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ABSTRACT

City-scale sensing holds the promise of enabling a deeper under-

standing of our urban environments. However, a city-scale de-

ployment requires physical installation, power management, and

communications—all challenging tasks standing between a good

idea and a realized one. This indicates the need for a platform

that enables easy deployment and experimentation for applications

operating at city scale. To address these challenges, we present Sign-

post, a modular, energy-harvesting platform for city-scale sensing.

Signpost simplifies deployment by eliminating the need for connec-

tion to wired infrastructure and instead harvesting energy from an

integrated solar panel. The platform furnishes the key resources

necessary to support multiple, pluggable sensor modules while

providing fair, safe, and reliable sharing in the face of dynamic en-

ergy constraints. We deploy Signpost with several sensor modules,

showing the viability of an energy-harvesting, multi-tenant, sens-

ing system, and evaluate its ability to support sensing applications.

We believe Signpost reduces the difficulty inherent in city-scale

deployments, enables new experimentation, and provides improved

insights into urban health.

1 INTRODUCTION

Today, more than 50% of the world’s population live in urban areas,

and the U.N. projects that to increase to 66% by 2050 [57]. With

increasing population density, there is growing interest in making

cities safer, cleaner, healthier, more sustainable, more responsive,

and more efficient—in a word, smarter. Supporting this interest are

numerous funding opportunities [20, 42, 49], interested cities [15,

16, 32], and active research projects [13, 14, 27, 41], all targeting

new technology to enable smarter cities. And for good reason:

applications such as pedestrian route planning based on air quality,

noise pollution monitoring, and automatic emergency response

alerts can all improve the quality of life for a city’s inhabitants.

However, we believe that the difficulty of deploying existing

smart city technology and applications is impeding progress. De-

ployments are rooted in single-purpose hardware, necessitating

redesigns to support upgraded sensors or revised goals. Moreover,

each system requires a re-implementation of standard resources

such as power, communications, and storage, taking developer time

away from the core application. Deploying sensors is difficult too,

with the reliance on energy from wired mains constraining instal-

lation locations. These problems limit not only production-ready

For questions, email adkins@berkeley.edu

Figure 1: The Signpost platform easily mounts to existing street

sign posts, harvests from an integrated 0.1m2 solar panel, and

provides tenant sensor modules with power, communications, pro-

cessing, storage, time, and location. Signpost is open source, with

all hardware and software available online.†

technology, but also make it particularly challenging to perform

short-term, exploratory research, speaking to the need for a plat-

form that will lower the barrier to entry.

To address these challenges, we present Signpost, a modular,

energy-harvesting platform enabling deployable city-scale sens-

ing applications. It mounts to pervasive sign posts (Figure 1) and

harvests energy from a vertically mounted solar panel. To reduce

the burden of developing new applications, Signpost provides com-

monly required services including power, communications, pro-

cessing, storage, time, and location. The platform is modular, with

eight pluggable slots for sensors, processors, and radios, facilitating

modifications and upgrades to the system. To enable shared deploy-

ments, Signpost is multi-tenant, supporting multiple applications

simultaneously and enforcing isolation between them.

Key to Signpost’s deployability is its energy-harvesting, modular

architecture. Harvesting energy enables the system to sever ties to

wired infrastructure. This in turn opens up an increased selection

of deployment locations, allowing for more granular deployments.

Harvesting also enables short-term, pop-up deployments to drive

application development and experimentation. Support for mod-

ularity allows the sensors on the platform to be changed to suit

† https://github.com/lab11/signpost
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application needs. More fundamentally, however, modularity per-

mits Signpost to take advantage of future technology improvements,

improving its capabilities over time.

An energy-harvesting, multi-tenant platform faces challenges

that do not exist for mains-powered, single-purpose systems. For

one, eliminating the connection to mains power limits the energy

available for sensing. We assess the expected solar energy through-

out the US, finding that a module can expect an average power of

at least 120–210mW for 50% of weeks. We also provide APIs allow-

ing software to adapt to existing energy, reducing functionality in

times of famine and opportunistically increasing it when possible.

Another challenge is managing and sharing platform resources to

support multiple stakeholders with unaligned interests. We explore

the hardware and software requirements for measuring usage and

enforcing isolation, describing guarantees necessary for sharing

Signpost’s limited energy budget between applications.

We envision a testbed of Signposts supporting short-term ex-

perimentation by many users. Signposts have been deployed on

the University of California, Berkeley campus for six months. The

ongoing deployment monitors weather, senses TV whitespace spec-

trum usage, and observes vehicular traffic. We have found Signpost

modules are generally easy to create and the software API is simple

to implement on commonly used software and hardware platforms

such as Arduino and ARM Mbed. To facilitate the creation of new

hardware and software to run on Signpost, we have also created

desktop development kits capable of emulating deployed behav-

ior. We hope that by providing a platform for city-scale sensing

that reduces the barriers to deployable applications, supporting

that platform with development tools and accessible interfaces, and

working with the community to realize their sensing needs, we

can gain deeper insight into the workings of urban areas and en-

able higher-level applications that impact policy and quality of life

throughout a city.

2 RELATEDWORK

Existing work in urban sensing generally falls into three categories:

static deployments of sensing applications, mobile or human-based

participatory sensing, and—most similarly to Signpost—deployments

of generic sensing infrastructure. The first two categories are partic-

ularly insightful as a guide to which services are frequently needed

by existing applications, which we summarize in Table 1.

Examples of static deployments include acoustic sensors to mon-

itor, characterize, and localize different sounds [22, 27, 41], par-

ticulate sensors to monitor air quality [14], and electromagnetic,

radiological, and meteorological sensing to track people [31] and

cars [1], measure road conditions [10, 51], monitor wireless traf-

fic [50], locate point sources of radiation [48], and identify severe

weather in urban environments [8]. Most deployments are not

long-term and are only deployed for the purposes of evaluation.

