
Ditio: Trustworthy Auditing of Sensor Activities in Mobile & IoT
Devices

Saeed Mirzamohammadi, Justin A. Chen, Ardalan Amiri Sani, Sharad Mehrotra, Gene Tsudik
Department of Computer Science
University of California, Irvine

saeed@uci.edu, jachen1@uci.edu, ardalan@uci.edu, sharad@ics.uci.edu, gene.tsudik@uci.edu

ABSTRACT
Mobile and Internet-of-Things (IoT) devices, such as smartphones,
tablets, wearables, smart home assistants (e.g., Google Home and
Amazon Echo), and wall-mounted cameras, come equipped with
various sensors, notably camera and microphone. These sensors
can capture extremely sensitive and private information. There
are several important scenarios where, for privacy reasons, a user
might require assurance about the use (or non-use) of these sensors.
For example, the owner of a home assistant might require assur-
ance that the microphone on the device is not used during a given
time of the day. Similarly, during a confidential meeting, the host
needs assurance that attendees do not record any audio or video.
Currently, there are no means to attain such assurance in modern
mobile and IoT devices. To this end, this paper presents Ditio, a
system approach for auditing sensor activities. Ditio records sensor
activity logs that can be later inspected by an auditor and checked
for compliance with a given policy. It is based on a hybrid security
monitor architecture that leverages both ARM’s virtualization hard-
ware and TrustZone. Ditio includes an authentication protocol for
establishing a logging session with a trusted server and a formally
verified companion tool for log analysis. Ditio prototypes on ARM
Juno development board and Nexus 5 smartphone show that it
introduces negligible performance overhead for both the camera
and microphone. However, it incurs up to 17% additional power
consumption under heavy use for the Nexus 5 camera.

CCS CONCEPTS
• Security and privacy → Mobile platform security; Privacy
protections; •Computer systems organization→ Sensors and
actuators;

KEYWORDS
Mobile and IoT devices, Sensors, Security and privacy, Operating
systems

ACM Reference Format:
SaeedMirzamohammadi, Justin A. Chen, Ardalan Amiri Sani, SharadMehro-
tra, Gene Tsudik. 2017. Ditio: Trustworthy Auditing of Sensor Activities

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SenSys ’17, November 6–8, 2017, Delft, Netherlands
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-5459-2/17/11. . . $15.00
https://doi.org/10.1145/3131672.3131688

in Mobile & IoT Devices. In Proceedings of SenSys ’17, Delft, Netherlands,
November 6–8, 2017, 14 pages.
https://doi.org/10.1145/3131672.3131688

1 INTRODUCTION
Mobile and Internet-of-Things (IoT) devices, such as smartphones,
tablets, wearables, voice-activated smart home assistants (e.g., Google
Home and Amazon Echo), and wall-mounted cameras, incorporate
various sensors, notably cameras and microphones. These sensors
can capture extremely sensitive and private information, such as
video and audio. There are increasingly important scenarios, where
it is essential for these devices to provide assurance about the use
(or non-use) of these sensors to their owners or even to a third party.
For example, the owner of a home assistant might require assurance
that the microphone on the device is not used during a given time
of the day. As another example, during a confidential meeting, the
host might need assurance that microphones and cameras of the
attendees’ smartphones remain turned off.

Despite compelling use-cases, there is currently no systematic
and secure way to provide hard assurance about the sensor activities
in mobile and IoT devices. Current practices are ad hoc and crude:
At home, the owner of the home assistant might physically unplug
the device or merely rely on the microphone disable button/LED on
the device. In a confidential meeting, the host may either physically
sequester attendees’ mobile devices or simply ask them verbally
to avoid recording. Such ad hoc measures have important limita-
tions: (1) they are either too restrictive and draconian (e.g., physical
unplugging or sequestering), causing inconvenience to the users,
or (2) they do not provide any firm guarantees (e.g., relying on a
potentially compromised microphone disable button/LED or on a
verbal request), thus resulting in undetected policy violations.

To address this issue, this paper presents Ditio, a system for
auditing sensor activities in mobile and IoT devices, with a small
Trusted Computing Base (TCB). Ditio records sensor activity logs;
when needed, an auditor can check these logs for compliance with
a given policy. Ditio is designed and built based on a hybrid secu-
rity monitor that uses TrustZone [2, 13, 14, 61] and recently added
virtualization hardware [17, 18] in recent ARM processors, which
are available in modern mobile and IoT devices (§3). The hypervi-
sor layer, supported by virtualization hardware, enables Ditio to
efficiently record every access to registers of selected sensors with-
out making any modifications to the operating system. TrustZone,
on the other hand, enables sealing of logs to guarantee integrity,
authenticity, and confidentiality.

Ditio is designed with practicality in mind. Its design is low-
level, generic, and on-demand. Its low-level design allows it to be
deployed and locked by the mobile and IoT device vendors (using

https://doi.org/10.1145/3131672.3131688
https://doi.org/10.1145/3131672.3131688

SenSys ’17, November 6–8, 2017, Delft, Netherlands S. Mirzamohammadi et al.

the secure boot feature [13]) without modifications to the operating
system. Its generic design allows it to support various sensor brands
and different use-cases without additional engineering effort. It also
allows Ditio to be easily ported to different mobile and IoT devices
with diverse hardware configurations. Its on-demand nature means
that logging can be turned on and off as needed. Hence, Ditio’s
runtime overhead, although not significant, can be fully avoided
when sensor activity logging is not needed.

While Ditio’s implementation is generic and device-agnostic, its
log content is sensor-specific. Most log entries correspond to a write
to, or a read from, a specific sensor register. Behavior of the sensor,
as a result of these register accesses, can only be understood if
adequate information about the interface of the sensor is provided.
Therefore, parsing and analyzing the logs can be challenging, cum-
bersome, and, more importantly, error-prone for the auditor. To
address this challenge, we provide a formally verified companion
tool, or companion for short. On input of: logs, sensor interface
specification, and a policy compliance query, companion analyzes
the logs to answer the query.

We implemented Ditio on an ARM’s Juno development board
– the only platform that (to the best of our knowledge) allows
programming of both the hypervisor and TrustZone to non-vendors.
In addition, for compatibility with older mobile and IoT devices
(not equipped with TrustZone and/or virtualization hardware), we
provide a secondary design that uses the operating system kernel
instead of the aforementioned monitor, and deploy it on a Nexus 5
smartphone.

We report on our experience in deploying Ditio for auditing the
activities of a camera on the Juno board and a camera and a micro-
phone on the Nexus 5 smartphone. We show that the auditor can
use the companion tool effectively to audit the sensor activity logs.
We also show that Ditio does not incur noticeable performance
overhead for these sensors. However, it incurs some power con-
sumption increase under heavy use, e.g., by 17% for the Nexus 5
camera.

Ditio is related to our previous work on Viola [50], which pro-
vides formally verified sensor notifications. That is, it guarantees
that a notification, such as LED light or vibration, is triggered if a
privacy-sensitive sensor, such as camera or microphone, is used.
Ditio and Viola provide complementary techniques for enforcing
policies on the use of sensors. Viola performs runtime policy en-
forcement: it triggers a notification when the sensor is being used.
Ditio enables auditing: it records accesses to sensors and allow
future audits. These systems are not equally suitable for use cases
involving sensor usage policy enforcement. For example, Viola can-
not be reliably used for providing notifications to a third-party due
to the lack of a reliable notification channel. On the other hand,
Ditio is not suitable for scenarios where a delay in policy violation
detection cannot be tolerated. It is, however, possible to use both
systems together. For example, in the confidential meeting scenario
discussed earlier, Viola can attempt to provide (but cannot guar-
antee the delivery of) a notification to the host when a sensor is
being used. At the same time, Ditio can record logs in case a future
audit is deemed necessary.

2 MOTIVATION
As mentioned earlier, typical modern mobile and IoT devices (e.g.,
smartphones, tablets, wearables, wall-mounted cameras, and smart
home assistants, such as Google Home and Amazon Echo) include
various sensors, notably camera and microphone, which can record
private and sensitive information. There are important scenarios
where all or some sensor activity in these devices must be restricted
or prohibited for privacy reasons. More specifically, in these sce-
narios, the device must provide assurance about the use or non-use
of sensors to either its owner or to a third party.

Assurance for the owner. In the first category of examples,
the device needs to provide the aforementioned assurance to its
owner. As one example, consider home assistants. These devices
incorporate an always-on microphone that listens to users’ com-
mands. Such always-on listening causes privacy concerns. Hence,
the owner might require assurance that the device remains off
during given times.

As another example, consider a confidential meeting. Attendees
might need assurance that the microphone and camera on their
own smartphones and smartwatches remain off during the meeting.

Assurance for a third party. In the second category of exam-
ples, the device needs to provide assurance to a third party.

As one example, reconsider the confidential meeting. The host
of the meeting might require assurance that the microphone and
camera of the attendees’ mobile devices remain off. As another
example, consider the same confidential meeting taking place in a
rented conference room, e.g., in a hotel, which might be equipped
with wall-mounted cameras. In such a setting, the attendees might
require assurance from the hotel administrator that the cameras
remain off during their meeting.

All aforementioned examples follow a commonmodel: the owner
or a third party has a well-defined policy about the use (or non-use)
of sensors of mobile and IoT devices and needs assurances that this
policy is not violated.

Existing methods of satisfying such policies are ad hoc. The first
category of solutions attempt to provide hard guarantees, but are
too restrictive and draconian and hence cause significant inconve-
nience to the users. For example, the home assistant owner might
decide to unplug the device for complete assurance. Or in a con-
fidential meeting, either the attendees do not take their mobile
devices with them, or are forced by the host to relinquish them.
Similarly, in a rented conference room, the attendees might attempt
at unplugging the wall-mounted cameras.

The second category of solutions are easier to implement but
fail to provide any hard guarantees. For example, being aware of
users’ privacy concerns with home assistants, these devices provide
a physical button for the user to turn the microphone off, while
leaving the rest of the device on (e.g., its speakers). This can be used
by the users to disable the microphone when privacy is needed [3].
Doing so might also change the LED color on the device for user’s
information [3]. However, a compromised device can easily bypass
this measure (i.e., fake the LED color and keep the microphone on
despite user’s press of the button). As another example, the host
of the confidential meeting might only verbally ask the attendees
to turn their devices off or ask the hotel owner to turn off the

Ditio: Trustworthy Auditing of Sensor Activities in Mobile & IoT Devices SenSys ’17, November 6–8, 2017, Delft, Netherlands

wall-mounted cameras. However, he will not be able to detect any
potential violations.

