ACM, New York, NY, USA, 89–98.

[22] Luis Mastrangelo, Luca Ponzanelli, Andrea Mocci, Michele Lanza, Matthias
Hauswirth, and Nathaniel Nystrom. 2015. Use at Your Own Risk: The Java
Unsafe API in the Wild. In Proceedings of the 2015 ACM SIGPLAN International

Conference on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA 2015). ACM, New York, NY, USA, 695–710.

[23] Kayvan Memarian, Justus Matthiesen, James Lingard, Kyndylan Nienhuis, David
Chisnall, Robert N. M. Watson, and Peter Sewell. 2016. Into the Depths of
C: Elaborating the De Facto Standards. SIGPLAN Not. 51, 6 (June 2016), 1–15.
h�ps://doi.org/10.1145/2980983.2908081

[24] Aurojit Panda, Sangjin Han, Keon Jang, Melvin Walls, Sylvia Ratnasamy, and
Scott Shenker. 2016. NetBricks: Taking the V out of NFV. In Proceedings of the 12th
USENIX Conference on Operating Systems Design and Implementation (OSDI’16).
USENIX Association, Berkeley, CA, USA, 203–216.

[25] Dmitry Petrashko, Vlad Ureche, Ondřej Lhoták, and Martin Odersky. 2016. Call
Graphs for Languages with Parametric Polymorphism. In Proceedings of the 2016
ACM SIGPLAN International Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA 2016). ACM, New York, NY, USA, 394–409.

[26] P. Rigby, B. Cleary, F. Painchaud, M. Storey, and D. German. 2012. Contemporary
Peer Review in Action: Lessons from Open Source Development. IEEE Software
29, 6 (Nov 2012), 56–61.

[27] P. Rigby, D. German, and M. Storey. 2008. Open source software peer review
practices. In 2008 ACM/IEEE 30th International Conference on Software Engineering.
541–550.

[28] B. G. Ryder. 1979. Constructing the Call Graph of a Program. IEEE Trans. Softw.
Eng. 5, 3 (May 1979), 216–226.

[29] Dokyung Song, Julian Lettner, Prabhu Rajasekaran, Yeoul Na, Stijn Volckaert,
Per Larsen, and Michael Franz. 2018. SoK: Sanitizing for Security. CoRR
abs/1806.04355 (2018). arXiv:1806.04355 h�p://arxiv.org/abs/1806.04355

[30] L. Szekeres, M. Payer, T. Wei, and D. Song. 2013. SoK: Eternal War in Memory. In
2013 IEEE Symposium on Security and Privacy. 48–62.

[31] The Actix Team. 2018. Actix. h�ps://github.com/actix/actix. (2018).
[32] The Mozilla Research Team. 2020. Mozilla Research. h�ps://research.mozilla.org/.

(2020).
[33] The Redox Team. 2018. Redox. h�ps://www.redox-os.org/. (2018).
[34] The Rust Team. 2018. The Rust Language Reference. h�ps://doc.rust-lang.org/

reference/index.html. (2018).
[35] The Rust Team. 2018. Unsafe Code Guidelines Reference. h�ps://rust-lang.github.

io/unsafe-code-guidelines/. (2018).
[36] The Rust Team. 2019. Unsafe Code Guidelines. h�ps://github.com/rust-lang/

unsafe-code-guidelines. (2019).
[37] tx4414. 2018. Unsafe Rust in actix-web, other libraries. h�ps://www.reddit.com/

r/rust/comments/8s7gei/unsafe_rust_in_actixweb_other_libraries/. (2018).
[38] Xi Wang, Nickolai Zeldovich, M. Frans Kaashoek, and Armando Solar-Lezama.

2013. Towards Optimization-safe Systems: Analyzing the Impact of Undefined
Behavior. In Proceedings of the Twenty-Fourth ACM Symposium on Operating
Systems Principles (SOSP ’13). ACM, New York, NY, USA, 260–275. h�ps://doi.
org/10.1145/2517349.2522728

[39] Aaron Weiss, Daniel Patterson, Nicholas D. Matsakis, and Amal Ahmed. 2019.
Oxide: The Essence of Rust. CoRR abs/1903.00982 (2019). arXiv:1903.00982
h�p://arxiv.org/abs/1903.00982

257