Additionally, almost all of these deployments depend on either

mains power or a battery for an energy source, motivated by the

desire for rapid prototyping. Many of these deployments use a

proof-of-concept node design built mostly with off-the-shelf com-

ponents, without much consideration for optimized energy con-

sumption [10, 22, 27, 31, 41, 51]. By providing a platform that already

handles energy-harvesting, Signpost could provide sustainability

Deployment Energy Network Processing Storage Time Sync Location

Caraoke [1]

Bouillet et al. [10]

AirCloud [14]

Girod et al. [22]

Lédeczi et al. [27]

SenseFlow [31]

Argos [50]

SONYC [41]

Kyun Queue [51]

Micronet [24]

Seaglass [43]

Table 1: Services required by existing applications. Time is

millisecond-accurate as provided by services like NTP, while Sync

is microsecond-accurate as provided by GPS. Location is GPS-level

accurate coordinates. These represent the minimum services a plat-

form should provide to support existing applications and simplify

the creation of new ones. Many of these applications could run on

Signpost without significant modifications.

to these deployments. Further, based on reported power numbers,

with the exception of the high power Micronet nodes [8, 24], many

of these applications and experiments could run on the Signpost

platform without significant redesign.

The majority of work that targets urban sensing uses participa-

tory methods, in which users participate with mobile phones and

other handheld devices [11, 12], or vehicles are outfitted with vari-

ous sensors [23, 28]. These methods use existing mobile resources

to collect similar data to static deployments. Many have paired

mobile phones with handheld air quality monitors [7, 14, 17, 18], or

used phones to directly meter noise pollution [9, 35, 47] or traffic

conditions [38, 54, 61]. Similar to participatory sensing methods,

vehicular sensor networks monitor air quality, traffic, and road

conditions [17, 19, 23, 29, 36], and even detect rogue cellular base

stations [43]. These types of deployments often scale very well as

the mobility of the devices allows a few sensors to reach a much

larger area. However, incentivizing participation can be difficult

and coverage can be unpredictable and potentially insufficient.

Finally, several platforms provide generic sensing infrastructure,

suitable for many types of smart city applications. CitySense pro-

poses an open, city-scalewireless networking and sensor testbed [40].

It utilizes mains-powered, street pole mounted embedded Linux

nodes with 802.11 mesh networking and enables in-situ node pro-

gramming by end users. Argos, a passive wireless mapping applica-

tion, builds on a 26 node CitySense deployment [50]. Unfortunately,

the CitySense architecture met many logistical challenges that ul-

timately limited a scaled deployment [59]. The Array of Things

project utilizes a network of sensor nodes distributed throughout

Chicago to gather environmental data including light, temperature,

humidity, and air quality [13]. Like CitySense, Array of Things sen-

sor nodes assume wired power and networking, and thus must be

installed in locations where these resources are present. Signpost

also provides an open testbed for smart city research. However,

through its focus on deployability and modularity, Signpost reaches

a different design point than these projects, resulting in a resource-

constrained, energy-harvesting, and multi-tenant platform that is

more easily deployed, but potentially more challenging to program.
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Figure 2: Signpost platform overview. Signpost monitors and

distributes energy to connected modules and provides shared net-

working, Linux processing, storage, time, and location services.

Modules implement one or more sensing modalities and utilize

many possible software stacks, running one or more applications or

even providing additional services to the platform. Applications can

potentially be distributed across the platform and modules. This

platform design supports development and deployment of urban

sensing applications.

3 PLATFORM OVERVIEW

In the following sections, we present the design, implementation,

and evaluation of Signpost, a modular, solar energy-harvesting,

sensing platform. In the Signpost platform, sensor hardware con-

nects to a shared backplane via a standard electrical and mechanical

interface, enabling modularity. The backplane serves as the module

interconnect and has the ability to electrically isolate each mod-

ule, allowing energy use of any particular module to be limited.

To support these sensor modules, the platform harvests solar en-

ergy, monitors a shared battery, and distributes metered power.

It provides multiple radio interfaces for different communication

patterns and shares them among the modules. Other services are

implemented as well, including time and location, data storage,

and compute offload using a Linux-class co-processor, and these

services can be accessed by modules through a standard software

API. Resources and modules are orchestrated by a microcontroller-

based system controller that oversees the operation of the Signpost

platform. All of these components are housed in a waterproof alu-

minum case that to bolts to a standard street sign post for easy

deployment. Figure 2 shows an overview of the platform.

4 DESIGN

The Signpost platform’s design is guided by four high-level goals:

• Deployability is the primary concern of the platform and is key

to enabling larger andmore frequent deployments, and ultimately

wider adoption by the community.

• Accessibility reduces burden for developers, thus the platform

needs to provide services that meet common application needs.

• Modularity allows developers to modify and extend sensing

capabilities to support new applications and upgrade modules as

technology improves.

• Multi-tenancy enables the platform to simultaneously host

mutually-untrusting applications created by multiple stakehold-

ers, reducing deployment burden and the cost of experimentation.

4.1 Deployability

Deployability is the primary concern for the Signpost platform.

Many urban sensing applications require fine-grained sensing,

which is not possible for platforms that can only be deployed with

easy access to mains power or wired networking. Additionally, to

support ad-hoc experimentation, the platform needs to be easily

installed, removed, and moved. A deployment made today may not

meet the sensing needs of an application tomorrow.

In order to enable deployability, Signpost does not depend on

mains power or wired networks. Relying on wired infrastructure

would limit Signpost deployments to locations with grid access,

such as the top of streetlight poles, and would require costly and

time-consuming installation by city utility workers. To support easy

physical installation, the platform attaches to existing infrastructure

found ubiquitously in urban areas—sign posts.

Making these deployability decisions allows Signpost to better

support some applications while restricting others, particularly ap-

plications with high power sensors, significant bandwidth needs, or

heavy computation. To address these concerns, the platform needs

to provide software primitives that enable applications to adapt to

available energy and bandwidth. Even if these primitives prove in-

sufficient, we believe that in time most applications will still become

possible on Signpost due to the rapid power scaling of embedded

hardware. In the last decade alone, best-in-class microcontroller ac-

tive current has decreased from 220 µA/MHz to 10 µA/MHz [4, 53],

radio transmission power has reduced by 3-5x [37, 44], and many

sensors have followed similar trajectories. By embracing modular-

ity, hardware can be updated to capitalize on these improvements,

with the tradeoff between deployability and resource constraints

increasingly favoring the Signpost architecture.