In contrast to these existng methods, Ditio provides an easy-to-
use, reactive, and rebust solution. Ditio’s auditing approach makes it
easy for users to set up and use it and puts the burden on the device
to provide adequate logs when needed. Moreover, Ditio provides
strong guarantees due to its small TCB (§5) and its use of formal
verification methods to enable the auditor to reliably analyze the
recorded logs (§7).

3 HYBRID SECURITY MONITOR
Ditio’s key component is a hybrid security monitor based on two im-
portant hardware features in modern ARM processors. The first is
ARM TrustZone [2, 14, 61], which splits execution into two worlds:
normal world hosting the main operating system and secure world
hosting a secure runtime. The second is hardware support for
virtualization, which creates a new privilege level in the normal
world, called the hyp mode [30], in addition to existing kernel and
user modes.

These hardware features are available on many new ARM pro-
cessors. Examples are 32-bit processors, such as Cortex A7 and
Cortex A15 [17], and 64-bit processors, such as Cortex A53 and
Cortex A57 [18], which are used in most modern smartphones and
tablets, such as Nexus 6P smartphone and Pixel C tablet (both using
4 Cortex A57 cores and 4 Cortex A53 cores in the big.LITTLE archi-
tecture). Moreover, these processors are used in modern high-end
IoT devices and wearables as well. For example, Google Home lever-
ages a dual-core ARM Cortext A7 processor [4]. Similarly, Samsung
Gear 2 smartwatch leverages a dual-core ARMCortext A7 processor
in its Exynos 3250 SoC [10].

The main benefit of our monitor is its usage of complemen-
tary capabilities of both hardware features. It uses virtualization
hardware for efficient monitoring of operating system’s access to
various registers using nested page tables, and uses TrustZone’s
secure world for sealing. Figure 1 overviews the hybrid security
monitor. Communication between the hypervisor and secure world
is attained through a protected channel implemented using shared
memory and Secure Monitor Call (SMC) [13], which performs a
context switch between normal and secure worlds.

Backward-compatibility: This issue comes up since: (i) older
mobile and low-end IoT devices might not be equipped with vir-
tualization hardware and/or TrustZone, and (ii) even if they are,
both virtualization hardware and TrustZone are not programmable
by non-vendors on commodity devices. Therefore, to expand the
applicability of Ditio, we provide a backward-compatible design
and implementation that uses the operating system kernel instead
of the hypervisor and TrustZone secure world. The main disad-
vantage of this backward-compatible design is increased TCB size,
since the operating system kernel needs to be trusted.

The backward-compatible design enables tech-savvy users to de-
ploy Ditio on their devices. However, in practice, we expect Ditio to
be deployed by mobile and IoT vendors, who can deploy the hybrid
design on their new devices and deploy the backward-compatible
design only on older devices that do not meet the hardware require-
ments of the hybrid design.

TrustZone
secure world TrustZone normal world

User and
kernel
modes

Hyp
mode

Operating
system

Se
cu

re
 w

or
ld

 ru
nt

im
e

Protected channel

Hypervisor

Monitor

Figure 1: Hybrid security monitor overview.

4 OVERVIEW
Ditio is a system solution for auditing the sensor activities in mobile
and IoT devices. We use the term “sensor activity” to refer to the
use or non-use of sensors. More specifically, we use this term to
refer to changes in the states of the sensors, e.g., turning them off
or on. We also use the term “client” to refer to the mobile or IoT
device that contains the sensor of interest.

Depending on the use-case, auditing can be performed by differ-
ent parties. For example, auditing of sensors in a home assistant is
performed by the device owner. Recall that Ditio logs sensor activi-
ties on demand and the user is responsible for starting and stopping
the logging. For example, the home assistant owner can turn the
logging on or off when needed. Or in a confidential meeting, at-
tendees should turn on camera and microphone activity logging
before the meeting starts and turn them off after it ends. If logging
is stopped earlier than required, it will be detected by the auditor.
If logging is not enabled at all, no logs will be available, which is a
violation in and of itself.

Note that the device itself should not be used for analyzing the
logs for two reasons: (i) it is not trusted and (ii) it might not have
proper user interfaces making it difficult to submit analysis queries.

In the rest of this section, we describe Ditio’s design and work-
flow, threat model, and TCB.

4.1 Design and Workflow
Ditio consists of four components on the client: (i) a trusted sen-
sor activity recorder implemented in the hypervisor, (ii) trusted
authentication and sealing facilities in the TrustZone secure world
runtime, (iii) an untrusted log store implemented in the normal
world operating system kernel, and (iv) an untrusted configuration
app in the normal world operating system user space. Ditio also
includes an external trusted authentication server and a formally
verified companion tool used by the auditor to identify violations
of sensor activity policies. Figure 2 demonstrates Ditio’s design.

Note that we explain the design of Ditio mainly in the context of
the hybrid design (§3). The backward-compatible design is mostly
similar except that the recorder and the authentication and sealing
facilities are all in the operating system kernel communicating using

SenSys ’17, November 6–8, 2017, Delft, Netherlands S. Mirzamohammadi et al.

Authentication handshake
Register access
Raw logs
Sealed logs

Log
store

Device
driver

Device
driver

Camera Mic.

Hypervisor

Operating system

Flash
storage

TrustZone
secure world

Auth.
&

sealing

TrustZone
normal world

Secure
runtimeLog recorder

User space
Kernel

Config.
App

Authentication server

Mobile system

Figure 2: Ditio’s components on the client (in dark).

function calls. In the rest of the paper, we will highlight important
differences when needed.

Configuration app.Using the configuration app, the user starts
and stops customized recording depending on the policy. Cus-
tomized recording refers to recording accesses to the registers of
sensors of interest. The configuration app is Ditio’s interface to the
user. In practice, the configuration app can be realized differently
for different devices. For example, on an Android smartphone, the
configuration app is an Android application. On a home assistant,
it can be an application running on the user’s smartphone or a web
portal.

Recoder. Ditio records register accesses since registers are the
interface that I/O devices (including sensors) provide to software
for programming them. Hence, by analyzing the register accesses
performed by the operating system, the auditor can be sure about
the state of the sensor at any point in time (e.g., whether the sensor
is off or on). The Ditio recorder stores the register access logs in
fixed-size log buffers. Once a buffer is full (or if logging finishes, or
if the device is about to shut down/reboot), it is committed to flash
storage.

Log store. The log store is implemented in the normal world of
the client to minimize the TCB size. Once the log buffer is ready to
be committed, it needs to be transferred from the hypervisor to the
log store. However, to prevent the normal world from tampering
with or reading, log buffers are first transferred over the protected
channel to the secure world runtime for sealing.

Sealing. Sealing includes encrypting the log buffer, and comput-
ing and appending its HMAC. Ditio encrypts the logs to protect its
content since it can include sensitive information, such as when
the camera was used. It appends the HMAC to protect integrity
and authenticity of logs (§6.2).

Authentication. We use a symmetric key, i.e., session key, to
seal the logs. The session key is shared between the client’s secure
world and a trusted authentication server through an authentication
protocol performed in the beginning of the logging period and after
every reboot in that period. The goal of this protocol is to: (i) inform

Log
sessionReboot

Session key 1 Session key 2

Log file 1 Log file 2 Log file 3

Figure 3: Log session example.

Verified
Auditor

companion
tool

Violation
or not

Sensor spec.

Sensor activity
logs

Policy

Figure 4: Ditio’s audit process using the companion tool.

the authentication server of the client identity, (ii) adjust the clock
used to timestamp logs, and (iii) establish the session key. Note
that communication between the secure world and authentication
server is relayed by the normal world operating system. §6 describes
this authentication protocol.

Log session.We refer to the logging period as the log session.
A log session starts when the configuration app starts recording
accesses to registers of sensors of interest and stops when the ser-
vice stops recording on all registers. A log session can expand over
multiple boots of the system. Figure 3 illustrates an example. Two
session keys are used in the session, one for each boot. Moreover,
there are three log files, the first with all the log entries in the first
boot and the other two holding part of the entries in the second
boot.

There are two important reasons for using multiple log files for
a single log session. First, reboots force Ditio to commit the logs.
Using a single log file means that Ditio must recover the previously
committed log file, append the new logs after the reboot, and recom-
mit the file. This adds to the complexity of the implementation and
requires the secure world to re-acquire the previous session key
from the authentication server, which complicates the authentica-
tion protocol. Second, limited memory space shared between the
hypervisor with the normal world and with the secure world also
creates a challenge for using a single log file. Therefore, we limit
the size of a log buffer in the recorder to be no more than the size
of shared memory spaces (two memory pages, i.e., 8 kB, in our
prototype).

Connectivity. Ditio requires network connection for two pur-
poses: connection to the authentication server to establish a key,
and connection to the same server for sharing the logs. The for-
mer is a requirement. The user will not be able to start using Ditio
if there is no such connection. The latter is not an immediate re-
quirement. The logs can be shared when connection is established
later.

Auditing and the companion tool. Once logging is done, the
owner of the client shares its logs with the auditor, if asked. The

Ditio: Trustworthy Auditing of Sensor Activities in Mobile & IoT Devices SenSys ’17, November 6–8, 2017, Delft, Netherlands

auditor then asks the authentication server to unseal the logs (§6.2).
He then uses the companion tool to develop a policy and check the
policy against the logs to detect potential violations. Note that this
implies that the auditor and the authentication server will have
access to the content of the logs and therefore the owner of the
client must trust these two entities with the confidentiality of the
logs. Figure 4 shows the audit process. In addition to the sensor
activity logs and the query, the auditor also provides the sensor
specification needed to analyze the logs (§7).

Note that auditing does not add latency to the log collection pro-
cess. The third party analyzes the logs offline at an appropriate time.
The exact time of auditing depends on the scenario. For example,
in a confidential meeting scenario, auditing is performed after the
meeting is finished. Or for a home assistant, auditing is done once
a week or a month.

