
Flicker: Rapid Prototyping for the Ba�eryless Internet-of-Things
Josiah Hester

Northwestern University
josiah@northwestern.edu

Jacob Sorber
Clemson University

jsorber@clemson.edu

ABSTRACT
Batteryless, energy-harvesting sensing systems are critical to the
Internet-of-Things (IoT) vision and sustainable, long-lived, unteth-
ered systems. Unfortunately, developing new batteryless applica-
tions is challenging. Energy resources are scarce and highly variable,
power failures are frequent, and successful applications typically
require custom hardware and special expertise. In this paper, we
present Flicker, a platform for quickly prototyping batteryless em-
bedded sensors. Flicker is an extensible, modular, “plug and play”
architecture that supports RFID, solar, and kinetic energy harvest-
ing; passive and active wireless communication; and a wide range
of sensors through common peripheral and harvester interconnects.
Flicker supports recent advances in failure-tolerant timekeeping,
testing, and debugging, while providing dynamic federated energy
storage where peripheral priorities and user tasks can be adjusted
without hardware changes. Flicker’s software tools automatically
detect new hardware con�gurations, and simplify software changes.
We have evaluated the overhead and performance of our Flicker
prototype and conducted a case study. We also evaluated the usabil-
ity of Flicker in a user study with 19 participants, and found it had
above average or excellent usability according to the well known
System Usability Survey.

CCS CONCEPTS
• Computer systems organization → Embedded systems; Ar-
chitectures; • Human-centered computing → Ubiquitous and
mobile computing systems and tools;

KEYWORDS
Flicker, Batteryless, Intermittent, Energy Harvesting, Wearable
ACM Reference format:
Josiah Hester and Jacob Sorber. 2017. Flicker: Rapid Prototyping for the Bat-
teryless Internet-of-Things. In Proceedings of SenSys ’17, Delft, Netherlands,
November 6–8, 2017, 13 pages.
DOI: 10.1145/3131672.3131674

1 INTRODUCTION
The Internet-of-Things (IoT) vision is both exciting and elusive.
Billions or trillions of sensors collecting, processing, and communi-
cating data throughout the world will fundamentally change how

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
SenSys ’17, Delft, Netherlands
© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
978-1-4503-5459-2/17/11. . . $15.00
DOI: 10.1145/3131672.3131674

Bluetooth
 LE

Gyro

Accelerometer

So
la

r a
nd

 R
FI

D
H

ar
ve

st
er

s (
Ba

ck
)

Figure 1: Flicker enables rapid prototyping of batteryless, in-
termittently powered sensing systems. This �gure shows a
Flicker device equipped to harvest RFID and solar energy
(harvesters are placed on the back side), sense acceleration
and rotational velocity, and communicate via Bluetooth LE.

we manage our health [10], our water [33], our buildings [8, 13],
and our interactions with the natural world [27]. But, the IoT has
an energy problem. Batteries are large, heavy, expensive and short
lived—even rechargeables wear out after a few years—and the main-
tenance and environmental costs of replacing trillions of batteries
every few years are prohibitive.

Batteryless computing devices—devices that gather energy from
the environment and execute opportunistically—promise a more
sustainable, maintanence-free, and environmentally-friendly al-
ternative, but batteryless computing systems are challenging for
developers. Power failures can be frequent and di�cult to predict.
Data processing, sensing, and communication are often disrupted,
clocks reset, and volatile memory lost. Recent advances in check-
pointing [2, 29], consistent execution [11, 24], timekeeping [21],
energy management [20], testing [19], and debugging [12] address
key challenges; however, developing a new batteryless application
still often requires specialized expertise, custom hardware devel-
opment, and considerable hardware tuning. This paper speci�cally
addresses the following key challenges:

Limited Hardware Options: The Intel WISP [31] and its descen-
dants [35], have long been the platform of choice for computational
RFID (CRFID) research, but the wide range of energy harvesters,
sensors and other peripherals, and exciting new applications that
are available to today’s batteryless system designers is not well-
supported by the WISP’s RF-centric design. Application designers
that need solar, kinetic, or thermal energy or can’t depend on a

SenSys ’17, November 6–8, 2017, Del�, Netherlands Josiah Hester and Jacob Sorber

close-range RFID reader are left to either hack the WISP [18] to
suit their needs or create new hardware from scratch.

Limited Flexibility: The success of a batteryless sensing appli-
cation often hinges on a variety of hardware adjustments that
a�ect how energy is harvested and managed, how tasks are con�g-
ured, and how data is gathered. Unfortunately, existing batteryless
platforms are monolithic, tightly integrating energy harvesting,
energy management, sensing, data processing and communication
onto a single circuit board that is di�cult to modify. Consequently,
development is typically slow and developers may not consider
promising design alternatives in fear of long delays.

LackingModernAmenities:Current platforms also lack recently-
developed features, like hardware-assisted zero-power timekeep-
ing [21] that allows devices to measure time across power failures.
Timekeeping is incredibly important for sensing, security, data
provenance, and data utility. Without a sense of time, batteryless
active RFID cards could be brute force attacked for passwords, or
endlessly tasked with authentication requests in a DoS attack. Data
provenance and utility is usually tied to the time a data point was
gathered. Federating energy storage for individual peripherals [20]
not only simpli�es software development and improves system
availability, but improves energy harvesting e�ciency. Timekeep-
ing and federated energy storage are particularly important for
batteryless applications that rely on ambient energy sources and
can’t rely on an RF reader to provide time.

Poor Usability or Community: Each of the previous factors con-
tribute to the lack of usability in current hardware platforms, from
the programming tools to the hardware in�exibility. Novice de-
velopers �nd it di�cult to construct useful devices or verify that
they work. The emergence of the maker movement has shown that
hobbyists, as well as researchers and industry, are interested in
building for the Internet-of-Things. Without a usable platform, no
community will emerge.