4.2 Accessibility

Informed by a review of prior sensing projects in Section 2, Signpost

provides several services to support accessibility and reduce the

burden for application developers.

4.2.1 Energy. Since wired mains power is not an option for

Signpost, we turn to batteries and energy harvesting to power the

system. Batteries alone may be sufficient for short-term research

deployments, but replacement is not scalable for geographically

distributed deployments. Instead, a battery would need to store

enough energy for the entire deployment duration. Assuming a 1 cm

thick Li-ion battery the size of the Signpost solar panel (0.096m2)

yields a storage capacity of 576Wh [26]. For one year of lifetime,

this would result in an average platform power budget of 66mW.

The expected budget can be improved significantly with the

addition of solar energy harvesting. An optimally oriented, 17%

efficient solar panel with the same area as Signpost’s would generate

2.4W on average indefinitely in Seattle, a city with notably poor

solar conditions [45]. Even with vertical panel placement and sub-

optimal panel orientation, the addition of energy harvesting yields

an increase in energy provided to the platform as we demonstrate

in Section 6.2.2, resulting in increased application capabilities.

4.2.2 Communications. Signpost needs to support periodic data

transmissions, firmware updates, and occasional bulk data uploads.

Coverage is needed over a wide area and neither wired network

nor WiFi access points can be expected to be accessible for all de-

ployed Signposts. One solution to these problems is cellular radios,

especially the machine-to-machine focused LTE Cat-1, LTE-M, or

NB-IoT networks. Cellular networks provide high throughput and
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good coverage, but also come with costs, both in terms of high

power draw and network usage fees.

Alternative solutions include low-power, wide-area networks

such as LoRaWAN [34], which provides data transfer at rates of

1-20 kbps with a range of several kilometers and power draw sig-

nificantly lower than cellular radios. LoRaWAN networks can be

deployed by end users, allowing a network to be set up to support

a Signpost deployment. However, LoRaWAN predominately sup-

ports uplink communications, making firmware updates and other

downlink-focused applications more difficult.

Finally, local communication facilitates interactions between a

Signpost and any nearby residents or users of the platform. Com-

munication protocols such as Bluetooth Low Energy would enable

the platform to interact directly with nearby smartphones.

4.2.3 Processing. In nearly any sensing system, data must be

processed, batched, transformed, and analyzed, and in the face of

energy constraints, local computation is preferable over transfer-

ring all data to the cloud. Providing a processing service is not

necessarily just about computational capability. A familiar process-

ing environment in which developers can use familiar languages

and libraries lowers the barrier to entry for domain scientists.

Many existing urban sensing platforms provide processing by

using some variation of a Linux computer as their primary proces-

sor [13, 40, 41, 48, 50]. For an energy-constrained system, however,

supporting an always-on Linux computer is problematic. Even the

lowest power Linux compute modules we survey draw 200-500mW

when active [25]. One compromise is to use a Linux environment

not as a core controller, but as a co-processor, employed occasionally

to process batched data. This allows developers to use languages

and libraries to which they are accustomed, but requires them to

split applications between two execution environments.

4.2.4 Storage. With low power and low cost flash memory

widely available, data storage could be a module-supplied resource.

However, we argue it should be centralized on Signpost for two

reasons. First, a central data store aids manual data collection (likely

over a short-range wireless link). This is useful for collecting high-

fidelity data from multiple modules, particularly in the early exper-

imentation phases of a deployment. Second, co-locating the central

storage with shared processing resources allows for fast and easy

access to batched data.

4.2.5 Time and Location. Synchronizing clocks throughout a

sensor network deployment is critical to many applications [52].

Providing the capability to synchronize within 100 ns allows a group

of Signposts to achieve localization within 30m for RF signals and

less than one meter for audio signals. In addition to just synchro-

nization, the ability to timestamp data and understand the local

time of day and year is useful for adapting operation (for example,

slowing sampling before night) or predicting available solar harvest-

ing energy. Location also provides automatic installation metadata

and enables localization-based applications, such as gunshot detec-

tion. Fortunately, all are easily provided by GPS modules, although

some care needs to be taken when expecting GPS use in dense city

environments where fewer satellites may be in line-of-sight of the

receiver. The addition of a stable and low power real-time clock can

act as an optimization for a time and location system on a stationary

platform by allowing the GPS to be predominantly disabled. This

reduces system power draw while maintaining sufficient accuracy

for many applications.

4.3 Modularity

Modularity enables not only specialization, but it also allows the

platform to be upgraded over time, adapting to technology improve-

ments for sensor modules and platform resources alike. Supporting

modularity requires standardized electrical and mechanical inter-

faces to allow sensor modules to be installed and replaced as needed.

The electrical interface should be simple but sufficient, including

connections to power and an internal communication bus over

which modules access platform services. Other signals can be added

to support performance, for example a time synchronization signal,

but such additions should be kept to a minimum to keep module

creation simple.

Regarding mechanical considerations, the interface must allow

for a robust connection to the physical platform without signifi-

cantly limiting sensing capability. Weatherproofing plays an im-

portant part in the design of this interface since Signpost will be

deployed outdoors, as does physical security since platforms will be

unattended for long periods. Additionally, sensor module develop-

ers should be able to easily tailor the module enclosure to support

the physical and environmental requirements of their sensors.

4.4 Multi-tenancy

Finally, Signpost is designed to support multiple stakeholders si-

multaneously, allowing a single hardware deployment to act as

a testbed for multiple applications. Support for multi-tenancy re-

quires fair sharing of resources between applications. For most

system services, this reduces to platform software recording usage

and implementing some fairness policy.

Sharing energy is a more complex problem and the top prior-

ity of a multi-tenant, energy-harvesting system [3]. The power

requirements of one application should not limit the capabilities of

another. To support this, a platform must first be able to accurately

measure and control access to energy. This involves metering not

just modules, but also system resources, so that their energy draw

may be charged against the application which accessed them.