Deployment. Several deployment issues are noteworthy. First,
as discussed above, Ditio requires modification to various system
software layers. We envision it to be deployed on mobile and IoT
devices by their vendors. The users can then use the configuration
app to interact with it. But users will not be able to “install” Ditio on
their devices if not supported by the vendor. However, we note that
more tech-savvy users will be able to easily deploy the backward-
compatible design by patching and reflashing the operating system.
Second, updating Ditio is challenging since it requires updating the
hypervisor and secure world runtime. This is a problem with any
secure system deployed in these layers. This is one of the reasons
we try to minimize our code base in these layers to reduce the
frequency of updates in the future. Third, the logs in Ditio only
collect information about the usage of sensors. They do not reveal
any information that might reveal private information about the
vendor of the device, which would otherwise provide a deployment
concern for the vendor. Finally, Ditio currently performs its logging
in the background. It is, however, conceivable to add some form of
notifications on the device to notify the user whenever logging is
taking place on the device. We have not implemented this feature.

4.2 Threat Model
Ditio protects runtime integrity of the monitor against an attacker
that compromises the operating system. This is because these com-
ponents run in the hypervisor and the secure world, which are
isolated from the operating system by hardware. Ditio also protects
integrity, authenticity, and confidentiality of sensor activity logs
as discussed. This is achieved by: (i) using a hardware-bound pri-
vate key available in the secure world to authenticate the system
to the authentication server and establish a shared session key,
(ii) encrypting the log buffers and computing their HMAC using
the session key, and (iii) leveraging a non-volatile counter in the
secure world to associate log buffers of a single log session in a
tamper-evident manner (§6).

Ditio cannot protect against Denial-of-Service (DoS) attacks, i.e.,
it does not guarantee availability of logs to the auditor. Several
forms of DoS attacks are possible. First, a malicious operating sys-
tem can refuse to forward messages between the secure world and
authentication server, refuse to store logs, or delete them after-
wards. Second, a malicious device (or user) can disable the network
interface card, erase logs, or refuse to provide them to the auditor.

It is up to the party requesting the audit to deal with such cases.
For example, in a smarthome environment, the owner can discard
or return an IoT device that fails to provide sensor activity logs
repeatedly. Or the confidential meeting, the host might decide to
report the attendee.

As mentioned in §2, Ditio targets two categories of use cases:
one where devices provide assurance for their owners and one that
they do so for a third party. The latter (i.e., assurance for a third
party) is vulnerable to physical attacks that cannot be protected
by Ditio. Such attacks can come in two forms. First, the attacker
can tamper with the client’s hardware, e.g., by installing additional
microphones or cameras. Second, the attacker can introduce an
additional, hidden device. In the confidential meeting scenario, a
malicious attendee can sneak in a wearable microphone. If needed,
protecting against such attacks requires physical defenses, e.g.,
body search, and hence is beyond the scope of this paper. As related
to physical attacks, we note that we assume the user of Ditio knows
which devices to target for auditing. For example, in the meeting,
the host may audit the smartphones, tablets, or smartwatches of
attendees (those devices that are not hidden).

We emphasize that the first category of use cases (providing
assurance for the owners) are not easily vulnerable to physical
attacks since we assume that the owners are sure of integrity of the
hardware in their devices. For example, home assistant, smartwatch,
or smartphone owners can trust that no malicious and additional
microphone is added to their devices.

Ditio does not protect against side-channel attacks. This has two
implications. First, Ditio cannot protect the confidentiality of logs
against side-channel attacks. Second, an attacker can try to use
other sensors as side-channels to record information of interest.
For example, Michalevsky et al. showed that a gyroscope can be
used to recognize speech, although the recorded signal frequency
and recognition accuracy is low [49]. In this case, it is possible to
use a different Ditio policy to also restrict the use of gyroscope in
addition to microphone.

The authentication server should be trusted by both the auditor
and the user. For example, for the home assistant scenario, the
owner of the device can provide the authentication server. Or for
the confidential meeting scenario, the host can provide it as long
as the attendees trust the host. If not, they can choose a mutually
trusted third party server for this purpose.

Finally, while Ditio encrypt all the logs to protect them against
unauthorized access, the logs are decrypted and accessed by the
auditor. Therefore, the user needs to trust the auditor with access
to the content of the logs.

4.3 Trusted Computing Base
The secure world runtime and hypervisor in the client are trusted.
An attacker who compromises the secure world runtime can tamper
with the logs or generate fake ones. An attacker who compromises
the hypervisor can bypass logging altogether. They are deployed
and locked by the client vendor and are not reprogrammable by
users. Therefore, the vendor is also trusted.

We believe that the hypervisor and secure world form a small and
reliable TCB on the client. One concern is with security vulnerabil-
ities of commodity hypervisors and secure world runtimes [21, 31].

SenSys ’17, November 6–8, 2017, Delft, Netherlands S. Mirzamohammadi et al.

Although we use commodity hypervisor and secure world runtime
in our prototype (i.e., Xen and Open-TEE [8]), more secure hyper-
visors and runtimes can be used. This is especially the case for the
hypervisor since it does not need to support many functionalities
needed for running multiple virtual machines in the system. For
example, it is possible to use a verified hypervisor or a microker-
nel [25, 39, 41, 43, 48].

The operating system kernel is not trusted in the hybrid design.
However, in the backward-compatible design (§3), it hosts the log
recorder and the authentication and sealing facilities and is thus
trusted. The client hardware is trusted as well. The certification
authority (CA), which issues the identity certificate for the client,
and the authentication server are both also trusted.

We note that configuration app is not trusted. An attacker can
try to disable logging using a compromised configuration app. This
will be recorded in the logs and later detected during the auditing
phase.

5 RECORDING SENSOR ACTIVITY LOGS
To log sensor activity, Ditio records parameters of read and write
accesses to sensor registers of interest. It also records other events
needed for the auditing process, such as: (1) start and stop times
of a session, (2) timestamps of power-on and power-off events in
a session, and (3) the timestamp correction offset (computed vs. a
reference time), as discussed in §6.1. In this section, we describe
how the recorder works.

The recorder is implemented in the hypervisor, which can in-
tercept all sensor register accesses in the operating system using
ARM’s Stage-2 page tables. This is because all I/O device registers
are memory-mapped (i.e., Memory Mapped I/O or MMIO) in ARM’s
architecture. To record accesses, the hypervisor removes the Stage-
2 page table entry’s read and write permissions to intercept the
operating system’s accesses to a given register page. This forces
register reads and writes to trap into the hypervisor. The hypervisor
then records access parameters, i.e., the target register offset and
the value to be written or value read. To obtain these parameters,
the recorder inspects the content of the CPU registers in the trap
handler and decodes the trapped instruction. It then emulates the
register access directly in the hypervisor before returning from the
trap. Emulation is done by reading from or writing to the same
register through a secondary mapping in the hypervisor. Note the
backward-compatible design employs the single level of page tables
used by the operating system to force register accesses to trap.

5.1 Untrusted Log Store
We designed the log store to be untrusted in order to minimize
the TCB. More specifically, we use the existing operating system
kernel and file system for implementing the log store to minimize
the size and attack surface of the hypervisor. To do this, the hyper-
visor shares the logs over shared memory pages with the operating
system. Note that the log buffers are encrypted and authenticated
(using HMAC) in the secure world before they are shared with
the operating system kernel (§4.1). Also note that the log store is
untrusted in the backward-compatible design as well since the files
on the file system are accessible to the user space.

5.2 Minimizing Recorder Latency
Sealing the log buffers in the secure world and writing them to flash
storage incurs high latency. Therefore, performing these operations
in the critical path (i.e., in the trap handler in the hypervisor), would
significantly affect performance of sensors. Moreover, high latency
might even break the device, e.g., by causing a time-out in the
device driver. Indeed, in our original prototype, extra latency in
one of our tests with the I2C register accesses resulted in the driver
generating a time-out error.

To address this problem, we use three techniques in Ditio. The
first technique is an asynchronous log store. Specifically, the hyper-
visor stores the parameters of register accesses in memory in a log
buffer. Once the buffer is full, it asynchronously shares it with the
secure world for sealing, and then with the operating system for
storage. Log buffers are committed when full or when the system
is about to reboot or shut down.

The main drawback of asynchronous commit is that in-memory
logs are lost if power is suddenly disconnected, e.g., by sudden re-
moval of the battery or unplugging the device. Fortunately, sudden
disconnection of power is detectable during the auditing phase due
to inconsistencies in the device power-down and power-on events,
i.e., a power-on event in the logs without a preceeding power-off
event. Moreover, for many mobile devices, accidental removal of
the battery is uncommon and, in some devices, difficult.

The second technique uses lock-free data structures and per-
CPU log buffers. Doing so avoids using any locks in the register
access fault handler.

The third technique uses dynamically-allocated log buffers and
wait queues. Once a log buffer is full, it must be sealed and stored.
Instead of waiting for the buffer to be emptied, Ditio adds it to
a wait queue and allocates a new log buffer in order to continue
recording without delay. Once the queued buffer is committed
to storage, memory allocated for it is released. In order to defend
against attacks aiming to starve the recorder of memory by refusing
to store and hence block release of previous log buffers, Ditio sets
an upper bound on the number of concurrently queued buffers.
By experimentation, we determined 16 MB to be the upper bound
that allows for successful logging of all devices in our prototypes.
Moreover, most sensors require fewer buffers than this upper bound.
If more outstanding buffers than the upper bound are needed at
runtime (e.g., due to unexpected high number of register accesses),
the monitor simply stalls register writes until empty buffers are
available. In such an unlikely case, the sensor might not function,
e.g., camera might stop working, or its performance might degrade,
e.g., camera’s framerate might drop. However, note that this cannot
be leveraged by an attacker to hide sensor activity since no register
accesses will be missed from the logs.

5.3 Configuring the Recorder
As discussed in §4.1, the configuration app requests the recorder to
start or stop logging activities on a given register. To facilitate this,
the hypervisor-based recorder provides a hypercall for the normal
world operating system to request the start and end of logging on
a given register.