We have an answer to these de�ciencies: Flicker, a �exible, mod-
ular hardware platform for energy harvesting, intermittently pow-
ered, batteryless sensing devices. With the help of common inter-
connects, Flicker developers assemble batteryless sensors from a
set of interchangable modules—computational cores, energy har-
vesters, sensors, communication peripherals. Flicker is the �rst
general platform for batteryless, energy harvesting sensing. In this
paper, we present twelve di�erent modules, and describe how others
can extend this set by developing their own compatible peripher-
als and harvesters. Flicker supports federated energy storage [20]
and features a novel extension of the state of the art, allowing de-
velopers to programmatically set wakeup and task trigger points
and change the relative priorities of individual sensors and other
peripherals. Flicker also supports failure-resistant timing with an
onboard capacitive timekeeper[21].

Contributions: At the time of publication, we will release the
Flicker platform as an open source, open hardware resource for the
research community. We envision Flicker as a catalyst for battery-
less sensing research that enables a larger community of developers
to easily build and test new batteryless applications. We make the
following contributions in this paper:

Charge Controller

CoreEnergy
Harvesting

Sensor Radio

+

-

Compute Sample Send
Receive

Figure 2: A conceptual view of federated energy storage for
capacitor based, energy harvesting sensors. Energy storage
is separated per peripheral. Each peripheral maps to a set of
of sensing tasks,making energymanagementmore straight-
forward.

(1) A modular, extensible, hardware platform design and im-
plementation for batteryless, energy harvesting sensors:
the �rst general platform for these devices. This platform
will be open source and open hardware1.

(2) A novel extension of federated energy storage [20] that
automatically manages peripheral charging and allows for
dynamic retasking and reprioritization of energy resources
at runtime.

2 BUILDING FOR BATTERYLESS
The future of sensing likely depends on tiny, batteryless, energy
harvesting devices because of the poor economics, sustainability,
and scaling of batteries. Today, building and deploying untethered,
batteryless sensors is challenging because 1) design-time decisions
make prototyping slow and expensive, 2) �exibility of tasks and
hardware is lacking, 3) few people have the expertise to build and
deploy these sensors, and 4) few readily available hardware options
exist, short of building custom hardware.

Modules from Sparkfun2, or Arduino3 shields can’t just be wired
to a batteryless sensor, deployed, and then expected to work. Ar-
duino developers cannot replace the battery with a postage stamp
sized solar panel and expect it to function just the same. The archi-
tectural, operating systems, and language support for intermittent
sensors is not widely available or explored, except in custom con�g-
urations of hardware and software. The ultra low operating power
requirements, variable energy environments, and di�cult to use
tools, discourage most developers from ever trying to work with
batteryless sensors unless they can a�ord to design and assemble
their own hardware from scratch.

Using recent energy management techniques, capable designers
can reduce power failures and make better use of sensing compo-
nents and other peripherals. For example, federated energy stor-
age [20] (concept shown in Figure 2) assigns a dedicated capacitor
for every hardware peripheral, such as the radio, microcontroller,
or accelerometer. These capacitors are sized to hold enough energy
for a single task using the hardware peripheral it powers. With
federated energy, sensors avoid the tragedy of the commons (or
coulombs), where a single faulty or mismanaged component can

1Find the Flicker platform release at
https://github.com/PERSISTLab/FlickerPlatform
2Sparkfun is a popular company for DIY and maker electronics.
3Arduino is the de�nitive microcontroller ecosystem for embedded electronics makers.

https://github.com/PERSISTLab/FlickerPlatform

Flicker Ba�eryless Platform SenSys ’17, November 6–8, 2017, Del�, Netherlands

Reset threshold

MCU available
0

1

2

3

0.00 0.25 0.50 0.75 1.00 1.25

Vo
lta

ge

Harvester

MCU/Radio

Centralized Energy Storage

Reset threshold

MCU available
0

1

2

3

0.00 0.25 0.50 0.75 1.00 1.25
Time (s)

Vo
lta

ge

Harvester

MCU

Radio

Federated Energy Storage

Figure 3: This �gure shows a “sense-and-send” program ex-
ecuting with federated energy vs centralized energy stor-
age. Federated energy storage (bottom) allows useful work
to start sooner, as smaller capacitors sized to a particular pe-
ripheral charge faster than a single shared reservoir. FedEn-
ergy also reduces power failures from coupling of hardware
peripherals, and harvests more energy.

deplete the shared energy supply—rendering the entire sensor inop-
erable. With federated energy, devices charge more quickly (small
capacitors charge faster than large capacitors), as each component
only needs to harvest the energy it needs, not the energy required
to support all components. Federated energy allows peripherals
with di�erent operating voltages to function on the same device:
capacitors can be tuned exactly to the peripheral speci�cations.
Federated energy functions by setting voltage thresholds for each
capacitor at design time, these thresholds are a direct measure of
the amount of energy in a capacitor. The microcontroller monitors
the charge state of each capacitor and peripheral-dependent tasks
are executed when the needed peripheral is su�ciently charged.
An execution of a federated energy and centralized energy (tradi-
tional) sensor is shown in Figure 3, the traditional variant is more
susceptible to failures, and takes longer to harvest and then store
enough energy to start useful computation and sensing.

2.1 Limitations of Static Federated Energy
Federating a batteryless sensor’s energy storage improves the relia-
bility, e�ciency, and energy use of the whole sensor; however, the
federated approach as implemented in UFoP [20] is di�cult to use,
especially by non-experts, for three reasons described below.

Program-speci�c hardware designs are brittle. In order to use
federated energy e�ectively, a developer needs to determine the
right size for peripheral capacitors, the voltage at which each pe-
ripheral should start charging, and the voltage at which a peripheral

should be deemed charged and ready to use. In UFoP, capacitor
sizes and charging thresholds are static and set at design time, and
software changes often require hardware changes—soldering or
even circuit board revisions—to ensure good performance. Task
priorities cannot be changed once deployed. The result is brittle
systems with tight hardware and software dependencies and long,
expensive development and debugging cycles. Even for those with
hardware expertise, these systems are di�cult to maintain and
modify.