Second, the platformmust use these measurements to implement

an energy policy. In the presence of variability, applications need

guarantees of energy availability to reason about future processing

capabilities. There is one important guarantee: the energy allocated

to an application must only decrease in a predictable fashion. It

can be spent directly by the application, indirectly by a service the

application uses, or taken regularly as a platform tax, but it must

not decrease in a manner unpredictable to the application. Particu-

larly, energy should never be taken to support other applications

(although it could be given). If energy is harvested by the platform,

the allocation of a particular application may increase, but having

a minimum known energy to rely on allows applications to plan

for future actions. Support for energy isolation has been explored

in prior work [3].

Features to support multi-tenancy have an added benefit in sup-

porting overall system reliability. Modules can be isolated from the

platform entirely if a hardware or software failure occurs.
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5 IMPLEMENTATION

The Signpost architecture is shown in Figure 3. The Signpost plat-

form is defined by the Power Module, Control Module, Backplane,

and Radio Module. Additional modules connect via a standard

electrical and mechanical interface. A full Signpost has six general-

purpose module slots, one of which is taken by the Radio Module,

leaving five for sensing capabilities. The size of the entire system,

including a case, is 42.9 cm high, 30.0 cm wide, and 8.4 cm thick. For

comparison, the minimum size of a speed limit sign in the United

States is 91 cm by 61 cm [21].

5.1 Backplane

The Backplane is the backbone of the Signpost. It has physical and

electrical connections for modules, signal routing between modules,

and isolation hardware. The Backplane has eight slots in which

modules can be connected. Two are special-purpose, corresponding

to dedicated signals for the Power Module and Control Module. The

remaining six are standard interfaces for modules. The interface

provides power at 5 V, access to a shared I2C bus, two dedicated

I/O lines to the Control Module, a Pulse Per Second (PPS) signal for

synchronization, and a USB slave connection.

Modules are not required to implement all signals in this inter-

face. However, we expect that most modules will use the I2C bus

and dedicated I/O signals, and that some complex modules will

implement USB or PPS support.

All module connections can be individually isolated, along with

buffering for I2C connections. These isolators can be activated by

the Control Module and prevent individual modules from negatively

impacting the rest of the Signpost. The Backplane also accepts a

voltage reference signal from each module and handles translation

of voltage levels for all signals except USB, allowing modules to

perform I/O at any voltage between 1.65 V and 5V.

5.2 Power Module

The Power Module is responsible for energy harvesting, manage-

ment, monitoring, and distribution on the Signpost platform. Energy

is harvested from a Voltaic Systems 17 W solar panel, a 37 cm by

26 cm panel with an expected 17% efficiency. The solar panel output

is monitored by a coulomb counter, and regulated by a maximum

power point tracking battery charger. Excess energy is stored in a

custom 100Wh Li-ion battery pack.

System energy is further regulated for consumption before being

distributed to the Backplane and modules. Each regulator can pro-

vide a constant 1.5 A, and is protected from shorts by a load switch.

Each module’s power rail is monitored by a coulomb counter that

also provides instantaneous current readings, supporting energy

accounting.

The Power Module also includes a hardware watchdog that mon-

itors the platform. This further increases Signpost reliability by

providing a redundant watchdog in the event of software failures.

5.3 Control Module

The Control Module handles system tasks, such as managing the

module energy usage, assigning module addresses, and monitoring

system faults. It also provides time, location, storage, and processing

Figure 3: Signpost architecture. The Power Module is capable

of harvesting energy from a solar panel, storing energy in a battery,

supplying power at the correct voltage to modules, and monitoring

the energy use of modules. The Control Module provides storage,

time and location, and Linux processing services, and also monitors

modules with the capability of isolating them from the system if

necessary. Finally, there are the modules themselves, with many

possible capabilities. This architecture allows for modular and ex-

tensible sensing while minimizing deployment complexity.

services to the sensor modules. Computation is handled by two

ARM Cortex-M4 microcontrollers.

One microcontroller is responsible for isolation, managing the

GPS, and accounting for module energy. It can also communicate

with sensor modules on the shared I2C bus and through dedicated

per-module I/O signals, sending information such as location and

time to the sensor modules in response to Signpost API calls. A

globally synchronized Pulse Per Second signal is routed from the

GPS to all sensor modules. The second microcontroller is responsi-

ble for managing an SD card and providing the storage API to the

sensor modules. Each of these subsystems is power gated and can

be entirely disabled to save energy.

Finally, the Control Module has an Intel Edison Linux compute

module for higher performance processing capabilities. Contrary

to common system design, while the Edison is the most capable

computer on the Signpost, it is not in control of the system. Instead,

the Edison is a coprocessor, capable of batch processing and using

languages and libraries that are difficult or impractical to port to

embedded microcontrollers. The Intel Edison connects directly to

modules over USB, with each module playing the role of a USB

slave device. It can also communicate with modules over an internal

SPI bus by using one of the Cortex-M4s on the Control Module

to forward messages to the shared I2C bus. The power usage of

the Edison is individually monitored, allowing its energy to be

attributed to the module utilizing its services.

5.4 Radio Module

The Radio Module provides communications services to the Sign-

post. To handle diverse communication needs, it hosts cellular,

LoRa, and BLE radios. An ARM Cortex-M4 microcontroller handles

receiving messages through the shared I2C bus or via USB from the

Intel Edison and sending them to the appropriate radio interface.

A U-blox SARA-U260 cellular radio is capable of both 2G and 3G

operation at up to 7.2Mb/s. However, it draws up to 2.5W in its

highest throughput modes [56]. AMultitech xDot radio module pro-

vides LoRaWAN communications. Sending data through LoRaWAN
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(a)

(b)

(c)

Figure 4: A populated Backplane (a), Control Module (b) and

Development Backplane (c). The Backplane serves as the Sign-

post interconnect, while the smaller Development Backplane is the

desktop equivalent, enabling easy module and application creation

and testing. The Control Module manages Signpost energy and

provides services to sensor modules. Existing sensor modules are

also shown, with the RF spectrum and radar modules at the top

and bottom right of the populated Backplane respectively, and the

environmental and audio sensing modules on the top left and top

right of the Development Backplane.

is more sustainable from an energy budget standpoint, with the

module drawing less than 0.5W in its highest power state [39].