The aforementioned hypercall requires the physical address of
registers of interest. This leads us to consider how configuration

Ditio: Trustworthy Auditing of Sensor Activities in Mobile & IoT Devices SenSys ’17, November 6–8, 2017, Delft, Netherlands

1 /**** camera ****/
2 msm-cam@fd8C0000 {
3 compatible = "qcom,msm-cam";
4 reg = <0xfd8C0000 0x10000>;
5 ...
6 };
7
8 ...
9

10 /**** audio codec ****/
11 slim@fe12f000 {
12 compatible = "qcom,slim-ngd";
13 reg = <0xfe12f000 0x35000>,
14 <0xfe104000 0x20000>;
15 ...
16
17 taiko_codec {
18 compatible = "qcom,taiko-slim-pgd";
19 ...
20 };
21 };

Figure 5: Part of the device tree for camera and audio codec
of Nexus 5.

app learns the addresses of registers for various sensors. For this
purpose, we use two resources: the device tree file to find out the
range of physical addresses of all registers of the device, and the
device driver or device specification to find out the offset of the
registers of interest.

In modern mobile and IoT devices using ARM System-on-Chips
(SoCs), physical addresses of register pages of sensors are fixed and
declared in a device tree file. Figure 5 shows part of the device tree
of the camera and audio codec of Nexus 5 used in our prototype,
which uses a Qualcomm MSM8974 Snapdragon 800 SoC. As the
figure shows, the camera entry shows the physical address of the
register pages of camera. The start physical address is 0×fd8c0000
and the size is 0×10000 (i.e., 16 4kB pages). The second part of the
device tree shows an audio codec device connected to a SLIMbus.
The device tree also specifies the physical address of the two regions
of the SLIMbus register pages. The start physical address of the first
region is 0×fe12f000 and the size is 0×35000 (i.e., 53 4kB pages)
and the start physical address of the second region is 0×fe104000
and the size is 0×20000 (i.e., 32 4kB pages).

Note that in practice, Ditio does not need to monitor all the
registers. For example, in case of Nexus 5 camera, logging only one
register is enough to infer the on-off state of the device (§7). The
information about which registers need to be monitored can be
easily provided by the device vendors that deploy Ditio. In practice,
as mentioned earlier, we identify the right registers by inspecting
the sensor’s device driver or the device specification. For example,
it took us less than a day to identify the registers that we needed
to monitor for the Nexus 5 camera by inspecting its device driver.

In the backward-compatible design, we need the virtual ad-
dresses to which physical addresses are mapped. This is because
this design uses the operating system page table for monitoring
register accesses, and this table translates kernel virtual addresses
to physical addresses. Therefore, this requires a small kernel code
modification for runtime discovery of these virtual addresses, given
the physical addresses.

Trap-not-log: Protection of register accesses (i.e., forcing them
to trap) happens at register page granularity. However, a register
page containsmany registers, not all of whichmight be of interest in
the auditing phase. Therefore, Ditio avoids logging accesses to other

registers in the same page that are not of interest. We implement
trap-not-log to achieve this: accesses to all the registers in the page
are trapped, yet only those of interest are logged. Note that all
trapped register accesses are emulated regardless of whether they
are logged or not. In §9, we show that trap-not-log, while simple to
realize, is indeed important in reducing the overhead of Ditio.

Reconfiguration after reboots: Upon each reboot, all changes
to the page table entries by the hypervisor are erased. Therefore,
it is important for these changes to be re-applied after reboot. We
rely on the configuration app to re-initiate monitoring of the same
register(s) after each reboot. The configuration app maintains these
registers and asks the hypervisor to monitor them after the reboot.
One concern is that a malicious user might prevent the configura-
tion app from re-initiating monitoring after the reboot. However,
such an attempt will be detected in the auditing phase.

An alternative is to remember monitored registers by storing
them in secure storage of the secure world and re-apply the page
table protection after reboot. We opted for the previous approach
since it simplifies the design by not requiring a large amount of
secure storage, which is indeed not trivial to implement [54].

6 SEALING THE LOGS
In Ditio, we seal the logs to provide three important guarantees:
authenticity, integrity, and confidentiality. The first two guarantees
are needed by the auditor. The authenticity guarantee ensures the
auditor that the logs were generated by the device of interest during
the time period of interest. The integrity guarantees ensures that
the logs have not been tampered with since generation. The third
guarantee is provided to protect the privacy of the device owner
as the logs can contain sensitive information, e.g., the times when
the camera is used. With this guarantee, the logs are only readable
by the device owner as well as the auditor and the authentication
server.

The underlying technique enabling Ditio to provide these guar-
antees is an authentication protocol that allows the client’s monitor
to not only authenticate itself to a server and adjusts its wall-clock,
it also provides a session key for the client’s monitor that can be
used for computing HMAC and for encryption. Below, we first
describe this protocol. We will then explain how we provide each
of the aforementioned guarantees.

6.1 Authentication Protocol
At the start of each log session and after every reboot, the secure
world performs an authentication handshake (Auth-Prot) with an
authentication server (AuthSrv). As part of it, the client proves
its identity to this server, synchronizes its wall clock with it, and
establishes a symmetric key (i.e., a session key). In the context of
Auth-Prot, we make the following assumptions. First, we assume
that the AuthSrv is trusted. This can either be a trusted public en-
tity or a private entity designated for Ditio. Second, we assume
that the client has a certificate issued by a well-known and trusted
certification authority (CA), e.g., the client vendor, such as Apple,
Samsung, Google, and Cisco. This certificate securely binds the
client’s unique identity to a distinct public key. The public key cor-
responds to a hardware-bound private key, which is only accessible
to the TrustZone secure world in the monitor (and not even the

SenSys ’17, November 6–8, 2017, Delft, Netherlands S. Mirzamohammadi et al.

hypervisor). §8.1 describes how we use a hardware-unique key in
TrustZone’s secure world to implement a hardware-bound private
key. In our backward-compatible design, we include this key in the
operating system image.

The protocol works by exchanging two messages. We describe
each message using notation similar to the one used by Needham
et al. [52]. That is: A→ B : C means that entity A sends message
C to entity B.

M → AuthSrv : {Cer t_M, TM , NM , {Sk }
PuAuthSrv }PrM

First, the client (M) sends a message to AuthSrv, which includes
M ’s certificate (Cert_M) and a newly generated symmetric session
key (Sk), encrypted with the public key of AuthSrv (PuAuthSrv). The
message also includes a nonce (NM) andM ’s timestamp (TM). The
latter can be subsequently used by AuthSrv to order session keys.
The message is signed withM’s private key (PrM).

Upon receiving this message, AuthSrv extracts M’s public key
PuM fromCert_M and verifies the signature. This process includes
Cert_M expiration and revocation1 checking. Next, AuthSrv de-
crypts the message to retrieve Sk . and stores it in a database along
withM’s certificate.

We note that AuthSrv authenticates contents and origin of the
message. Also, since the message includes both a nonce and a times-
tamp (NM and TM), AuthSrv can establish freshness, i.e., detect
replay or re-ordering attacks, assuming that M’s clock is guaran-
teed to be monotonically increasing, and that AuthSrv maintains
the last valid TM . However, sinceM ’s clock might drift, it might be
unrealistic to expect M’s and AuthSrv’s clocks to be always syn-
chronized. Thus, AuthSrv might not detect message delay attacks.
We do not consider this to be a serious issue.

AuthSrv → M : {HMACSk (MSG_1, IDSk , TAuthSrv), IDSk , TAuthSrv }

Next, AuthSrv replies toM with a message that contains its current
timestamp (TAuthSrv) and an IDSk , which is simply an ID for Sk .
Later on,M appends IDSk to the log file encrypted with Sk . In the
audit phase (§6.2), AuthSrv uses IDSk to retrieve Sk . The message
also includes an HMAC computed with Sk over TAuthSrv, IDSk as
well as over the entire previous message (MSG_1). HMAC guaran-
tees integrity and origin authenticity of the message; it also (since
MSG_1 includes NM) authenticates AuthSrv toM . TAuthSrv allows
M to compute its wall clock offset compared to a reference time.
We assume that AuthSrv can provide an accurate timestamp based
on an agreed-upon time reference. Note that we do not consider the
time taken to send and receive messages betweenM and AuthSrv.
This might result in a clock skew. However, we expect it to be on the
order of milliseconds and thus acceptable for anticipated use-cases.
To defend against delay attacks, the secure world must terminate
the handshake if a response is received after a delay threshold.

Finally, we note that the first message in our protocol has simi-
larity to the well-known X.509 Authentication Procedure [40], but
our second message is different.

1Revocation checking can be done on-line, e.g., via OCSP, or off-line, e.g., via CRLs.
There are well-known tradeoffs in using either approach.

6.2 Audit Phase
When a client is audited, it provides the log files belonging to
a session to an auditor along with its certificate. The auditor is
responsible for verifying that the certificate corresponds to the
client of interest (e.g., by inspecting the device info, or for better
assurance, by performing a challenge-response handshake with it).

Once the certificate is verified, the auditor provides the log files
and the certificate to AuthSrv. AuthSrv provides two services: (1)
verifying integrity and authenticity of the logs, and (2) decrypting
them. AuthSrv uses the IDSk (appended to the log files) to retrieve
the corresponding session key for each log file and uses it to verify
the HMAC and to decrypt the log files.

Log authenticity: The procedure above guarantees the authen-
ticity of the logs. This is because the session key is only available to
the authenticated device’s monitor, and hence it is only the monitor
that could have generated the HMAC.

Log integrity: The appended HMAC also guarantees the in-
tegrity of each log file. However, unfortunately, merely protecting
integrity of each log file is not adequate as the attacker can try to
delete some log files and violate integrity of the log session. There-
fore, we need to make sure that the session’s log files are connected
to each other in a tamper-evident manner, such that these attacks
can be detected. We achieve this by using a non-volatile counter in
the secure world [19]. The secure world sets the counter to one in
the beginning of the log session and re-sets it to zero upon session
termination. When preparing a log file, the secure world inserts the
counter into the file and increments it. This way, the auditor can
always verify that log files start at one and that all the subsequent
log files are available. The last log file should contain an event that
shows recording on all pages were terminated. In case of per-CPU
log buffers discussed in §5.2, log files are tagged with counters in
the order they are passed to the secure world.

Note that Ditio relies on some form of non-volatile storage in
the secure world to maintain this counter value. As described in
the TrustZone’s specification [13], the secure world provides such
a counter (although our development board does not fully imple-
ment this as described in §8.1 forcing us to emulate it). Moreover,
TrustZone-based systems can provide secure storage support [5]
but the implementation of that is challenging and missing from
processors manufactured by all major SoC vendors [54]. Therefore,
we do not leverage this storage to simplify the monitor.

