
Energy Isolation Required for Multi-tenant Energy Harvesting
Platforms

Joshua Adkins
adkins@berkeley.edu

University of California, Berkeley

Bradford Campbell
bradjc@virginia.edu
University of Virginia

Branden Ghena
brghena@berkeley.edu

University of California, Berkeley

Neal Jackson
neal.jackson@berkeley.edu

University of California, Berkeley

Pat Pannuto
ppannuto@berkeley.edu

University of California, Berkeley

Prabal Dutta
prabal@berkeley.edu

University of California, Berkeley

ABSTRACT
Embedded systems have long been synonymous with special pur-
pose, single stakeholder computing. However, as these systems
have become more capable and the demands placed on them have
become more varied and variable, embedded software is beginning
to embrace multi-tenancy. While the general problem of supporting
multiple users and processes on a computing platform has been
well explored in computer science, the challenges of supporting
multiple users with competing desires on a highly energy-variable
system remain unexplored. On an energy-harvesting platform, in-
coming energy needs to be distributed between stakeholders, and
users accessing shared platform resources should be charged for
the energy use of those resources. Furthermore, with system de-
signers and application creators being increasingly removed from
each other, the software environments of energy-harvesting plat-
forms must provide primitives that enable applications to adapt to
system variability. We explore several initial techniques for solving
these problems and demonstrate them using Signpost—a modular,
energy-harvesting platform for city-scale sensing.

CCS CONCEPTS
• Computer systems organization → Embedded software; •
Software and its engineering → Power management; • Hard-
ware → Energy distribution;

KEYWORDS
Energy Harvesting, Multi-tenancy, Energy Isolation
ACM Reference Format:
Joshua Adkins, Bradford Campbell, Branden Ghena, Neal Jackson, Pat Pan-
nuto, and Prabal Dutta. 2017. Energy Isolation Required for Multi-tenant
Energy Harvesting Platforms. In Proceedings of 5th International Workshop
on Energy Harvesting & Energy-Neutral Sensing Systems (ENSsys’17). ACM,
New York, NY, USA, 4 pages. https://doi.org/10.1145/3142992.3142995

All authors contributed equally to this work. For questions, email adkins@berkeley.edu

ENSsys’17, November 5, 2017, Delft, The Netherlands
© 2017 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5477-6/17/11. . . $15.00
https://doi.org/10.1145/3142992.3142995

1 INTRODUCTION
For a long time, embedded systems have been considered a special
case of computing. The isolation and protection afforded by virtual
memory, kernels, and processes required for modern computing
were too expensive, too complex, and ultimately unnecessary for
single-purpose motes. Now, however, we are witnessing a shift,
as the expanding architectural capabilities and resources of micro-
controllers facilitate concurrent applications, and the economies of
sharing deployed infrastructure demand improved utilization [7].

Another defining feature of embedded systems is extreme care
of energy utilization, with systems that aim to last from days to
years on a single battery. Systems looking toward the future, with
projections of trillions of connected devices, are recognizing that
the limited lifespan afforded by batteries alone is insufficient, and
exploit energy scavenging techniques to achieve near limitless
lifetimes. Unfortunately, energy harvesting often introduces energy
intermittency, as harvesting sources and quality vary over time,
making reliable software quite challenging [8]. As a consequence,
hybrid systems—energy harvesters with a large energy store—are
emerging that transform energy intermittency into a less volatile
and more manageable energy variability, energy that is predictable
over reasonably long windows of time.

While energy variability means developers no longer need worry
about applications dying on any arbitrary line of code, its guaran-
tees are insufficient to allow reasoning about reliable application
performance, especially in the face of multi-tenancy. An energy-
conscious application may still face unexpected shutdowns if a
co-located application faults and burns power or is simply ineffi-
cient. To address this, we argue for energy isolation. Akin to memory
isolation or processor scheduling, energy isolation affords energy
guarantees to an application, independent of other system activity.

Within the isolation contract, platforms have two responsibilities.
First is the allocation of incoming energy. Allocation policies can be
used to enforce application priority, but also need to be crafted with
care to preserve system functionality. Second, to adapt to energy
variability, applications need information about the current energy
state. To understand how energy isolation might work in practice,
we implement these concepts on an energy harvesting platform
and demonstrate the effect of various application-level policies.