Finally, the Radio Module includes an nRF51822 BLE SoC. This

enables Signpost to send real-time data about the environment to

nearby smartphones. Providing three communications interfaces

allows Signpost to make decisions about which radio to use based

on quality of service, latency, throughput, and energy requirements.

5.5 Sensor Modules

Four sensor modules have been created for Signpost and are in

use. The existing modules perform ambient environmental sensing

(temperature, humidity, pressure, and light), monitor energy in

seven audio frequency bins ranging from 63Hz to 16 kHz, measure

RF spectrum usage within 15MHz to 2.7 GHz, and detect motion

within 20m with a microwave radar. Each was made by a different

student, including two undergraduates. All of the sensor modules

and the Signpost Backplane are shown in Figure 4.

5.6 Module Software

To enable access to the resources on Signpost, we provide APIs for

applications that abstract away the specific details of messages sent

over the shared I2C bus and allowmodule creators to write software

at a higher level. Abstract versions of several API calls are listed in

Table 2, including calls to allow module applications to POST data,

write to an append-only log, be automatically duty-cycled, start

processes on the Intel Edison, and send messages to other modules.

All API calls are layered on a minimal intra-Signpost network

protocol. The library code is written in C on top of a hardware

Service System Call Description

Init i2c_address = module_init(api_handles) Initialize module

Network response = network_post(url, request) HTTP POST data to URL

network_advertise(buf, len) Advertise data over BLE

network_send_bytes(destination, buf, len) Send via best available medium

Storage record = storage_write(buf, len) Store data

Energy energy_info = energy_query( ) Request module energy use

energy_set_warning(threshold, callback) Receive energy usage warning

energy_set_duty_cycle(duty_cycle) Request duty cycling of module

Processing processing_call_rpc(path, buf, len, callback) Run code on Linux compute

Messaging messaging_subscribe(callback) Receive message from a module

messaging_send(module_id, buf, len) Send message to another module

Time time_info = get_time( ) Request current time and date

time_info = get_time_of_next_pps( ) Request time at next PPS edge

Location location_info = get_location( ) Request location

Table 2: Signpost API examples. Abstract versions of several

Signpost API calls for each system service are shown. Providing a

high-level API enables easier application development.

abstraction layer requiring I2C master, I2C slave, and GPIO imple-

mentations. We implement the library using the Tock operating

system [30] for our own development purposes and have ported

the library to the Arduino [5] and ARM Mbed [6] stacks to support

a wider array of module designs.

Signpost supports multiple views on what it means to be an

application. A module may run one or more applications, and an

application may be constrained to a single module, include pro-

cessing code run on the Intel Edison, exist logically across several

modules connected by the messaging API, or even across Signposts

distributed around a city, connected by wireless communications.

An example of the Signpost software model is shown in Figure 2

where one or more applications are running on heterogeneous sen-

sor modules and accessing Signpost services through a common

API.

5.7 Development

In addition to the full, weatherproofed Signpost platform, a devel-

opment version of the system aids in creating and testing module

hardware and software, as shown in Figure 4. The development

Signpost supports two modules and a Control Module. While meant

to be wall-powered, it has the same isolation and monitoring hard-

ware as a full Signpost, allowing it to emulate various energy states,

track module energy use, and disable modules when they exceed

their allocation. Rather than including radios, the development Sign-

post has a microcontroller that implements the radio API, but sends

data over a USB serial connection instead of an RF link. Identical

Control Module and Backplane hardware is used on both systems,

allowing desktop experimentation with applications that is faithful

to deployed system.

6 EVALUATION

We evaluate the key claims of the Signpost platform, including

deployability, the implications of a deployable design on energy

availability, and the ability to support multiple applications. We also

benchmark several Signpost services. Finally, given these capabili-

ties and constraints, we explore the types of applications capable of

running on Signpost and how they interact with system resources.
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Figure 5: Solar harvesting in four different cardinal directions and two seasons. The experiments are run in July 2016 and March

2017 in Ann Arbor, Michigan, with each including periods of both sunny and cloudy days. At left is estimated power generated from solar

panels mounted vertically in four cardinal directions captured in 10 second intervals over a week. At right is the average daily power

provided by each solar panel. There are large variations in average power both due to direction and daily weather patterns. While some daily

variations can be buffered by the battery, Signpost will still experience variability in available energy to which it must adapt.

6.1 Deployment Metrics

A primary goal of the Signpost platform is deployability, and over

the course of nine months we deploy the platform on over 50 oc-

casions, for varying lengths of time, at several locations. In all of

these deployments, we found Signpost to meet our deployability

goals in both speed and effort.

Specifically, we find that two students can deploy a single Sign-

post in less than five minutes. In a specific case, it took less than

90 minutes to walk and deploy twelve Signposts across a portion

of the UC Berkeley campus. Although we take no precautions, the

deployments have experienced no vandalism or theft, even with

Signposts placed near a popular concert venue in an area with

relatively high property crime. We believe that this indicates the

platform is unobtrusive and blends in with other city infrastruc-

ture. Approval for these deployments, while sometimes slow for

bureaucratic reasons, has been simple due to the non-destructive,

attachment method. While this level of deployability comes at the

cost of energy availability, a system with these properties greatly fa-

cilitates ad-hoc experiments and highly-granular long term sensing

applications.

6.2 Signpost Energy

This focus on deployability makes energy availability a fundamen-

tal challenge for Signpost. We investigate the overhead of multi-

tenancy and expectations for how much energy Signpost can har-

vest.

6.2.1 Platform Overhead. While supporting city-scale sensing

is the purpose of Signpost, not all energy goes directly to appli-

cations. In particular, multi-tenancy and platform services each

incur overhead. These costs can be primarily attributed to the static

power of the regulation and monitoring hardware, which have a

total quiescent power draw of 13.2mW. The components for mod-

ule isolation draw an additional 1mW, as do the microcontrollers

on the Control Module, on average.