7 FORMALLY VERIFIED COMPANION TOOL
The goal of the companion is to assist the auditor in finding policy
violations in the logs. The companion has two components: a fron-
tend and a backend. The backend is a formally verified component
that makes it easy for the auditor to analyze the device-specific logs
while providing formal guarantees on the correctness of the results.
The frontend receives the log files, fixes the time stamps, sorts the
per-CPU log files, and then passes them to the backend. We next
describe the backend in more details.

As mentioned in §1, while the recorder itself enjoys a generic
device-agnostic design, the content of the logs are specific to the
sensors that are being recorded. Each sensor has a unique hard-
ware interface consisting of several registers with different effects
on the behavior of the sensor. Moreover, each register is often an

Ditio: Trustworthy Auditing of Sensor Activities in Mobile & IoT Devices SenSys ’17, November 6–8, 2017, Delft, Netherlands

1 Definition cam_rec :=
2 State cam_spec [cam_clk_enable].
3
4 Definition cam_query :=
5 Query cam_rec start_time end_time.

Figure 6: The implementation of a policy query in the high-
level query language.

aggregation of multiple variables, hence requiring low-level bit-
wise operations for log analysis. Finally, the behavior of the sensor
depends on other components as well, such as its peripheral bus.
Auditor’s attempt to analyze such low-level logs without additional
help can cause misinterpretations of the logs, leading to errors.

We address this problem using a formally verified companion
backend. As input, the backend receives a policy query written in a
high-level language, the sensor activity logs, and the specifications
of the sensors represented in the logs. The queries that we support
are in the following form: Was the sensor in a given state between a
start time and an end time? The backend then generates a low-level
checker that analyzes the logs to find policy violations.

Figure 6 shows an example of a policy query on the Nexus 5
camera written in this language. The language consists of two main
programming constructs: State and Query. Using State, we specify
the target state of the sensor that is of interest to the auditor. Using
Query, we generate the query by passing the target state, the start
time, and the end time. The first parameter, target state, specifies
the state that the auditor is inspecting. In this case, he is looking
to find instances of attempts to turn on the camera clock (which
is turned on if the camera is turned on). The last two parameters
define the time period, during which this query will look for policy
violation.

We formally verified correctness of the translation of the checks
from the high-level query to assembly. The formal proof provides
an important advantage: it enables the auditor to prove correctness
of its decision to others. To do this, the auditor can provide the
high-level audit query, the low-level checker, and the proof of the
correctness of the translation. The audit query is often simple and
can be easily inspected by all parties (Figure 6). Moreover, if needed,
one can check the proof and run the check against the logs to
arrive at the same decision as the one by the auditor. This is mainly
possible due to the small size of our companion backend: about 500
lines of code for the translator (in Coq) and an interface module to
pass input to the generated checks.

To prove correctness of the checker code, we prove that if the
sensor specification is correct, the checker that the backend gener-
ates is a correct assembly translation of the query provided by the
auditor. We perform formal verification using Coq and its proof as-
sistant [11]. The translator is fully implemented in Coq and proved
correct using forward simulation [46, 47], similar to other sys-
tems [50, 59]. Specifically, our translator translates the code in
query language to Cminor, which is an intermediate form of the
formally verified C compiler, CompCert [44]. We provide a proof of
soundness and completeness of this translation. Translation from
Cminor to assembly code is then achieved by CompCert, which is
already verified.

Below is the theorem we prove: that the translator correctly
preserve the semantics of the original query code while translating
it to Cminor:

Theorem Query_translate_correctness: forward_simulation
(Query.semantics Qprog) (Cminor.semantics Cprog).

In order to apply forward simulation, we formalize both the
high level query program and low level Cminor program with a
series of states (the formalization of Cminor is already provided by
CompCert). Programs go from one state to another through these
steps. In forward simulation, we particularly prove that (i) every
start state in the high-level query program is equivalent to the start
state of query program in Cminor and (ii) every step of the high
level query program relates to a sequence of steps in the Cminor
program in a way that the starting and ending states in both are
equivalent. The second proof is the major part of the overall proof
and we formalize it as the following lemma:

Lemma translate_step: ∀ Q1 Q2, Backend.step Q1 Q2 → ∀
C1, equivalent_states Q1 C1 → ∃ C2,
plus Cminor.step C1 C2 ∧ equivalent_states Q2 C2.

In this lemma, Q1 and Q2 are any two states in the high level
program with a step between them. C1 and C2 are any two states
in the low level Cminor program with one or more steps (plus
Cminor.step) between them. The lemma shows that if Q1 and C1
are images of each other (equivalent_states), Q2 and C2 are also
images of each other. By proving the theorem and in particular
the aforementioned lemma, we formally prove that both programs
will return the same answer to the query given the same device
specifications and same query.

The translator requires the sensor specifications to generate
the checks in the companion backend. As noted by others [55],
I/O device specifications are increasingly available from vendors.
Moreover, Ditio does not require full specifications of a sensor. If
the policy is not concerned with a functionality of the device and is
only concerned with the device being on and off, the specification
can be a few tens of lines of code (§9.1).

Finally, some sensors are not directly mapped in the CPU ad-
dress space. Instead, they are accessed through a peripheral bus,
such as I2C. In these cases, Ditio records accesses to the peripheral
bus adapter registers. The companion then infers the register ac-
cesses of the device from the register accesses of the peripheral bus
adapter, similar to the bus Interpreter module in [50]. Similar to
the senors themselves, we expect the specification of the bus to be
available from their vendors. However, if not, it is possible for the
system designer to develop the required partial specification. To
demonstrate this, we have developed the specification of the I2C
bus for the Juno board, which took one of the authors a few days
to do.

8 IMPLEMENTATION
We implement the full Ditio prototype onARM Juno r0 development
board. The board incorporates the ARM big.LITTLE architecture,
with the big cluster of Cortex-A57 CPUs and the LITTLE cluster of
Cortex-A53 CPUs, both of which use the ARMv8-A 64-bit instruc-
tion set. To the best of our knowledge, ARM Juno development

SenSys ’17, November 6–8, 2017, Delft, Netherlands S. Mirzamohammadi et al.

boards (r0, r1, and r2) are the only devices that allow programming
of the hypervisor and the TrustZone secure world to non-vendors.
Note that we run the operating system in Xen’s Dom0 in our proto-
type. Xen provides a command interface for Dom0 to manage the
system, e.g., launch and kill new virtual machines. Since such func-
tionality is not needed in Ditio, this provileged interface of Dom0
must be disabled, although we have not done so in our prototype.
We also implement a backward-compatible version of Ditio on a
Nexus 5 smartphone since we cannot access the hypervisor and
TrustZone’s secure world on commodity devices (§3).

We support and test different sensors in our prototypes. On
the Juno board, we test a USB-based camera (Logitech C270 HD
720p). On the Nexus 5, we test the memory-mapped backfacing
camera and the SLIMbus-based microphone. As mentioned in §5.3,
we deploy trap-not-log for the Nexus 5 camera. For the other two
devices in our prototype, we simply log all the register accesses
to their corresponding peripheral buses. While we only support
camera and microphone in our current prototype (since they are
some of the most privacy-sensitive sensors), we believe that Ditio
can be easily applied to other sensors as well, e.g., GPS.

In our Juno board prototype, we use Xen for the hypervisor (ver-
sion 4.8), OpenEmbedded operating system [9] (version 16.04) run-
ning on Linux kernel (version 4.6) for the normal world operating
system, and Open-TEE [8] (version 16.04) secure operating system
for our secure world runtime. We use the mbed TLS library [6] to
perform the Ditio’s cryptographic functions in the secure world (for
the hybrid design) or in the kernel (for the backward-compatible
design). The library provides support for AES encryption, RSA
encryption and signing, and HMAC. We use the same library in
the authentication server. In our Nexus 5 prototype, we use the
Android operating system (CyanogenMod version 12.1) running
on the Linux kernel (version 3.4).

8.1 Juno Board’s Specifics
Three issues about the Juno development board are noteworthy.

First, TrustZone specification [13] envisions a “statistically unique
secret key” on the SoC. Juno development board’s implementation
of this key is a 128-bit hardware unique key stored in “One Time
Programmable (OTP) or eFuse memory” [19]. As mentioned in §6.1,
Ditio uses a hardware-bound private key for digital signature. We
use a 2048-bit RSA key hard-coded in the secure world image. For
complete secrecy, the RSA key must be encrypted with the hard-
ware unique key and then hard-coded in the image. We note that
while the Juno development board supports the hardware unique
key, some other implementations of TrustZone do not. Ditio relies
on the availability of this key to implement its hardware-bound
key.

Second, the session key in Ditio is a 128-bit AES key generated by
the client. The Juno development board provides a trusted entropy
source to generate the session key [19].

Third, the TrustZone specification provisions a 32-bit non-volatile
counter [13], needed in Ditio to connect the log files in a tamper-
evident manner (§6.2). This counter can be used to number and
chain more than 4 billion log files. We believe that this number is
large enough and that we will not face counter overflow problems

in any practical scenarios. In the unlikely case that the counter over-
flows, the secure world can finish the logging session and starts
a new one. The user will then need to provide the logs for both
sessions to the auditor.

Following the specification, the Juno board does provision a
non-volatile counter in the secure world, however, according to the
board documentation [19] and based on our experiments, the value
of the counter is always fixed at 31. Therefore, we emulate this
counter in our prototype. Moreover, as mentioned in §4.1, Ditio can
use the secure storage (i.e., storage space protected by the secure
world) for maintaining the counter, an option we have avoided to
simplify the monitor (§6.2).

9 EVALUATION
In this section, we experimentally measure the ease of use and over-
head of Ditio. We emphasize that in most use cases of Ditio, sensors
are not actively used, hence Ditio will incur minimal recording
overhead. For example, in the home assistant scenario, the device
needs to keep the microphone off. In this case, the logs might simply
contain a few register writes showing the microphone was turned
off. However, in the experiments, we assume the worst: that is, we
assume that logging is active while sensors are heavily used. We
perform our measurements in such scenarios. Therefore, our results
represent an upper bound on the performance overhead of logging
sensor activities.