Static UFoP is in�exible at runtime. When using static UFoP,
programmers cannot turn o� peripherals when they are no longer
in use or assigned to a task. These peripherals continue to charge,
storing energy that may never be used and delaying more impor-
tant tasks. Programmers cannot change the relative priorities of
di�erent peripherals adapting tasks at runtime—limitations that
fundamentally bound application complexity and the ability to
retask deployed sensors in the �eld.

Signi�cant hardware complexity remains. Hardware complex-
ities and unintended interactions can interfere with the operation of
the sensor; in static UFoP this is seen in the approach to voltage reg-
ulation, logic levels, and the energy management interface. In order
to maximize e�ciency and availability, most batteryless sensors do
not regulate supply voltages. For some peripherals (especially with
RF components), voltage �uctuations will a�ect accuracy. Other
components (like an MSP430 MCU), draw more power at higher
voltages. Static UFoP does not propose a standard way to deal with
these con�icting peripheral requirements. In its current form, UFoP
does not manage logic levels for communication between the MCU
and peripherals, and designers must carefully tune capacitors and
harvesters to keep voltage level within logic bounds, concurrently.
Additionally, UFoP’s energy management interface uses a polling-
based approach to manage energy levels, which wastes energy in
frequent threshold checking.

Today, prototyping batteryless sensing devices is challenging
enough to discourage all but the most determined developers. This
paper addresses this problem by 1) improving the �exibility and
e�ciency of federated energy storage and 2) integrating these im-
provements into a novel and general platform, called Flicker, for
�exible and rapid prototyping of the batteryless Internet of Things.

3 FLICKER
We have developed Flicker for IoT application designers who want
to develop batteryless energy harvesting devices. Flicker’s goals
are (1) to provide multiple hardware options in terms of peripherals
and harvesting technologies, (2) realize runtime and design time
�exibility, (3) enable recent advances in timekeeping and energy
management on a general purpose platform, and (4) provide a plat-
form focused on entire stack (software and hardware) usability.
Instead of a single, monolithic hardware platform, we present a
system of hardware modules that can be used interchangeably and
software tools that can automatically analyze hardware con�gu-
rations, detect incompatibilities, and help developers more easily
create new applications. Flicker rethinks Federated Energy to meet
the requirements of a recon�gurable platform, adds failure tolerant

SenSys ’17, November 6–8, 2017, Del�, Netherlands Josiah Hester and Jacob Sorber

Energy
Harvesters

Compute
Core

Harvester Interface

MCU
1st stage
Capacitor

Solar Kinetic

Current Flow
Data/Control Signals

Failure-Tolerant
Timing

Harvester Interface

Charging
Hysteresis

Peripheral

Cap

Charge
Ctrl

Peripheral Interface

Int. Ctrl

Peripheral

Cap

Charge
Ctrl

Peripheral Interface

Int. Ctrl

Radio Sensor

Figure 4: Flicker harware architecture. A multi source en-
ergy harvesting interface feeds into the �rst stage capacitor
that powers the Compute Board. Peripherals are connected
through a standard interface that maps power, and control
signals.

timekeeping, and exposes multiple standard interfaces to peripher-
als. An overview of Flicker’s design is shown in Figure 4.

3.1 Flicker Modules
Flicker modules come in three distinct varieties — compute cores,
peripherals, and harvesters. A viable device con�guration consists
of a single compute core, one or more harvesters, and one or more
peripherals.

Compute core modules include a microcontroller (MCU) (the de-
vice’s main controller, programmed by the application developer
and responsible for peripheral control and application logic), time-
keeping functionality, ports for attaching harvesters and peripher-
als, and hardware support for managing federated energy stores.
Any MCU can be used to create a core module, but we recommend
low-power processors with on-chip FRAM, like the MSP430 FRAM
series [22], that work well with a wide range of small harvesters
and support e�cient checkpointing. Core modules also control
how peripherals are used and charged, and serve as the central hub,
around which harvesters and peripherals are connected.

Peripherals connect to the core modules’ peripheral interface
ports, which provide power, control, and signaling for peripheral
charging, in addition to analog signal lines, digital signal lines, and
digital bus lines (SPI, I2C, and UART) for peripherals that commu-
nicate digitally. Peripherals can be radios, sensors, and actuators —
in this paper, we focus primarily on radios and sensors, since most
actuators are too power hungry for batteryless operation, but this
is not a fundamental limitation. While peripheral behaviors and
needs will vary signi�cantly, each peripheral stores its own energy

and contains circuitry that controls how that energy is stored and
used.

Harvester modules harvest energy from a variety of environmen-
tal sources. A variety of energy sources — solar, kinetic, vibration,
radio frequency (RF), and thermal — are available to application
designers, but available harvesters provide the energy they harvest
di�erently, as direct current (DC) or alternating current (AC) and
at a variety of di�erent voltages. In Flicker, harvesters are designed
to provide energy in a form that can be used directly by the system.
Speci�cally, harvester modules provide DC electricity at voltages
that are high enough to support common modules and protect
against reverse current �ow, using a blocking diode or other simi-
lar mechanism. Reverse current protection is common in energy
harvesting devices, and critical when multiple harvesters are used
simultaneously (preventing one harvester from draining the energy
harvested by another).

Some harvesters (namely RF energy harvested from a reader, and
NFC) also combine data and energy. Flicker’s harvester interface
includes optional data lines, speci�cally to support these harvesters.