Additionally, the over-sized charging and regulation circuitry

has a lower efficiency than similar circuitry designed to match the

requirements of a single-purpose sensor. We measure the battery

charging efficiency to be 85% at a wide range of power inputs, and

the regulator efficiency to be 89% at all but the lowest power draws.

Across the platform, this totals to 76% efficiency and a base power

draw of 16mW, less than 2% of the 50th percentile average power

budget and 6-18% of the 95th percentile budget. We believe this is

an acceptable overhead for the advantages of multi-tenancy.

Services provided by the Control Module, such as storage and

location, are power gated when not in use and do not contribute

to the static power of the platform. If applications request these

services, their energy is attributed to the sensor modules using

them. We find the Intel Edison Linux module draws 15–24mW in

sleep mode, the GPS chip draws 40mW when tracking satellites,

and the Radio Module sleeps at less than 1mW. The SD card is

enabled on demand, and therefore has no idle power draw.

6.2.2 Harvesting. A key enabler of deployability is the shift

to a solar energy-harvesting power source. To further increase

deployability, it is preferable to make no assumptions about solar

panel positioning, and therefore expect the panel to be deployed

vertically facing an arbitrary direction. We evaluate the expected

energy availability under these constraints in different locations,

solar panel directions, and times of year.

We start this evaluation by deploying four solar panels on sign

posts in Ann Arbor, Michigan, with one panel pointing in each

cardinal direction. A building is located to the south of the posts

and a small hill directly west. For each panel, we record the open-

circuit voltage and short-circuit current at ten second intervals and

estimate the power output of the panels by assuming an 80% fill

factor. Figure 5 shows the output of this experiment for one week

in July 2016 and one week in March 2017. We present both the

instantaneous output of each solar panel and the daily averages.

This experiment shows that the power availability of a Signpost

is highly variable, ranging from over 3.08W for the south facing

panel on March, 22nd to only 219mW for the north facing panel

on March, 25th. We find that the direction, season, and degree of

cloud cover all contribute to this variability. While some of the

variability can be buffered by the battery, variability will inevitably

be experienced by applications running on Signpost.
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Figure 6: Fraction of weeks when an application can expect a minimum power income at different latitudes and cardinal

directions. To evaluate how much power a Signpost application can expect under varying deployment conditions, we model the solar

harvesting potential of a vertical Signpost facing the four cardinal directions across the United States. We use a standard solar model that

accounts for both direct and diffuse light [33] along with hourly irradiance data from the NREL MTS2 2005 dataset [60]. We group these

locations by latitude, and also plot distributions for Seattle, Washington and San Diego, California, where local weather patterns create

poor and near-ideal solar harvesting conditions, respectively. The per application expected minimum power is calculated by subtracting the

static power draw (16mW) from the weekly average harvested power, dividing among an expected five applications, and multiplying by the

regulator efficiency (76%). We find that orientation generally has a stronger influence on harvested energy than latitude or climate.

To more broadly determine the expected power budget for a

sensing application running on Signpost, we create an energy avail-

ability model that predicts the average weekly power available to

Signposts at different geographic locations in the United States

throughout the year. The model is based on hourly direct and dif-

fuse light measurements at 1,500 locations around the United States

from the NREL MTS2 dataset [60], and these measurements are

converted into expected power output using a standard harvesting

model for tilted solar panels which takes into account solar panel

direction, angle, and the harvestable portion of diffuse light [33].

We compare our model with the experimental data shown in Fig-

ure 5 and find the model strictly underestimates our experimental

results by an average 3.3% on sunny days and 22% on cloudy days.

We believe this error primarily can be attributed to diffuse light

collection for north-facing solar panels, a scenario that is not well

studied in solar modeling literature.

The results of this model are displayed in Figure 6 as the fraction

of weeks at which an application will have a minimum available

power. To generate this plot, we group the weekly average power

data by latitude, subtract the platform overhead and regulator effi-

ciency losses discussed in Section 6.2.1, then divide by an expected

five applications (assuming one for each available module slot on

Signpost). In addition to showing data for each latitude, we also

plot energy available in Seattle, Washington and San Diego, Califor-

nia, which are particularly poor and ideal solar energy harvesting

locations, respectively, in the United States. We see that the 95th

percentile of available weekly average power ranges from 3.84mW

per application for a north facing Signpost in Seattle, WA to 147mW

per application for a south facing Signpost in San Diego, CA.

We conclude that, in general, the direction at which Signpost

is placed impacts available energy more than the latitude of the

platform. This creates a tradeoff between deployability and energy

availability. While it is possible to entirely ignore orientation when

deploying Signposts, this comes at the cost of expected energy for

some of the deployed systems. Putting in care to avoid facing north

when possible may be a sufficient compromise.

One aspect which is not included in the prior evaluations is

potential shading from nearby obstructions. This is a particularly

real concern in urban areas where buildings are expected to obstruct

direct sunlight for portions of each day. The amount of shade a

Signpost can expect is, however, particularly deployment-specific

and difficult to predict in a general fashion. For example, due to its

vertical orientation, even with a building directly to its east a west

facing Signpost can expect to harvest most of its predicted clear-sky

energy. In our deployments, we have found that Signposts deployed

under moderate, continuous shade (under a tree in this case) see

harvested energy similar to a north facing, clear-sky Signpost.

6.3 Managing Multi-tenancy

Signpost expects to host not just a single application, but several.

Here, we evaluate how the system responds to multiple demands

to its resources simultaneously.

6.3.1 Energy Isolation. The primary resource thatmust be shared

between all applications is energy. On Signpost, we virtualize stored

energy, making it appear to each application that they have inde-

pendent batteries. Stored energy in the battery is split into a “virtual

allocation” for each application. A virtual allocation is guaranteed

to never deplete except when predictably spent. For example, it will

never be taken to support another application’s needs. This allows

programs to plan and make decisions based on available energy

that are independent of the actions and needs of others.