9.1 Use Cases
To demonstrate the feasibility of using Ditio in practice, we de-
ployed and tested one of the aforementioned use cases: a confiden-
tial meeting where no video recording is allowed. More specifically,
in this case, we audit the camera on the Nexus 5 smartphone to
make sure that it has not been used for a given period of time,
i.e., during the meeting. In the experiment, we do use the camera
during the designated time period. We then use the companion tool
to reliably detect it.

The most important question to answer about this experiment
is the ease of use of Ditio. Our experience was that the most time-
consuming part of using Ditio was developing the sensor interface
specification. Fortunately, the specification is partial; that is, it
only captures the registers of interest to the event that needs to be
detected. As a result, the specification for the camera on Nexus 5
is 13 lines of Coq code. It took one of the authors only a few days
to implement this. Note that we expect these specifications to be
provided by sensor vendors (§7). This will then significantly reduce
the engineering effort needed to deploy Ditio.

9.2 Sensor Performance
Wemeasure the performance of different sensorswhen being recorded
by Ditio and show that the performance overhead is negligible. For
every sensor, we measure the performance of the sensor when used
natively, and when used while being recorded. We show the Ditio’s
overhead with and without sealing in the secure world (the latter
marked as “No Seal” in the figures), to quantify the effect of sealing
on performance. Moreover, for Nexus 5 camera experiments, we
also show the results with trap-not-log disabled to demonstrate

Ditio: Trustworthy Auditing of Sensor Activities in Mobile & IoT Devices SenSys ’17, November 6–8, 2017, Delft, Netherlands

 0

 10

 20

 30

 40

 50

176x144 800x600 1960x1280

F
ra

m
e
ra

te
 (

F
P

S
)

Juno camera

Native

Ditio (No Seal)

Ditio

 0

 10

 20

 30

 40

 50

176x144 640x480 1920x1080

F
ra

m
e
ra

te
 (

F
P

S
)

Nexus 5 camera

Native

Ditio (No Seal)

Ditio

Figure 7: Juno board and Nexus 5 camera performance.

 0

 2

 4

 6

 8

 10

 12

 14

A
ch

ie
v
ed

 a
u
d
io

 r
at

e
(k

H
z)

Nexus 5 microphone

Native

Ditio (No Seal)

Ditio

Figure 8: Nexus 5 microphone performance.

the effectiveness of this technique (§5.3). Every reported perfor-
mance number is an average over three runs. For every average
number, we also include the standard deviation using error bars in
the figures. Note that we do not run any specific applications in
the system while evaluating Ditio nor do we pin any of our soft-
ware components to any cores in the device. In any experiment, we
reboot the system and launch our applications for testing such as
camera or a recorder application.

Camera performanceWemeasure the performance of the cam-
era by measuring the rate at which it can capture frames, i.e., fram-
erate. We configure the camera to produce the frames at its highest
framerate possible (i.e., 30), run the camera for about 1 minute, and
measure the rate. We ignore the first 50 frames to remove the effect
of camera initialization on the results. Figure 7 shows the results
for the camera on both the Juno board and Nexus 5 smartphone
for different resolutions. We use the IP Webcam [1] application on
Nexus 5 and a simple frame-capture program on the Juno board.
The results demonstrate that Ditio does not add any noticeable
overhead to the performance of the camera.

Microphone performance We measure the performance of
the microphone on Nexus 5. Note that we have not implemented
support for microphone on our Juno board (§8).

For microphone’s performance, we measure the achieved audio
rate when capturing 60 consecutive 1-second audio segments. We
use the Nexus 5 built-in Sound Recorder application in this experi-
ment. Capturing a segment of any size only requires writing to a
handful of registers for configuration of the microphone settings

 0

 1

 2

 3

 4

 5

 6

176x144 640x480 1920x1080
P

o
w

er
 (

W
)

Nexus 5 power consumption

Native

Ditio (No Seal)

Ditio

Ditio w/o trap-not-log

Figure 9: Power consumption of using the Nexus 5 camera.

and for starting and stopping the capture. Such few register accesses
means that Ditio does not add any noticeable overhead. Hence, we
use 60 1-second segments rather than a single 60-second segment
in order to stress Ditio.

Figure 8 shows the results. The results demonstrate that Ditio’s
affect on the microphone performance is small.

9.3 Power Consumption
Although Ditio does not incur noticeable performance overhead to
the sensor itself, it increases the power consumption in the system
due to the increased computation.

We measure the power consumption for Nexus 5 experiments
using a Monsoon power monitor [7]. We focus on camera since
it stresses Ditio. Microphone incurs negligible overhead (within
the margin of error in our measurement setup). Figures 9 shows
the results. It shows that logging by Ditio (when camera is actively
used) increases the power consumption of the device by at most
17% (for the 176×144 resolution).

The same figure also shows the effectiveness of trap-not-log in
achieving acceptable power consumption. More specifically, we
repeat the experiment but disable the trap-not-log technique, re-
sulting in all register accesses in the corresponding register page to
be logged. In this case, the power consumption can further increase
by up to 8% (for the 1920×1080 resolution). However, we note that
disabling trap-not-log does not affect the camera performance and
it still achieves a close-to-native framerate (about 30 FPS).

SenSys ’17, November 6–8, 2017, Delft, Netherlands S. Mirzamohammadi et al.

9.4 Other Results
Log size: We measure the log size generated in each of the experi-
ments in §9.2. Our results show the log size to be about 10 MB/min
for the camera on the Juno board, and 16 kB/min and 8 kB/min for
camera and microphone on Nexus 5.

Similar to power consumption experiments, to demonstrate the
importance of trap-not-log, we disable it for the Nexus 5 camera
and redo the log size experiments. In this case, Ditio generates
about 84 MB/min of logs, which is a significant increase compared
to 16 kB/min with trap-not-log. This also explains the large size of
logs for Juno board’s camera, for which we have not implemented
trap-not-log.

Authentication Latency:Wemeasure the authentication hand-
shake round trip time. We use the Juno board for this experiment as
the round trip time is affected by the delay incurred by switches be-
tween the operating system, hypervisor, and secure world. We host
the authentication server on a remote server (not on the university
campus where the board is). The network Round Trip Time (RTT)
between the board and the server is about 38 ms on average. In this
setup, we measure the authentication handshake round trip time
to be about 86 ms. We believe this will not incur user-perceivable
latency (in the logging initialization in the configuration app trig-
gered by the user). We note that sharing the logs might take a long
time but that can be done offline.

10 RELATEDWORK
10.1 I/O Restriction & Auditing
Brasser et al. built a system to regulate the use of mobile I/O devices
(including sensors) in restricted spaces [24]. In their solution, the
owner of the restricted space, i.e., the host, disables the targeted
I/O device in the guest’s mobile system for the period of the visit
(i.e., from a check-in time to a check-out time). To do this, the
host performs remote memory writes to the kernel memory of the
guest’s mobile device to nullify the device driver entry points or
to install dummy device drivers. Unfortunately, this solution has
two important limitations: First, it requires the guest to allow the
host to perform memory operations on the kernel memory of the
mobile system, which can be used by a malicious host to mount
serious attacks on the client. The system addresses the problem by
leveraging a vetting service, which can monitor and authorize the
requested memory operations by the host. However, implementa-
tion of a vetting service that can protect against all possible attacks
is challenging. This is because having access to the kernel memory
provides a significantly large attack surface for the host. Second,
this is a semi-preventive solution, since a re-boot resets the checks
on the mobile device, thus enabling the use of I/O devices. Although
a reboot can be later detected by the host (similar to our reactive
approach), I/O usage is not fully prevented. Moreover, after reboot,
nothing can be said about the activity of I/O devices.

In contrast to this work, Ditio provides an auditing framework for
sensor activities and solves the limitations mentioned above. First,
Ditio minimizes the attack surface on the client by only requiring
it to run a trusted monitor, which is inspected and deployed by
the device vendor. Second, rather than attempting to provide a
semi-preventive solution, Ditio provides a reactive solution, which
is also robust against reboots.

Wilson et al. [60] designed TLS-Rotate and Release (TLS-RaR), a
solution for auditing the data transmitted from an IoT device to its
server. The solution is realized at the network layer and is applica-
ble to IoT devices that use TLS for securing their communication.
For these devices, TLS-RaR records all the network communication
at a proxy. It then asks the device to release the key used for the TLS
session. The device performs a TLS key update (to ensure forward
integrity) before releasing the key. There are two important differ-
ences between TLS-RaR and Ditio. First, unlike TLS-RaR, which is
only applicable to IoT devices connected to the network through
a proxy, Ditio supports both mobile and IoT devices regardless of
their connectivity. Second, TLS-RaR audits the data transmitted by
IoT devices whereas Ditio audits the state of sensors in the device.
Therefore, TLS-RaR cannot unmistakenly determine the state of
the sensor in the device. The sensor might be on recording and
storing data without transmitting them. TLS-RaR can detect the
transmission of data in the future but puts a burden on the user
to analyze all the transmitted data and reason about them. These
differences make Ditio and TLS-RaR suitable for different use cases.
Ditio is best used when guarantees are needed about the use or
non-use of the sensors in mobile and IoT devices at a given time
in the past. TLS-RaR is best used when the actual transmitted data
(through a proxy) by an IoT device needs to be viewed by the user
regardless of when they were captured.

10.2 Trusted Sensors
Several systems provide support for trusted readings from sensors
of mobile systems. Liu et al. [45, 57] use TrustZone to implement
trusted sensors. Their solution has two main aspects: first, they
execute the software stack needed for generating the sensor data in
the secure world in order to protect it from the rest of the system,
and second, they sign the sensor data to prove its authenticity.

Gilbert et al. [37, 38] provide a trusted sensor framework, where
they use a trusted hardware, e.g., Mobile TrustedModule (MTM) [12],
to provide signed statements about the released sensor readings,
which can be transformed from the raw readings for better privacy.

This line of work is similar to ours in that Ditio provides authenti-
cated information (i.e., logs) about sensors as well. However, Ditio’s
logs contain register-level information rather than high-level sen-
sor data. Ditio’s logs are best suited for determining the state of
the sensor and not for reasoning about the data that it produced.
In that sense, our work is complementary to this line of work.