3.2 Recon�gurable Federated Energy
Recon�gurable Federated Energy is the crucial innovation allowing
quick prototyping with a modularized platform. Converting what is
usually a rigid hardware platform to one able to support a multitude
of peripherals and energy harvesters. “Recon�gurable” means that
programmers (or compilers) can assign (at runtime or compile time)
the amount of energy to be harvested for each peripherals capacitor,
the priority of charging of each peripheral, and the trip point where
enough energy is stored to execute a task. This allows applications
to tailor charging behaviors for di�erent con�gurations of periph-
erals and harvesters at the prototyping stage, at compile time, or
even at runtime. This makes it easy to e�ciently support longer
tasks that require more energy, without incurring long charging
delays for shorter tasks that need less energy. This makes it easy to
mix and match di�erent tasks, and peripherals, and removes the
hard coupling between peripherals and their code. Recon�guring
previously was a tedious, time-consuming chore that, using static
Federated Energy [20], required hardware modi�cations. Many of
these adjustments can now be performed easily in software.

The key challenge is in implementation — developing a Recon-
�gurable Federated Energy mechanism while keeping overhead
(in terms of energy, processing requirements, and cost) low. We
discussed the �aws in implementation in Section 2. To implement
Recon�gurable Federated Energy we depart philosophically from
the original in three ways: (1) we move from a polling to interrupt
based “peripheral ready” signal generated by custom hardware,
(2) we enable changing voltage thresholds (a direct proxy for en-
ergy stored in a capacitor) using digitally programmable resistor
dividers, (3) we use dedicated voltage regulation depending on the
peripheral. Flicker’s support for recon�gurable federated energy is
split between core and peripheral modules. Core modules include
the �rst stage storage capacitor and the hysteresis control that sup-
port the microcontroller, as well as power and control lines for the
Flicker peripheral interface.

Peripherals each have an individual storage capacitor, which
stores the harvested energy that will be used for that peripheral and

Flicker Ba�eryless Platform SenSys ’17, November 6–8, 2017, Del�, Netherlands

a programmable charge controller, which charges the capacitor
only when its input voltage reaches a particular threshold set by
the MCU (allowing assignment of priority, peripherals with higher
priority start charging at lower voltage thresholds). In contrast to
earlier federated energy systems that use static thresholds set in
hardware [20], Flicker thresholds can be changed by an application
over time as priorities and energy availability change, or baked in
at compile time depending on the hardware modules used. Flicker
also uses a programmable interrupt controller, that signals the
MCU with an interrupt whenever the charge level exceeds a set
threshold, which is also set in software at runtime. This approach
replaces the more energy expensive technique used in [20] that
polled the charge level on the ADC continuously.

3.3 Peripheral Ports
Flicker peripherals are designed to be �exible with little energy and
computational overhead. As such, the peripheral interface requires
common functionality to support energy harvesting, but does not
constrain how peripheral-speci�c functions interact with the core.
Instead, each peripheral port provides a wide range of connectivity
options to each peripheral (such as GPIO, SPI, I2C, and reference
voltages), with most peripherals only using a subset of the available
pins. Ideally, enough pins would be provided to support any periph-
eral on any port. In reality, pins and other hardware resources are
often limited. Some Flicker implementations may provide some lim-
ited hardware resources on a subset of its peripheral ports, and may
not support some complicated peripherals that require an excessive
number of control signals. Section 4 describes how we addressed
this challenge in our implementation and how, in practice, we are
able to support many common radios and sensors.

3.4 Failure-Tolerant Timing
Timekeeping is incredibly important for sensing, security, data
provenance, and data utility, especially in the face of intermittent
power with unde�ned (to the runtime) lengths of time between
power failures. Failure-tolerant timing also allows for continuous
user interface and response, and is a functional enabler for strength-
ening user privacy. Each core module (the compute core with the
MCU) is responsible for providing a timekeeping mechanism that
is robust even in the face of power failures. A variety of timing tech-
niques can be used with Flicker, including remanence-based SRAM
timing [28] which uses the decay characteristics of SRAM mem-
ory cells to determine the duration of power loss events. Timing
failures with custom circuitry using capacitors with stable thermal
properties [21] is more reliable and allows timing longer outages,
but with precision reduced the longer the outage.. Powering an
ultra-low power real-time clock (RTC) o� a small independent ca-
pacitor provides even more �ne grained timing information, but
at increased cost and space. The Flicker framework is compatible
with any of these approaches. Our current implementation provides
hardware support for all three to give broad application.

3.5 Auto-Detecting Con�gurations
Hardware changes often require software changes. In order to
make batteryless prototyping fast and easy, Flicker harvesters and
peripherals contain circuitry that allows the Flicker toolchain to

Configuration Info

Prototype
Assembly

Step 1: Choose
harvester(s) and
peripherals.

Step 2: Desktop program
discovers and validates
peripherals and harvesters.

Step 4: Peripherals
mapped to ports in code.
Libraries linked.

Discovery

Calibration

Hardware
Info

Firmware
Generation

Step 3: User sets interrupt
points, and task priority.

IV Surfaces

Testing

Deployment

Hardware
Generation

User Code

Step 5: Developer tests
code in the lab and in the
actual environment.

Step 6: Miniaturized,
application specific
hardware is automatically
generated from prototype.

ExistingNovel

Figure 5: Flicker Work�ow.

automatically detect which modules are attached to which ports. For
simplicity, Flicker uses resistor dividers to identify modules. Each
module is identi�ed by a single resistor value, which is measured by
a special calibration �rmware that also tests a variety of hardware
functions. The autodetection process is not particularly energy
e�cient, and is designed to be done during calibration and testing,
and not at runtime. We favor this approach over more sophisticated
techniques (like using serial ID chips), to minimize cost and board
size.

By autodetecting hardware con�gurations, many software up-
dates can be made automatically, or by updating a simple port
mapping.

3.6 Flicker Work�ow
Flicker’s modular design lends itself to the work�ow shown in
Figure 5. A developer initially selects a particular con�guration
she wants to try out from available peripherals and harvesters,
based on her application goals and intuition. She assembles her
Flicker sensor by attaching peripherals and energy harvesters. With
the core module attached to a programmer, the discovery process
detects which peripherals and harvesters are attached, produces a
�le that describes the con�guration, and detects any incompatible
connections (for example, a peripheral requiring I2C attached to a
port that doesn’t support I2C).