On an energy-harvesting platform, an additional question arises

in how to distribute incoming energy. A fair model distributes en-

ergy equally between applications, but there must be a maximum

allocation for each. If an application stores the energy it is given but

does not use it, its allocation would eventually expand to the entire

capacity of the battery. Instead, we define a maximum capacity for

each virtual allocation. Harvested energy is then divided between

applications that are below maximum capacity. This adds variabil-

ity to the amount of energy an application receives based on the

actions of other applications running on the platform. However,

this variability is no worse than the variability inherent to energy
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Figure 7: Energy isolation on Signpost. Energy allocation and five-minute average power draw are displayed for three simultaneously

running applications and the platform as a whole. Each application employs a different strategy for energy use. The first is only active for

a brief period every ten minutes, achieving a low average power, and storing up an allocation of energy. The second continuously runs,

exhausting its budget, and is disabled by the platform, to be enabled later when energy is available again. The third adapts its actions based

on the available energy, running continuously without depleting its allocation. Signpost is capable of balancing the needs of these three

applications simultaneously, assigning each a “virtual allocation” of energy it draws from without affecting the operation of the others.

harvesting systems in the first place. Policy choices and support

for energy isolation are discussed further in another work [3].

Figure 7 demonstrates energy sharing in practice. Three modules

are installed on one Signpost, each running a single application and

given virtual allocations with a maximum capacity of 10,000mWh.

Data is shown for a 20 hour period, from night to night. The de-

ployed Signpost has a building directly to the east, only allowing it

to harvest later in the day. Displayed are the five-minute average

power draws for each application and the net power into the battery.

Energy allocations are also reported every five minutes for each

module and the battery.

Each application has a different strategy for energy use. The

first heavily duty-cycles itself and is active for only a brief period

every ten minutes. This results in an average power draw of less

than 4mW, and consequently its virtual allocation stays near or at

maximum capacity the entire time. The second application continu-

ously draws 250mW, an amount that cannot be sustained while the

Signpost is receiving no direct sunlight. It eventually exhausts its

allocation and is disabled by the platform. Later in the day, when

energy is being harvested, it is allocated a portion of incoming

energy and resumes operation. The third application adapts to the

amount of energy available to it, remaining in continuous operation.

Its power draw increases when the solar panel receives direct light,

corresponding to an increase in sampling rate in the application. As

this experiment demonstrates, Signpost is able to isolate the energy

needs of applications from each other.

6.3.2 Internal Communication. The Signpost design includes

a single, shared, multi-master I2C network for internal commu-

nication, such as requests to platform services. When multiple

applications are running simultaneously, this bus can be a source

of contention. While the Signpost design expects only a modest uti-

lization of the shared I2C bus, in practice sensing events can often

be correlated and traffic can be bursty. Theoretically the listen-

before-talk requirement of I2C should make the bus achieve nearly

100% reception rates even in these scenarios, however we observe

that this feature is not implemented in all TWI/I2C peripherals.

Assuming no carrier sense capability, the I2C bus resembles the

original unslotted ALOHAnet [2], and the target utilization rate

should be kept to the 20% proposed by ALOHA. This corresponds

to a total traffic of 80 kbps on a 400 kHz I2C bus, which we believe

is sufficient for most sensing applications. Applications that require

higher throughput can make use of the optional USB bus.

6.4 Microbenchmarks

Several services are important to benchmark due to their impact

on the range and performance of Signpost applications.

6.4.1 Communication Policy. Signpost provides multiple wire-

less interfaces. These have an advantage in supporting various

communication policies that determine how data should be be

transmitted based on quality of service needs and the current en-

ergy state of the platform. One simple policy is to primarily use

the lower power LoRaWAN radio for data transmission unless the

message queue gets too full, which could occur when applications

have large amounts of data to transfer or in poor radio conditions

when LoRaWAN bandwidth is limited. When the queue gets too

full, the cellular radio is activated and all queued messages are

transferred quickly. In Figure 8, we demonstrate an example of this

policy. Poor communication conditions are emulated by removing

the LoRaWAN radio antenna, causing messages to be queued until

the cellular radio is activated to dispatch them, resulting in briefly

increased power draw.
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Figure 9: Resource usage of example applications.We break

apart the major components of usage for example applications

into sensing cost, local computation, and network and time ser-

vice requests. Heavily duty-cycled applications such as the weather

monitoring app have nearly inconsequential average power. Appli-

cations performing constant sensing with tight timing requirements

both draw a higher total power and remit a greater share platform

power draw. Applications like spectrum sensing can achieve mod-

erate average power draw even with high instantaneous sensing

power using duty cycling. Dynamically adjusting duty cycling al-

lows spectrum sensing to adapt to energy availability.

6.4.2 Synchronization. Some applications require coordination

between multiple modules on a single Signpost or between multiple

Signposts, requiring tight synchronization [52]. On Signpost, a PPS

signal is routed to each of the sensor modules from the GPS to

provide this synchronization. We find the timing difference across

Signposts to be 75 ns in the average case with a 95th percentile

metric of 97 ns. We observe little skew in the signal from Control

Module to sensor modules (less than 6 ns) and almost no variation

from module to module. We expect this synchronization precision

to suffice for many applications, providing sufficient resolution for

RF localization on the order of tens of meters and sub-meter audio

localization.

6.5 Applications

Applications run on sensor modules and have access to system re-

sources through physical connections and software APIs. We design

several applications (and sensor modules) and deploy them on the

uint8_t send_buf[DATA_SIZE ];

void send_samples (void) {

// Add a timestamp to the data

time_t time = get_time ();

memcpy(send_buf , time , sizeof(time_t ));

// Send data over network , allowing Signpost to decide how

network_send_bytes(send_buf , DATA_SIZE );

}

int main (void) {

// Initialize the module with Signpost

api_t* handles [] = NULL; // provides no services

module_init(handles );

// Collect audio data with an ADC , placing it into send_buf

adc_continuous_sample(SAMPLE_RATE , &data_ready_callback );

// Send samples every ten seconds

timer_every (10000 , &send_samples );

}

Figure 10: Example module software. This software snippet

from the vehicular sensing application collects averaged volume

data for ten seconds and transmits it using the network API. Times-

tamps for the collected data are requested from the time API and

appended to the data before transmitting it. Access to the Signpost

APIs makes applications easier to create.