10.3 Recording systems
Many systems log events in the operating system for various appli-
cations, such as replay and provenance [23, 51, 53]. In [23], Bates
et al. present Linux Provenance Modules (LPM), which collects and
records provenance information in the Linux kernel. LPM guar-
antees the integrity and authenticity of the recorded information.
Similarly, Ditio collects and records sensor activity information and
guarantees its integrity and authenticity. In contrast to LPM, which
is implemented in the kernel, Ditio’s main design is implemented
in the hypervisor and hence has a smaller TCB. Moreover, unlike
LPM, which is implemented in an x86 machine and uses a TPM as
its root of trust, Ditio is implemented for mobile systems and uses
ARM TrustZone’s secure world as its root of trust.

Ditio: Trustworthy Auditing of Sensor Activities in Mobile & IoT Devices SenSys ’17, November 6–8, 2017, Delft, Netherlands

10.4 TrustZone and Hypervisor-based Systems
Several systems use ARM TrustZone and hypervisor for security
applications. TrustDump [58] uses ARM TrustZone to record the
memory and register space of the normal world operating system
when it crashes or is compromised. They use a secure interrupt to
switch to the secure world. However, unlike Ditio, they do not log
operating system events, such as register accesses. They also do
not use the hypervisor.

TrustZone-based Real-time Kernel Protection (TZ-RKP) [20]
used in Samsung KNOX [15] uses ARM TrustZone to implement
memory protection solutions for smartphones. In TZ-RKP, the ker-
nel is deprivileged and not allowed to execute certain control in-
structions, e.g., write to the TTBR register, which holds the address
of the process page tables. Building on this, the secure world forces
the kernel to ask the secure world to emulate these security critical
instructions, allowing it to inspect them. Note that an approach
like TZ-RKP is not ideal for monitoring sensor activity. This is be-
cause doing so requires the secure world to assign the sensor to
the secure world. With such an approach, the secure world either
has to host the device driver, which bloats the TCB, or has to incur
a context switch per register access, which is costly. In addition,
the operating system needs modifications too. In contrast, by lever-
aging both the hypervisor and the secure world, Ditio provides a
solution for which no changes are needed to the operating system
and the overhead of monitoring the writes to the registers is also
significantly lower.

Similarly, in SPROBES [36], Ge et al. intercept certain events in
the normal world operating system to trap in the secure world in
order to perform introspection of the operating system. They do so
by rewriting certain instructions in the operating system image to
instead make an SMC call, which switches from the normal world
to the secure world. In contrast, in Ditio, we use the Stage-2 page
tables in the hypervisor to cause a trap for accesses to registers of
interest to us, requiring no operating system modifications.

SchrodinText [16] uses TrustZone secure world and the normal
world hypervisor to protect the textual content of applications on
the display. It uses the hypervisor for controlling access to the
framebuffer and uses the secure world for decrypting the cipher-
text sent from the application server. In contrast, Ditio uses these
hardware features to collect and seal sensor usage logs.

AdAttester [29] provides safety and attestation guarantees for
mobile ads using TrustZone. It splits the graphics and input stacks
and moves parts of them to the secure world, hence increasing the
TCB size. Unlike AdAttest, Ditio keeps the TCB small. Moreover, it
focuses on sensor activity and not mobile ads.

fTPM provides a software-based implementation of Trusted Plat-
form Module (TPM) for ARM TrustZone [54]. Ditio can use fTPM
in its monitor instead of the Open-TEE runtime.

TrustZone has also been used for secure credentials [42], secure
facial authentication [62], and safe execution of applications (by
offloading part of the application to the secure world) [56].

10.5 System verification
In Ditio, we use formal verification to prove correctness of the
checkers we use for analyzing sensor activity logs. Many other

systems have used verification tools for building trustworthy sys-
tems as well. Examples are a formally verified in-kernel interpreter
(Jitk [59]), a certified crash-safe file system (FSCQ [26]), a veri-
fied C compiler (CompCert [44]), and verified microkernels and
hypervisors (SeL4 [41] and others [25, 39, 43, 48]).

The closest work to Ditio is our previous work on Viola [50],
which provides formally verified sensor notification invariant checks
guaranteeing that a notification, such as LED light or vibration, is
triggered if a privacy-sensitive sensor, such as camera or micro-
phone, is used. Viola injects these invariant checks in the hypervisor
in a mobile system. Viola’s invariant checks operate at the register
access level, similar to Ditio that records sensor activity at this
layer. However, unlike Viola that tries to enforce these invariants
at runtime, Ditio records sensor activity logs and audits them af-
terwards to find violations. Auditing has an important benefit: it
can provide an undeniable evidence, which is useful in order to
hold the violating parties accountable. Moreover, Ditio leverages
ARM TrustZone for authentication and sealing in the monitor, in
contrast to Viola, which only utilizes the virtualization hardware.

10.6 Others
Ditio isolates and protects its recorder. Hence it is related to exist-
ing sandboxing systems. Examples are SKEE [21] that creates an
isolated environment in the operating system thus not relying on
security hardware features. Ditio is also related to virtual machine
introspection solutions (VMI) that use the hypervisor to monitor
the events in the operating system, such as [28, 32, 34, 35].

Ditio allows a third-party to check the compliance of mobile and
IoT devices with given policies. The policies in Ditio are simple:
they regulate the use of sensors in a given period of time. Existing
work has explored more sophisticated policies for data protection,
resource usage control, and application behavior specification in
mobile devices leveraging a richer set of contextual information
(e.g., location) than Ditio does (only time) [22, 27]. Ditio’s novelty
is in how it records and then analyzes trustworthy logs of sensor
activity.

Candid interaction [33] provides awareness of one’s mobile and
wearable activities to others in the vicinity using various techniques,
such as augmented reality, for better social acceptable. Similarly, in
some of its use cases, Ditio provides information about the sensor
usage in mobile and wearables to a third party. However, Ditio
focuses on privacy and shares this informationwith a user-approved
third party.

11 CONCLUSIONS
We presented Ditio, a system solution for auditing sensor activities
in mobile and IoT devices. Ditio enables important use cases that
require auditing by device owners or third parties. We presented
the design of Ditio based on a hybrid security monitor that lever-
ages both ARM TrustZone and virtualization hardware. We also
presented an authentication protocol that allows the auditor to
verify the integrity and authenticity of the logs. Moreover, we dis-
cussed a formally verified companion tool that allows the auditor
to analyze the device-specific logs with ease and without errors.
We presented a prototype of Ditio based on ARM Juno develop-
ment board, the only device that allows programming of both the

SenSys ’17, November 6–8, 2017, Delft, Netherlands S. Mirzamohammadi et al.

hypervisor and TrustZone secure world by non-vendors, as well
as a backward-compatible prototype on Nexus 5 smartphone. Our
experiments showed that Ditio does not add noticeable sensor per-
formance overhead, but that it incurs up to 17% additional power
consumption.

ACKNOWLEDGMENTS
The work was supported in part by NSF Award #1617513. The
authors thank the shepherd, Anthony Rowe, and the reviewers.

REFERENCES
[1] Android IP Webcam application. https://play.google.com/store/apps/details?id=

com.pas.webcam&hl=en.
[2] ARM TrustZone. http://www.arm.com/products/processors/technologies/

trustzone/index.php.
[3] Disabling the microphone on Google Home (item 11). https://www.cnet.com/

how-to/google-home-tips-and-tricks/.
[4] Google Home. https://www.ifixit.com/Teardown/Google+Home+Teardown/

72684.
[5] Introduction to Trusted Execution Environments (TEE). http://sec.cs.ucl.ac.uk/

users/smurdoch/talks/rhul14tee.pdf
[6] mbed TLS. https://tls.mbed.org/.
[7] Monsoon Power Monitor. http://www.msoon.com/LabEquipment/

PowerMonitor/.
[8] Open-TEE. https://open-tee.github.io/.
[9] OpenEmbedded. http://www.openembedded.org/.
[10] Samsung Gear 2 uses Exynos 3250 SoC. https://www.sammobile.com/2014/04/09/

sammobile-confirms-new-exynos-3250-soc-powers-gear-2-gear-fit-uses-cortex-
m4-chip/.

[11] The Coq Proof Assistant. https://coq.inria.fr/.
[12] Trusted computing group mobile specifications. http://www.

trustedcomputinggroup.org/work-groups/mobile/
[13] 2004. ARM Security Technology, Building a Secure System using TrustZone Tech-

nology. http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/
PRD29-GENC-009492C_trustzone_security_whitepaper.pdf.

[14] 2004. TrustZone: Integrated Hardware and Software Security: Enabling Trusted
Computing in Embedded Systems. In ARM White Paper.

[15] 2013. An overview of Samsung KNOX. In Samsung White Paper.
[16] A. Amiri Sani. 2017. SchrodinText: Strong Protection of Sensitive Textual Content

of Mobile Applications. In Proc. ACM MobiSys.
[17] ARM. 2013. ARM Cortex-A15 MPCore Processor Technical Reference Manual,

Revision: r4p0. ARM DDI 0438I (ID062913).
[18] ARM. 2013, 2014, 2016. ARM Cortex-A57 MPCore Processor Technical Reference

Manual, Revision: r1p3. ARM DDI 0488H.
[19] ARM. 2014. Juno ARM Development Platform SoC, Revision r0p0, Technical

Overview. https://static.docs.arm.com/dto0038/a/DTO0038A.pdf, ARM DTO
0038A (ID040516).

[20] A. M. Azab, P. Ning, J. Shah, Q. Chen, R. Bhutkar, G. Ganesh, J. Ma, and W. Shen.
2014. Hypervision Across Worlds: Real-time Kernel Protection from the ARM
Trustzone Secure World. In Proc. ACM CCS.

[21] A. M. Azab, K. Swidowski, J. M. Bhutkar, W. Shen, R. Wang, and P. Ning. 2016.
SKEE: A Lightweight Secure Kernel-level Execution Environment for ARM. In
Proc. ACM MobiSys.

[22] G. Bai, L. Gu, T. Feng, Y. Guo, and X. Chen. 2010. Context-Aware Usage Control for
Android. In Proc. Int. ICST Conference on Security and Privacy in Communication
Systems (SecureComm).

[23] A. Bates, D. Tian, K. R.B. Butler, and T. Moyer. 2015. Trustworthy Whole-System
Provenance for the Linux Kernel. In Proc. USENIX Security Symposium.

[24] F. Brasser, D. Kim, C. Liebchen, V. Ganapathy, L. Iftode, and A. Sadeghi. 2016.
Regulating ARM TrustZone Devices in Restricted Spaces. In Proc. ACM MobiSys.