There are several existing general-purpose software systems
for energy harvesting, some focusing on support for high inter-
mittency [4, 9] and others on profiling application energy use at
compile time [6]. We believe that a focus on energy isolation can

https://doi.org/10.1145/3142992.3142995
https://doi.org/10.1145/3142992.3142995
rodkin
Typewritten Text
This work is licensed under a Creative Commons Attribution International 4.0 License.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

ENSsys’17, November 5, 2017, Delft, The Netherlands J. Adkins et al.

augment and be supported by these systems. While energy adaptiv-
ity hopes to avoid intermittency, failures will still occur and need
to be handled correctly. Similarly, a compile-time understanding of
application energy use can significantly aid developers.

2 MANAGING APPLICATION ENERGY
Isolation. Operating systems use virtual memory, filesystems,

and other forms of isolation to provide proccesses the illusion of
running on a private machine. In practice, such isolations are min-
imums, once granted memory a process can rely on keeping the
memory until choosing to return it (though some phones explore
APIs where the OS can ask for some back). For energy-constrained
systems, the minimums guaranteed by isolation allow a developer
to reason about whether their application will still be able to run at
a future time and how much it will be capable of accomplishing.

To enable this reasoning, one guarantee must be kept: an ap-
plication’s allocated energy must only decrease in a predictable
fashion. The application may run, using energy and decreasing its
allocation correspondingly. Alternatively, the application may use
platform services, such as system calls or commands to an external
radio or sensors. Energy used by these shared system resources can
be charged against the application which used them. Finally, the
platform itself may have a constant overhead that is split between
all applications. From this, an application can reason about how
long it could run on its current allocation, how long it will be able
to run at a future time, and what the impact of its operations will
be on its energy allocation.

Providing this invariant leads to a challenge for the platform,
which now must accurately measure energy use of applications and
services on the system as well as the total stored energy. Battery gas
gauges are a fairly standard solution to this problem, but real-time
measurements of the power draw of various subsystems can be
expensive to implement. We hope to see the adoption of alternative
energy-metering techniques such as [5] and the integration of
standard techniques into COTS components. This would enable
pervasive, real-time energy measurement.

This leads to the question of how often system services should
report application energy usage to the platform. A radio could have
a gas gauge measuring its energy use that is read whenever the
currently running application changes. Alternatively a co-processor
could track requests from each application to the radio and the time
spent on them, updating the platform as each request completes.
The granularity of these updates influences how much energy an
application could potentially overspend before being detected.

The guarantee of energy isolation is similar to the goals of Virtual
Battery [3], which proposed virtualization of platform energy on
resource-constrained systems, emphasizing the illusion of a single-
tenant system. We strongly agree with energy virtualization as a
key primitive in low-power embedded systems. Furthermore, for
systems with energy variability, we identify two additional platform
needs: an allocation policy for incoming energy and mechanisms
for understanding and adapting to the system energy state.

EnergyAllocation Policy. When energy-constrained systems grow
to include energy-harvesting systems, the energy isolation guar-
antee becomes a worst-case bound. At any point, the system may

gain additional energy, which can be allocated to any application
depending on system policy.

The simplest such policy is a fair sharing policy. The total bat-
tery capacity is divided evenly among all applications, creating
equally-sized “virtual allocations”. As applications use energy, their
allocation store is reduced, and when exhausted, the application is
no longer scheduled. As the platform harvests energy, charge is split
equally amongst applications. If a virtual allocation is full, excess
charge is distributed evenly among the remaining applications.

Such a system provides energy isolation and allows predictable
application execution. However, it does not necessarily allow for
optimal system functionality. Application priority could be included
in the distribution policy. Higher priority applications could get
larger virtual capacity or be first to claim incoming energy. Even
with unfair sharing, energy isolation guarantees hold so long as no
application is capable of stealing energy from another application.

The frequency of this energy distribution should also be consid-
ered. While energy is continuously collected through the harvester,
providing energy immediately to applications which are disabled
may actually be a poor choice. Providing enough energy to begin
operation but not complete it brings back the problems of energy
intermittency. For applications which are active, however, provid-
ing timely updates to their virtual allocation can allow them to
better plan and adapt.