Berkeley campus for several months. While applications written

by users will be different, these examples can inform the types of

applications that are possible on Signpost. We describe our applica-

tions, the platform resources they use, and some example results.

Figure 9 shows the power drawn by different components of the

applications, broken down into draw by sensors, local processors,

and the communications and time services.

6.5.1 Weather Monitoring. The weather monitoring application

uses the environmental sensing module to sample temperature,

pressure, and humidity every ten minutes, sending it to the cloud

via the Signpost network API. After the data reaches the cloud,

it is posted to Weather Underground to help support their goal

of distributed weather sensing. The application achieves very low

power operation even without implementing sleep mode by using

the energy API to power off the sensor module between samples.

6.5.2 Vehicle Counting. The vehicle counting application runs

on the audio sensing module, which provides the volume of audio

in seven frequency bins collected up to 100 times per second. This

module should in principle allow high-level event recognition (e.g.

vehicle detection), without capturing recognizable human speech.

The application records these volumes, averages them over a sec-

ond, and every transmits the results every ten seconds to the cloud

using the network API. To properly identify vehicle movement, the

application must know the precise time at which a volume sample

is taken, so the time API is used to timestamp each batch. The code

for this application is shown in Figure 10, and the average power

draw and resource usage are shown in Figure 9. The requirement for

precise timing information results in the application being charged

for a portion of the GPS power. Additionally, the local processor

must stay active with a relatively high clock frequency to contin-

ually sample and process incoming audio volume data. Once the
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Figure 11: Vehicle counting application. Several days of pro-

cessed audio data are collected in October 2017 for the vehicle

counting application. Prominent peaks across several audio fre-

quency bands are used to detect vehicles. We plot estimated vehicles

per minute averaged over a one hour time window. The Signposts

on University Drive are close, but do not have completely redun-

dant traffic paths. We note that Gayley Road sees traffic much later

into the night because it is a through street that routes around cam-

pus. Interestingly, all the Signposts experience traffic until around

midnight on October 14th, and after further examination, this was

due to a concert at a nearby venue. Clear peaks in traffic can be

seen before and after the concert, which started at 20:00.
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Figure 12: RF spectrum sensing application. A sample of RF

spectrum data from October 2017 in three frequency bands corre-

sponding to a local TV station (560MHz), AT&T owned spectrum

(722MHz), and Verizon owned spectrum (746MHz). Distributed and

fined-grained spectrum sensing could help to build better models

of RF propagation and inform policy around the reuse of underuti-

lized spectrum. The two higher frequency bands are particularly

interesting due to their cyclic nature.

data are in the cloud, it is further processed to look for peaks that

are indicative of a moving car. An example of the output of this

processing is shown in Figure 11.

6.5.3 RF Spectrum Sensing. The white space sensing application

runs on the RF spectrum module and periodically samples the

energy on each of the TV white space channels (every 6MHz from

470-830MHz). For thirty seconds, the spectrum analyzer reads the

energy on these channels and computes the min, max, mean, and

standard deviation for each channel. The application then sends

this data with the Signpost network API and uses the energy API

to power off. While the duration for power off is currently set

to three minutes, it could be adapted to available energy without

significantly degrading the utility of the application.

Three days of this data are shown for several interesting channels

in Figure 12. While our RF spectrum module does not yet meet the

FCC requirements for a white space utilization sensor, collecting

distributed RF spectrum data can be used to inform RF propagation

models and inform policy about the reuse of underutilized spectrum.

7 DISCUSSION

Signpost is under active development. Here we discuss on-going

issues along with future work for the platform.

7.1 Cost

Currently Signpost costs roughly $2,000 to produce in quantities

of ten, including all parts and labor for a Signpost platform and a

typical set of sensor modules. We expect the price to drop signifi-

cantly at higher quantities, and we plan to explore optimizations

to further reduce cost. For context, including labor, a street sign

and post costs $250, a solar powered electric speed limit sign costs

$3,000, yearly maintenance costs for a stop light are $8,000, and a

new stop light costs over $250,000 [46, 55, 58]. This puts Signpost

on par with other city infrastructure.

7.2 Community Building

To realize the benefits of Signpost modularity, domain experts must

be motivated to leverage the platform. To achieve developer buy-in,

we believe we need to create a suite of tools that help people de-

velop and test both hardware and software at their desk, then allow

them to deploy it on existing Signposts. We have started with the

Development Backplane described in Section 5, and we plan to con-

tinue to grow the ecosystem around it. Additionally, we have ported

the Signpost software API to platforms such as Arduino and Mbed

which are more accessible to non-experts. All of our hardware and

software is open source to encourage the creation of a community

around the Signpost platform. Software, hardware and documenta-

tion for Signpost can be found at github.com/lab11/signpost.

7.3 Security and Privacy

The pervasive deployment of sensors throughout a city creates

significant privacy concerns. While our sensors cannot collect per-

sonally identifiable information, the platform could enable the col-

lection of this data if care is not taken. This problem must be ad-

dressed through both policy and practice. Policy should dictate that

modules are incapable of collecting private information and that

applications do not attempt to collect or transmit sensitive data.

In practice, this requires some manual oversight into the module

creation and deployment process and that all software updates to

Signpost be authenticated to ensure they originate from the proper

source. Additionally, the data collected from Signposts must be

authenticated to ensure its validity, especially if it will directly in-

fluence city infrastructure. However, the authentication of large

numbers of low-power sensors in a collaborative deployment is an

area of active research.
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8 CONCLUSIONS

In this paper, we introduce Signpost, a solar energy-harvesting

modular platform designed to enable city-scale deployments. By

providing energy, communications, storage, processing, time, and

location services, Signpost allows developers to focus on the sensing

application they care about rather than the engineering details of

making it deployable. The platform is designed with adaptivity in

mind, giving applications the tools to adjust to varying energy and

communications availability.

By making the Signpost platform widely available, we hope to

begin a new era of urban sensing. We envision a future where

city-scale experimentation is simple and city-scale deployments are

pervasive. This in turn will open new areas of research exploring

energy constrained, geographically distributed applications, en-

couraging the development of more capable sensors, and providing

a deeper understanding of our increasingly urban world.
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