The con�guration �le contains a mapping between peripherals
and ports, as well as the default threshold voltages for each periph-
eral’s charge controller and interrupt controller. The developer can
update or change this con�guration �le to suit her needs and her

SenSys ’17, November 6–8, 2017, Del�, Netherlands Josiah Hester and Jacob Sorber

domain knowledge of the deployment environment and tasks that
will be executed. During calibration, thresholds are adjusted based
on application priorities, developer intuition, and prior testing. The
developer’s code is then combined with library code and threshold
initialization code, compiled, linked, and installed on the device for
testing and deployment.

Flicker’s harvester interface is compatible with existing debug-
ging tools like the Ekho [19] energy harvesting emulator and the
EDB [12] debugger, for in-lab testing with I–V surfaces that are
appropriate for the attached harvesters.

This process is meant to be iterative. Testing and deployment
often indicate needed changes in the voltage thresholds or even
the modules that are used. The developer makes adjustments to
their con�guration and application code as many times as it takes
to produce a con�guration that works well. With Flicker, these
design iterations, which have traditionally taken days or weeks
per iteration, can often be done in minutes. Consider that manu-
facturing custom printed circuit boards with the same capability
as Flicker can take two weeks (standard lead time for batch PCB
suppliers like OSH Park) or hundreds of dollars, and then many
hours more to assemble sensors by hand, debug hardware and test
solder connections, then design custom �rmware to manage en-
ergy and interface with peripherals. With Flicker, this process is
sped up because developers can reuse existing code, can attach the
peripherals they need, and will never have to solder.

When testing is complete, the developer may want to take the
�nal step and generate her own custom hardware version of her
con�guration. Flicker’s strength is �exibility and rapid prototyping,
but many of its signal traces, connectors, and discovery hardware
components increase device size and cost and are often not needed
in a �nalized device. In order to allow developers to further minia-
turize their designs and adapt them to other form factors, the Flicker
toolchain also generates a schematic and board layout for a con-
�guration (without unneeded components) that the developer can
modify as needed to �t her form-factor of choice.

4 IMPLEMENTATION
We implemented Flicker hardware (shown in Figure 6) and soft-
ware, in order to 1) evaluate the e�cacy of the Flicker approach
and 2) provide a set of reference designs to the research community.
We developed one core module board with connectors for three
peripherals modules and two harvester modules. We also devel-
oped tools to ease the prototyping and design process, as well as
created runtime libraries allowing for developer controlled adap-
tation for di�erent energy harvesting scenarios in deployment. In
this section, we describe the speci�cs of our Flicker hardware and
software implementation. All hardware, software, and tools, as well
as documentation and tutorials on using and extending Flicker will
be released at publication time.4 We plan to make fully assembled
boards available for purchase (at cost) at publication time using an
online, self-service manufacturer.

4All hardware, software, and tools, as well as documentation and tutorials on using
and extending Flicker are open-source and on our website.
https://github.com/PERSISTLab/FlickerPlatform

In the following sections, we detail implementation decisions
balancing the architecture design, usability, and generality require-
ments — we note speci�c tradeo�s in translating Flicker to a prac-
tical implementation.

4.1 Hardware
The hardware modules, shown in Figure 6 enable a wide range of
energy harvesting options, sensing activities and communication
channels in order to support a broad range of applications, enabling
�exibility, a key goal of Flicker. We plan to expand on this initial
set of modules, and anticipate additional hardware contributions
from the research community.

Compute Core: The compute core module is centered on a Texas
Instruments ultra low power FRAM-enabled MSP430FR5989 mi-
crocontroller with 128K of FRAM, 2K of SRAM, and multiple com-
munication and analog ports. This iteration of the core has three
peripheral slots, each peripheral slot has an SPI and analog con-
nection, while two have UART connections, and one has an I2C
connection. Due to limited MCU resources, not every peripheral slot
has I2C or UART. Any peripheral can be attached to any port, but
some peripherals will not function correctly on all ports. Our pro-
totype supports only a single I2C peripheral at a time — an artifact
that is handled by the calibration stage; if a peripheral is attached
to an incompatible port, the compilation process is stopped and the
developer informed. The compute core also has a voltage reference,
an Abracon AB0805 RTC supplied by a small 10 µF capacitor, and a
remanence timekeeper. The latter able to time power outages up to
19 minutes, providing the developer a sense of time. A low pro�le
Tag-Connect programming interface on the PCB allows �rmware
upload by the developer and calibration routines to be executed.

Universal Peripheral Interface: Each peripheral has a charge
and priority controller, an interrupt controller, a storage capacitor,
identi�cation circuitry, and a power gating switch. The controllers
are implemented with a dual digital potentiometer and network of
comparators which gate harvested energy, based against a stable
reference voltage supplied by the Compute Board. These poten-
tiometers set the voltage on the capacitor that triggers an interrupt
to the MCU, and the voltage on the �rst stage capacitor that triggers
charging of the peripheral capacitor. Additional circuitry gates the
power to the actual peripheral (radio or sensor), controlled by a pin
from the MCU, and handles the identi�cation voltage divider.

Each peripheral and harvester has an identi�cation voltage di-
vider (and therefore a set voltage out of the voltage divider) that
can be read in discovery mode. The mapping of voltages to indi-
vidual modules is given as input to the discover stage from a static
�le. Because of ADC voltage constraints, reference accuracy, and
voltage divider noise, the maximum number of peripherals possible
(without risk of mis-identi�cation) in the Flicker ecosystem is 128.

Finally, the peripheral interface breaks out control pins, analog
pins for direct sensing, and digital pins for communication with
peripheral components. This common interface enables a broad
array of sensing and communication peripherals as detailed below.