Energy Abstractions. To adapt to variability and work within the
allocations of an energy policy, applications should be provided
with high fidelity information on energy availability and usage.
Specifically, applications should be able to identify the amount of
energy they are currently allocated and measure how much energy
they require to perform individual tasks. The latter implies that
applications have the ability to start and stop an energy metering
service on demand (enabling energy benchmarking of a task) and
to identify with sufficient granularity the energy being ascribed to
them for the use of system-level services. While the energy required
to perform an individual task may be known a priori, we envision
a future in which applications have the ability to run on multiple
hardware platforms and platforms have the ability to adapt to their
environment, necessitating in situ energy metering.

Higher-level application interfaces for energy adaption can then
be built on top of these primitives. For example, Dewdrop [2] dynam-
ically changes task execution frequency based on available power,
attempting to reach a steady-state of energy used and received. For
run-to-completion tasks, this interface may be sufficiently expres-
sive. Eon [10] provides a richer interface, allowing applications to
be split into tasks, with a notation of the energy states in which
a given task should be run. At runtime, the application can select
which task to run at a given time based on available energy. Both
of these works represent application adaptivity models which we
believe are supported by our lower-level abstraction for accessing
system-level energy usage.

3 EVALUATION
We explore these ideas in the context of an existing system. The
Signpost platform is amodular, solar energy-harvesting, and signpost-
mountable system for enabling easy and ubiquitous installation
of smart city applications [1]. The platform includes eight plug-in

Energy Isolation Required for Multi-tenant Energy Harvesting Platforms ENSsys’17, November 5, 2017, Delft, The Netherlands

 0

 4000

 8000

 12000

 0
 25000
 50000
 75000
 100000

P
o
w

e
r

D
ra

w
 (

m
W

)
E

n
e
rg

y
 A

v
a
ila

b
le

 (m
W

h
)

Battery

(c) (e)

Battery Net Power
Module Power Draw

Battery Stored Energy
Module Allocated Energy

 0
 1
 2
 3
 4

 0
 2500
 5000
 7500
 10000

1) Heavily Duty-Cycled Module

(a)

 0
 75

 150
 225
 300

 0
 2500
 5000
 7500
 10000

2) Over-Utilizing Module

(b)
(d) (f)

Power Draw

Virtual Allocation

 0
 30
 60
 90

 120

02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00
 0
 2500
 5000
 7500
 10000

3) Energy Adaptive Module

(g)
(h)

Time

Figure 1: Effect of energy distribution policy on module operation and system energy. Shown are three modules operating for a
day within the energy distribution policy described in Section 3. The three modules each employ unique management of their allocated
energy. Module 1 asks the platform to perform duty cycling, and is turned on once every 10 minutes, evident in the duty cycling events (a); in
this way it is able to achieve extremely low average power with little developer effort. Module 2 consistently draws a high amount of power,
causing the platform to cut off the module when it has used all of its share (b). When the battery is charging slowly (c), it is enabled several
times, only to quickly use its entire allocation and get disabled (d). Eventually the battery is in more direct sunlight (e) and enough energy is
distributed to the module for it to remain enabled (f). Module 3 adapts the amount of energy it uses to the amount of energy it has remaining
in its allocation. This can be observed in the lowering average power through the night (g) and the increasing average power as the battery
charges (h). These situations show the capability of the software interfaces to support sensing applications in a variable energy environment.

module slots for independent microprocessor based systems. Mod-
ules can be sensors or provide resources and services like storage
or processing to the entire system. These modules have access to
the system-managed shared energy store. The platform includes
metering and power control for each module. Some modules pro-
vide shared services, such as a radio module that provides network
connectivity. Such service modules report back to the controller
which applications should be charged for their energy use.

We implement a simple energy policy in which we allocate each
sensor module a virtual allocation, which has a capacity of 10% of
the physical battery on Signpost. When a module consumes energy,
it is subtracted from this virtual allocation, and when energy is
harvested, it is evenly distributed to the virtual allocations equally
at ten minute intervals. If a battery is full, the energy is redistributed
to the other modules’ virtual allocations, and if a module uses all of
its allocated energy, it is turned off until more energy is harvested.