[25] H. Chen, X. Wu, Z. Shao, J. Lockerman, and R. Gu. 2016. Toward Compositional
Verification of Interruptible OS Kernels and Device Drivers. In Proc. ACM PLDI.

[26] H. Chen, D. Ziegler, T. Chajed, A. Chlipala, M. F. Kaashoek, and N. Zeldovich.
2015. Using Crash Hoare Logic for Certifying the FSCQ File System. In Proc.
ACM SOSP.

[27] M. Conti, B. Crispo, E. Fernandes, and Y. Zhauniarovich. 2012. CRêPE: A System
for Enforcing Fine-Grained Context-Related Policies on Android. In Proc. IEEE
Transactions on Information Forensics and Security.

[28] L. P. Cox and P.M. Chen. 2007. Pocket Hypervisors: Opportunities and Challenges.
In Proc. IEEE/ACM HotMobile.

[29] J. Crussell, R. Stevens, and H. Chen. 2014. Madfraud: Investigating Ad Fraud in
Android Applications. In Proc. ACM MobiSys.

[30] C. Dall and J. Nieh. 2014. KVM/ARM: The Design and Implementation of the
Linux ARM Hypervisor. In Proc. ACM ASPLOS.

[31] National Vulnerability Database. Vulnerability Summary for CVE-2015-6639.
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2015-6639

[32] B. Dolan-Gavitt, T. Leek, M. Zhivich, J. Giffin, and W. Lee. 2011. Virtuoso:
Narrowing the Semantic Gap in Virtual Machine Introspection. In Proc. IEEE
Security and Privacy (S&P).

[33] B. Ens, T. Grossman, F. Anderson, J. Matejka, and G. Fitzmaurice. Candid Inter-
action: Revealing Hidden Mobile and Wearable Computing Activities. In Proc.
ACM UIST.

[34] Y. Fu and Z. Lin. 2012. Space Traveling across VM: Automatically Bridging
the Semantic Gap in Virtual Machine Introspection via Online Kernel Data
Redirection. In Proc. IEEE Security and Privacy (S&P).

[35] T. Garfinkel and M. Rosenblum. 2003. A Virtual Machine Introspection Based
Architecture for Intrusion Detection. In Proc. Internet Society NDSS.

[36] X. Ge, H. Vijayakumar, and T. Jaeger. 2014. SPROBES: Enforcing Kernel Code
Integrity on the TrustZone Architecture. In Proc. IEEEMobile Security Technologies
Workshop (MoST).

[37] P. Gilbert, L. P. Cox, J. Jung, and D. Wetherall. 2010. Toward Trustworthy Mobile
Sensing. In Proc. ACM Workshop on Mobile Computing Systems & Applications
(HotMobile).

[38] P. Gilbert, J. Jung, K. Lee, H. Qin, D. Sharkey, A. Sheth, and L. P. Cox. 2011.
YouProve: Authenticity and Fidelity in Mobile Sensing. In Proc. ACM SenSys.

[39] R. Gu, J. Koenig, T. Ramananandro, Z. Shao, X. Wu, S. Weng, H. Zhang, and Y.
Guo. 2015. Deep Specifications and Certified Abstraction Layers. In Proc. ACM
POPL.

[40] A. Kahate. 2013. Cryptography and Network Security. Tata McGraw-Hill Educa-
tion.

[41] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin, D. Elkaduwe,
K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell, H. Tuch, and S. Winwood. 2009.
seL4: Formal Verification of an OS Kernel. In Proc. ACM SOSP.

[42] K. Kostiainen, J. Ekberg, N. Asokan, and A. Rantala. 2009. On-board Credentials
with Open Provisioning. In Proc. ACM International Symposium on Information,
Computer, and Communications Security (ASIACCS).

[43] D. Leinenbach and T. Santen. 2009. Verifying the Microsoft Hyper-V hypervisor
with VCC. In Proc. International Symposium on Formal Methods (FM). Springer.

[44] X. Leroy. 2009. Formal Verification of a Realistic Compiler. Commun. ACM.
[45] H. Liu, S. Saroiu, A. Wolman, and H. Raj. 2012. Software Abstractions for Trusted

Sensors. In Proc. ACM MobiSys.
[46] N. Lynch and F. Vaandrager. 1995. Forward and Backward Simulations Part I:

Untimed Systems. Information and Computation.
[47] N. Lynch and F. Vaandrager. 1996. Forward and Backward Simulations Part II:

Timing-Based Systems. Information and Computation.
[48] M. McCoyd, R. B. Krug, D. Goel, M. Dahlin, and W. Young. 2013. Building

a Hypervisor on a Formally Verifiable Protection Layer. In Proc. IEEE Hawaii
International Conference on System Sciences (HICSS).

[49] Y. Michalevsky, D. Boneh, and G. Nakibly. 2014. Gyrophone: Recognizing Speech
from Gyroscope Signals. In Proc. USENIX Security.

[50] S. Mirzamohammadi and A. Amiri Sani. 2016. Viola: Trustworthy Sensor Notifi-
cations for Enhanced Privacy on Mobile Systems. In Proc. ACM MobiSys.

[51] K. Muniswamy-Reddy, D. A. Holland, U. Braun, and M. I. Seltzer. 2006.
Provenance-Aware Storage Systems. In USENIX ATC.

[52] R. M. Needham and M. D. Schroeder. 1978. Using Encryption for Authentication
in Large Networks of Computers. Commun. ACM.

[53] D. J. Pohly, S. McLaughlin, P. McDaniel, and K. Butler. 2012. Hi-Fi: Collecting
High-FidelityWhole-System Provenance. In Proc. ACM Annual Computer Security
Applications Conference (ACSAC).

[54] H. Raj, S. Saroiu, A. Wolman, R. Aigner, J. Cox, P. England, C. Fenner, K. Kinshu-
mann, J. Loeser, D. Mattoon, M. Nystrom, D. Robinson, R. Spiger, S. Thom, and D.
Wooten. 2016. fTPM: A Software-Only Implementation of a TPM Chip. In 25th
USENIX Security Symposium (USENIX Security 16), Austin, TX.

[55] L. Ryzhyk, A. Walker, J. Keys, A. Legg, A. Raghunath, M. Stumm, and M. Vij.
2014. User-Guided Device Driver Synthesis. In Proc. USENIX OSDI.

[56] N. Santos, H. Raj, S. Saroiu, and A. Wolman. 2014. Using ARM TrustZone to Build
a Trusted Language Runtime for Mobile Applications. In Proc. ACM ASPLOS.

[57] S. Saroiu and A. Wolman. 2010. I Am a Sensor, and I Approve This Message. In
Proc. ACM Workshop on Mobile Computing Systems & Applications (HotMobile).

[58] H. Sun, K. Sun, Y. Wang, J. Jing, and S. Jajodia. 2014. TrustDump: Reliable
Memory Acquisition on Smartphones. In Proc. European Symposium on Research
in Computer Security (ESORICS).

[59] X. Wang, D. Lazar, N. Zeldovich, A. Chlipala, and Z. Tatlock. 2014. Jitk: a Trust-
worthy In-Kernel Interpreter Infrastructure. In Proc. USENIX OSDI.

[60] J. Wilson, R. S. Wahby, H. Corrigan-Gibbs, D. Boneh, P. Levis, and K. Winstein.
2017. Trust but Verify: Auditing Secure Internet of Things Devices. In Proc. ACM
MobiSys.

[61] J. Winter. 2008. Trusted Computing Building Blocks for Embedded Linux-based
ARM TrustZone Platforms. In Proc. ACMWorkshop on Scalable Trusted Computing
(STC).

[62] Dongli Zhang. 2014. TrustFA: TrustZone-Assisted Facial Authentication on
Smartphone. Technical Report.

https://play.google.com/store/apps/details?id=com.pas.webcam&hl=en
https://play.google.com/store/apps/details?id=com.pas.webcam&hl=en
http://www.arm.com/products/processors/technologies/trustzone/index.php
http://www.arm.com/products/processors/technologies/trustzone/index.php
https://www.cnet.com/how-to/google-home-tips-and-tricks/
https://www.cnet.com/how-to/google-home-tips-and-tricks/
https://www.ifixit.com/Teardown/Google+Home+Teardown/72684
https://www.ifixit.com/Teardown/Google+Home+Teardown/72684
http://sec.cs.ucl.ac.uk/users/smurdoch/talks/rhul14tee.pdf
http://sec.cs.ucl.ac.uk/users/smurdoch/talks/rhul14tee.pdf
https://tls.mbed.org/
http://www.msoon.com/LabEquipment/PowerMonitor/
http://www.msoon.com/LabEquipment/PowerMonitor/
https://open-tee.github.io/
http://www.openembedded.org/
https://www.sammobile.com/2014/04/09/sammobile-confirms-new-exynos-3250-soc-powers-gear-2-gear-fit-uses-cortex-
https://www.sammobile.com/2014/04/09/sammobile-confirms-new-exynos-3250-soc-powers-gear-2-gear-fit-uses-cortex-
m4-chip/
https://coq.inria.fr/
http://www.trustedcomputinggroup.org/work-groups/mobile/
http://www.trustedcomputinggroup.org/work-groups/mobile/
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
https://static.docs.arm.com/dto0038/a/DTO0038A.pdf
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2015-6639

	Abstract
	1 Introduction
	2 Motivation
	3 Hybrid Security Monitor
	4 Overview
	4.1 Design and Workflow
	4.2 Threat Model
	4.3 Trusted Computing Base

	5 Recording Sensor Activity Logs
	5.1 Untrusted Log Store
	5.2 Minimizing Recorder Latency
	5.3 Configuring the Recorder

	6 Sealing the Logs
	6.1 Authentication Protocol
	6.2 Audit Phase

	7 Formally Verified Companion Tool
	8 Implementation
	8.1 Juno Board's Specifics

	9 Evaluation
	9.1 Use Cases
	9.2 Sensor Performance
	9.3 Power Consumption
	9.4 Other Results

	10 Related Work
	10.1 I/O Restriction & Auditing
	10.2 Trusted Sensors
	10.3 Recording systems
	10.4 TrustZone and Hypervisor-based Systems
	10.5 System verification
	10.6 Others

	11 Conclusions
	References