Environmental Sensing: Gathering information about a sensors
outdoor environment is a common need for many sensing deploy-
ments, including greenhouse sensing, geo-spatial deployments, and

https://github.com/PERSISTLab/FlickerPlatform

Flicker Ba�eryless Platform SenSys ’17, November 6–8, 2017, Del�, Netherlands

CommunicationHarvesting Motion Sense Enviro SenseComputation

Kinetic

RFID

Solar

433MHz Radio
Transciever

Bluetooth LE

Magnetometer

Gyro

Accelerometer

Leaf Wetness

Humidity & Temp

Barometer

Peripherals

User Interface

Touch Slider

LCD Screen

Figure 6: Flicker hardware modules, including a single compute core board, three harvesters, and ten peripherals for sensing,
communication, and interacting with users. Peripherals and harvesters attach to the core module, and use federated energy
storage with charge and interrupt thresholds to support a wide variety of user tasks.

others. Our current Flicker prototype has three peripherals for
sensing information about the environment. A low power NXP
MPL115A digital Barometer is used for pressure sensing, it commu-
nicates over SPI to the MCU. The barometer operates up to 5.5V.
The dynamic federated energy circuitry can take advantage of this
voltage range, independent of the MCU. A Silicon Labs Si7021 Hu-
midity and Temperature sensor provides relative humidity readings
over an I2C interface. Finally an analog peripheral is connected to
a Decagon Leaf Wetness sensor for gathering coarse information
about the moisture and water needs of plants in a greenhouse. This
peripheral can be used with any analog sensor by soldering power
and signal lines to the headers.

Motion Sensing: Motion sensing has broad application for mobile
sensor networks, wearables, infrastructure monitoring, and even
manufacturing. We developed three peripherals for motion sens-
ing using components commonly seen in the sensor networks and
batteryless sensing communities. The Analog Devices ADXL362 is
used for acceleration measurement, connected via the SPI bus. This
IC only draws a few nano-amps when sensing at low speeds, mean-
ing that the size of the Accelerometers peripheral capacitor can be
set to less than 1 µF for quick charging and increased availability.
The Gyro peripheral is equipped with an STElectronics L3GD20H
which enables gathering of angular velocity, which can be used in
multiple applications in wearables that monitor the motion of the
wrist (example: bite counting). The magnetometer peripheral uses
the Honeywell HMC5883L, enabling a 3-axis compass functionality
over a I2C interface.

Communication: Communication is a necessary part of nearly
every sensing device, therefore it is essential for Flicker to support
a broad range of communication modalities. We built a low fre-
quency (433MHz) radio transceiver peripheral using the CC1101,
a common radio in the WSN community. The Texas Instruments
CC1101 uses a small chip antenna, and communicates via SPI to the
microcontroller. Bluetooth Low Energy is a popular communication
interface between phones, wearables, and sensors. We built a BLE

peripheral that supports peripheral and central modes, using the the
Nordic nRF51822 System-on-Chip and a small chip antenna. The
nRF51822 SoC is programmable, and the BLE peripheral includes a
low pro�le programming port for changing BLE behaviors. Both
active radios voltage is regulated to minimize odd RF behaviors
from an unstable supply. In addition to the active communication
peripherals described, we have also implemented a passive com-
munication scheme, using RFID backscatter based on the UMich
Moo[35], allowing ultra low power two way communication with
an RFID reader.

User Interface: We implemented user facing peripherals to allow
testing and experimentation in the design �ction of intermittent
computing. These peripherals make it simpler to implement wear-
able or embedded devices that interact with a user. We developed
two peripherals, a 1.28 x 1.28 inch low power SHARP display, which
draws 5 µW to hold a static image, and a capacitive touch sensor
with eight buttons in a slider con�guration. These two peripherals
will enable a rich set of interactions and allow experimentation
inside the new design space of intermittent displays, interaction,
and computing.

Energy Harvesting: Our current Flicker Compute Core provides
two slots for energy harvesting modules for multi source harvest-
ing. Only one of the slot allows for energy sources that also are
used as a communication medium, like RFID backscatter described
in the previous section. Currently Flicker supports three energy
harvesting modalities.

The solar harvester module is equipped with a 22mm by 7mm
Ixys solar cell that supplies up to 4.5V. Charging is accomplished
through a Schottky diode on the positive solar output to prevent
reverse leakage from the �rst stage capacitor. The kinetic harvester
uses a Linear Technology LTC3588 to harvest energy from piezo-
electric materials. The IC is used as a low quiescent current recti�er
and settable buck boost regulator. The regulated voltage output of
the LTC3588 can be set by the developer before deployment using
pin headers, as this voltage will depend on the piezoelectric used.

SenSys ’17, November 6–8, 2017, Del�, Netherlands Josiah Hester and Jacob Sorber

The RFID harvester is based on the UMich Moo[35]. The module
harvests energy from an ultra high frequency RFID reader such as
the Impinj Speedway. It uses a charge pump built with o� the shelf
components, and allows for tuning pre-deployment using a variable
capacitor accessible to the developer. Additionally, the harvester is
equipped with circuitry that enables backscatter communication
with the reader, which can be initiated by the MCU.

Customization: Flicker uses a standardized hardware template
and universal peripheral interface that allows developers to add
or adapt their own hardware components to Flicker easily, using
CAD software. With the availability of incredibly cheap batch PCB
services, designing and building these custom peripherals is acces-
sible to students, hobbyists, and professionals. In addition, users
can make use of a Flicker peripheral breakout board (not shown)
which allows a developer to breadboard a new peripheral before
committing to a PCB design.

Mechanical Design: The mechanical design of the hardware fac-
tors into both the �exibility (in terms of deployment ability) and
usability (in terms of ruggedness and comfort) of a platform. We
chose to tradeo� size of the platform for ruggedness, by using larger
pin connectors for modules instead of smaller but much more frail,
board-to-board connectors. We also put cutouts on the compute
board (increasing the size) that allow a watchband to be connected
to the platform, enabling a quick wearable.