The platform provides the software interface described in Sec-
tion 2, and also offers an API to manage a module’s power by duty
cycling it. We use this interface to implement three different energy
adaptive modules. The first module maintains low power by asking
the platform to disable it for extended periods of time, effectively a
low rate duty cycle. The second module is rather high power, but
performs no energy management and is eventually turned off, only
to be turned on again during mid day when the battery is charging.
The third module uses the energy query mechanism along with the
duty cycle API to adapt its energy usage to the amount of energy it
has remaining, resulting in lower average power throughout the
night, only to increase power consumption after harvesting energy

during the day. We run these modules for a day on an outdoor
Signpost platform, with the results presented in Figure 1.

4 CONCLUSIONS
Multi-tenant embedded systems have arrived, and the efficiency
gains from multiprogramming and utility of dynamic adaptation
will continue to push the demand for sharing of deployed resources.
At the same time, energy harvesting is becoming commonplace,
and the lifetime and deployability benefits afforded by harvesting
will continue to push the demand for such systems. These two
realities must find a means to interoperate. This paper argues that
a simple guarantee is sufficient to allow applications to reason and
adapt on multi-tenant, energy-harvesting platforms. Providing ad-
ditional access to system energy information can expose a wide
range of usability, reliability, and complexity tradeoffs for applica-
tion developers. Incorporating fairness, priorities, and richer meting
comprehension into energy interfaces remains ripe for future work.

ACKNOWLEDGMENTS
This work supported in part by the TerraSwarm Research Center,
one of six centers of STARnet, a Semiconductor Research Corpo-
ration program sponsored by MARCO and DARPA. This material
is based upon work supported by the National Science Founda-
tion Graduate Research Fellowship Program under grant numbers
DGE-1256260 and DGE-1106400.

REFERENCES
[1] Joshua Adkins, Bradford Campbell, Branden Ghena, Neal Jackson, Pat Pannuto,

and Prabal Dutta. 2016. Demo Abstract: The Signpost Network. (2016).

ENSsys’17, November 5, 2017, Delft, The Netherlands J. Adkins et al.

[2] Michael Buettner, Ben Greenstein, and David Wetherall. 2011. Dewdrop: an
energy-aware runtime for computational RFID. In Proc. USENIX NSDI. 197–210.

[3] Qing Cao, Debessay Fesehaye, Nam Pham, Yusuf Sarwar, and Tarek Abdelza-
her. 2008. Virtual battery: An energy reserve abstraction for embedded sensor
networks. In Real-Time Systems Symposium, 2008. IEEE, 123–133.

[4] Alexei Colin and Brandon Lucia. 2016. Chain: Tasks and channels for reliable
intermittent programs. In OOPSLA’16.

[5] P. Dutta, M. Feldmeier, J. Paradiso, and D. Culler. 2008. Energy Metering for Free:
Augmenting Switching Regulators for Real-Time Monitoring. In International
Conference on Information Processing in Sensor Networks, 2008. IEEE, 283–294.

[6] Josiah D Hester, Travis Peters, Tianlong Yun, Ronald A Peterson, Joseph Skinner,
Bhargav Golla, Kevin Storer, StevenHearndon, Kevin Freeman, et al. 2016. Amulet:
An Energy-Efficient, Multi-Application Wearable Platform.. In SenSys’16.

[7] Amit Levy, Daniel B. Giffin, Bradford Campbell, Branden Ghena, Pat Pannuto,
Prabal Dutta, and Philip Levis. 2017. Multiprogramming a 64 kB Computer Safely
and Efficiently. In SOSP’17.

[8] Brandon Lucia, Vignesh Balaji, Alexei Colin, Kiwan Maeng, and Emily Ruppel.
2017. Intermittent Computing: Challenges and Opportunities. In LIPIcs-Leibniz
International Proceedings in Informatics, Vol. 71.

[9] Benjamin Ransford, Jacob Sorber, and Kevin Fu. 2012. Mementos: System support
for long-running computation on RFID-scale devices. ACM SIGPLAN 4 (2012).

[10] Jacob Sorber, Alexander Kostadinov, Matthew Garber, Matthew Brennan, Mark D
Corner, and Emery D Berger. 2007. Eon: a language and runtime system for
perpetual systems. In Proceedings of the 5th international conference on Embedded
networked sensor systems. ACM, 161–174.

	Abstract
	1 Introduction
	2 Managing Application Energy
	3 Evaluation
	4 Conclusions
	Acknowledgments
	References

