
Intro Embedded Operating Systems

1. Intro

• Hardware
• 2018: ~256k RAM, ~512k flash, ~ 80 MHz
• 2008: ~10k RAM, ~48k flash, ~8 MHz
• I2C, SPI, UART, ADC, DAC, PWM, etc.
• 2 uA sleep, 10 mA active

• Goals (why would programmers use an embedded OS)
• Abstract hardware
• Enable low power operation
• Manage concurrency
• Manage scheduling
• Provide shared libraries
• Virtualize hardware resources
• Meet resource constraints

• Not-really goals
• Isolate processes
• Dynamic configuration
• Virtualized memory

• Concurrency?
• Not multi-core
• Interrupts

• Common design patterns
• Modularity
• Virtualized and non-virtualized resources
• Long running operations
• Event-driven versus threaded

• Toolchain
• Compile small apps with many shared components

2. Abstract Hardware
• Layers

• High-level interface Readline Console
• Virtualized driver SharedUART

--- common interface ---
• MCU-specific driver MSP430 UART

--- widely varying interface ---
• MMIO Peripherals UART1

3. Enable Low Power
• For long-term operation, node must be in sleep state a majority of the time (~99%)
• MCUs have different sleep states

• Support different peripherals

• Depending on what is being used on certain sleep states may be available
• Always try to put the chip in lowest valid sleep state
• Provide wakeup sources

• Interrupts!
• Common:

• Timers (i.e. wait X seconds and then do next operation)
• Peripheral done (UART message sent)
• External events (GPIO interrupt)

• Easy to mess up
• One misconfigured driver can sabotage the system

• Still an open challenge
4. Manage Concurrency

• Interrupts are essentially a second thread
• Including all of the race condition and memory bugs

• Two high-level approaches
• Only a single active interrupt

• Hard to make general purpose
• Minimal code in the interrupt handler

• Simply wait for main loop to recognize the event occurred
• Potential latency issues

5. Manage Scheduling
• Decide what order to execute things
• Priorities
• Usually very simple in practice

6. Provide Shared Libraries
• Useful libraries make developing applications easier and faster
• Examples

• Logging utility
• Networking stack
• Crypto operations
• Time synchronization

• What abstractions are required? Does hardware generally support them?
7. Virtualize Hardware Resources

• Enable limited hardware resources to be shared among multiple users
• Policies for sharing

• Exclusive access
• Merging requests
• Complete virtualization (timers)

• Closer to mode where application is the only thing on the system
8. Meet Resource Constraints

• No dynamic memory in the kernel
• Fixed size buffers decided at compile time

• Include only the code that is needed by the application