Cost and Size: The �nal cost and size of a fully assembled proto-
type varies with the peripherals chosen. An assembled prototype
will have a maximum size of 61mm by 36mm if equipped to harvest
RFID and solar energy, sense acceleration and pitch, and send sen-
sor data with the CC1101 as shown in Figure 1. For the described
prototype, we estimate the cost of components and printed circuit
boards to be near $200 a piece in a small batch of ten. At scale, we
anticipate the cost of prototyping with Flicker to be signi�cantly
reduced. This cost in term of time and �nance even at small batches
is an order of magnitude lower than designing and assembling
custom hardware when an application changes, or components are
found to be defective.

4.2 Software
Flicker includes supporting software and �rmware for managing
each stage of the prototyping pipeline. These tools are meant to
streamline developer e�ort and save time from design, to runtime,
to deployment. These tools support the Flicker work�ow described
in Figure 5. We describe the implementation details of each piece
below.

Discovery and Calibration: A combination of python scripts on
the desktop and custom �rmware on the Compute Core MSP430
handle the discovery and calibration phases (Step 2 and 3 in Figure 5)
of the �rmware upload process. When the developer creates their
Flicker hardware and initiates the �rmware creation process, a
special discovery firmware is uploaded to the MSP430 on the
Compute Core. The discovery firmware uses the ADC to read
the voltage of a resistive divider on each peripheral and harvester
slot to identify the modules mounted on the Computer Core. The
voltage of each connected module (harvester and peripheral) is then
stored in a predetermined memory location on the MSP430. The

MSP430 then goes into a wait mode. On the desktop side, once the
wait mode starts, the python script interfaces with the MSP Debug
Stack and programmer to download the stored peripheral voltages
read by the discovery firmware. These voltages are looked up in
a preset table, which maps the voltage to the name of the periph-
eral. The python program outputs con�guration information to the
developer, and alerts on any incompatibility of peripherals.

After error checking by the toolchain, the con�guration �le
and further prompts from the developer is used to set the voltage
thresholds for the interrupts and charging. In this phase discovery
firmware on the MSP430 writes the non-volatile registers on the
digital potentiometers with the values de�ned in the con�guration
�le (converted from voltage to digital). At this point, the Flicker
hardware is con�gured for the attached peripherals.

Runtime Libraries: We developed runtime libraries for use with
peripheral modules, many were adapted from open source code
libraries (such as the Accelerometer). These libraries encompass
minimum functionality of the components, allowing basic sensing
and communication tasks. For the BLE peripheral we have imple-
mented a simple forwarding mechanism over the SPI bus, allowing
the MCU to treat the BLE as a radio modem. Currently backscatter
is supported in hardware, however runtime libraries have not been
ported from the UMich Moo MSP430 code base to the new FRAM
MSP430 processor used by Flicker.

In addition to peripheral and harvester runtime libraries, we also
have developed control and adaptation libraries for the timekeeper,
peripheral energy and priority management function. Program-
mers can set voltage thresholds for both the interrupt level and
the charging threshold using a simple API. They can also write
these to non-volatile memory for long term application changes.
We envision further runtime library development by ourselves and
the community as more applications, peripherals, and harvesting
modalities are created for the Flicker ecosystem.

Design Automation: Developers who have prototyped, tested,
and even deployed their batteryless sensors using Flicker and need
a more permanent, smaller, or easily scalable deployable solution,
use the design automation tool to combine peripherals, harvesters,
and the MCU to generate the �nal device. This is implemented
with a combination of python and EAGLE CAD scripts that put all
peripherals together in a single schematic at the peripheral interface
points. We developed a python script that interfaces with EAGLE
CAD (a very popular and free PCB design tool), takes the peripherals
and harvesters listed by the developer, and the con�guration �le
the developer generated for the calibration phase that de�nes the
voltage thresholds, and creates a single schematic, with proper
resistance settings baked in.

5 EVALUATION
In this section we evaluate the overhead and performance of Flicker,
and qualitatively evaluate how Flicker simpli�es the process of
prototyping batteryless, intermittent, energy harvesting sensing
devices. Speci�cally, we quantify the usefulness of dynamically ad-
justed federated energy, evaluate the overhead of Flicker in terms
of energy and user time, illustrate how Flicker simpli�es proto-
typing with a real world use case, and �nally discuss the usability

Flicker Ba�eryless Platform SenSys ’17, November 6–8, 2017, Del�, Netherlands

Table 1: Flicker overhead

Parameter Value

Timekeeper Charge Energy 39 µJ
Timekeeper Startup Time 1.1 s

Volatile Threshold Write Time 197.7 µs
Volatile Threshold Write Energy 69.3 nJ

Peripheral Voltage Range 1.7 to 5.5V
Peripheral Current Range 0.0 to 40mA

Compute Board Quiescent Current 5.77 µA
Peripheral Quiescent Current 4.47 µA

perspectives of prototyping with Flicker. In our experiments and
experience, we have found that using Flicker dramatically shortens
the time to deploying a usable prototype, and enables use cases not
possible with current hardware. All with low overhead.

5.1 Overhead
Because of Flicker’s reliance on harvesting energy to power all oper-
ations, energy e�ciency must be high. Table 1 shows the overhead
of speci�c parts of Flicker. This table shows that Flicker trades o�
some energy-e�ciency for �exibility. For example, the steady state
quiescent current costs of the peripheral stems from the charge man-
agement and interrupt circuitry of dynamic UFoP. In a static UFoP
implementation most of this cost would dissapear. However, the
overhead is manageable with the current set of energy harvesters.
One source of overhead comes from managing the timekeeper,
speci�cally the �rst time charging the small reservoir capacitor
that maintains timekeeper state when the Compute Board is o�.
Longer o�-timekeeping requires larger capacitors, and therefore
more charge time and energy. We chose a 10 µF ceramic as a rea-
sonable tradeo� between charge time, and energy cost. Another
source of overhead comes from setting the voltage thresholds for
charging, interrupts of peripherals. Writing the volatile thresholds
must be done every time the MCU returns from a power failure,
or if runtime adaptation happens in deployment. The quiescent
current in steady-state of the processor, and control components
like the timekeeper, and peripheral controllers, is also quite low as
shown in the table.

5.2 Performance
In this section we evaluate and discuss di�erent performance met-
rics pertaining to Flicker.

RFHarvester: The performance of the RF Harvester is comparable
to the UMich Moo harvesting performance that it is based on. We
connected the Flicker RF harvester to an Ekho device, and recorded
the energy harvesting conditions for twenty seconds when placed
within one centimeter of a small antenna, connected to an Imp-
inj Speedway Revolution RFID reader outputting at high transmit
power. We then captured the maximum power point (MPP), the
maximum voltage, and the maximum current, of the energy har-
vesting environment. The Flicker RF Harvester’s MPP was recorded
at 1.4mW, with a maximum voltage of 6.3V, and maximum current
of 1.0mA

Table 2: System Usability Survey (SUS) scores vs. Flicker

Interface Type SUS Score

Cell Phone 66.55
Customer Premise Equipment 71.60
Graphical User Interface 75.24
Interactive Voice Response Systems 73.84
Web Pages and Applications 68.05

Flicker Platform 84.9

This power level is comparable to the Moo and WISP platforms,
enabling a broad range of RFID powered applications. One major
di�erence between the current harvester and the Moo, is that our
harvester only has a two layer PCB instead of four, hurting overall
RF performance. In additions, antenna tuning and careful design
could increase harvesting ability. We expect future revisions to
continue to improve performance, however, as is, the RF harvester
is comparable to the Moo and useful for RFID powered applications.

Timekeeping: Timekeeping using the ultra low power RTC is one
of the critical parts of Flicker. Without an accurate clock, sensor data
could be forwarded that is not relevant, and tasks may be executed
that are super�uous. We chose a 10 µF ceramic capacitor as the
reservoir capacitor, as this size takes 19 minutes and 40 seconds to
discharge enough that the RTC fails, it’s memory resets, and time
is lost. If the capacitor discharges and the RTC resets, on the next
power up, the RTC takes 1.1 seconds to wakeup and recharge. If the
energy harvesting environment has very little available energy and
cannot support the energy requirements of the clock, then Flicker
could potentially not get past the initialization stage. However, this
is easily overcome in software; once the Compute Board turns on,
programs can sleep until the RTC sends the ready signal on it’s I/O
line, at which point the program can resume operation.

5.3 User Study
We evaluated the usability of Flicker on 19 participant drawn from a
junior-level, university Computer Operating Systems course5. We
had the 19 students each participate in a half hour session
building multiple devices with Flicker. In all, students built
76 devices and spent 9.5 hours working with the platform.
The participants rated the platform as having excellent usability
according to results from the industry standard System Usability
Survey [6] participants completed. The results of this survey are
shown in Table 2.

5.3.1 Methodology: Participants were recruited from an un-
dergraduate, junior-level university Computer Operating Systems
course consisting of Computer Science and Computer Engineering
students. Each participant was asked to �ll out an entry survey
where students self rated their competency in computer engineer-
ing, computer science, and embedded systems, then described their
previous experience with platforms like Arduino[1].

They were then given two pieces of documentation 1) a four page
instructions handout on the Internet-of-Things and the promise
of batteryless operation, including a brief overview of the moti-
vation, applications, and di�culties in deploying and prototyping
5This study was approved by our Institutional Review Board.

SenSys ’17, November 6–8, 2017, Del�, Netherlands Josiah Hester and Jacob Sorber

these devices, 2) a three page platform handout describing and
displaying the Flicker platform, including the individual modules
and their usage, as well as basic instructions on how to construct
a device. Participants were then given Flicker hardware including
the computation board, the Kinetic, RFID, and Solar harvesters,
BLE and CC1101 radio, the motion sensors, and the leaf wetness
sensor. Participants then built each of four devices (two greenhouse
monitoring devices, a �tness wearable, and a earth science enabling
micro satellite) described in the instruction handout by assembling
devices using the Flicker modules and Flicker main compute board,
described their justi�ed their selection decisions to the study su-
pervisor.

Finally the participants took an exit survey capturing their ex-
perience. The exit survey contained the System Usability Survey
(SUS)[6], a Likert scale ten question survey administered to users
for measuring the perceived ease of use (usability and learnability)
of software, hardware, phones, wearables, and websites SUS is a
well tested, standard method in industry and academia for evalu-
ating systems, which provides a quantitative way to demonstrate
the usability of Flicker. The exit survey also asked questions about
prior knowledge, future interest with the platform, and enjoyment
or distaste of the experience.

5.3.2 Sample: Our 19 participants were either juniors (60%) or
seniors, with 2 to 5 years of formal computing education, and 2 to
10 years of total programming experience. Participants self-rated
programming abilities, and knowledge of systems and computer
hardware as average or above average when compared to other stu-
dents at their university. Participants nearly uniformly rated their
knowledge of embedded platforms as slightly below average com-
pared to other students and developers in industry. We note that our
sample size of 19 was well above the stable size of �ve participants,
and represents a core community (mid level computer engineering
and computer science students) we would like to engage with the
Flicker platform.

5.3.3 Results: Tabulating and scoring the Flicker prototyping
SUS surveys for each participant gave the mean SUS score of 84.9,
with the median score at 87.5. SUS literature [4] states that a score
of 70 is considered average, with higher scores meaning higher
usability. Each participant scored Flicker above average, with most
in the “excellent” usability category. Flicker SUS scores are shown
in relation to other interface types in Table 2. This table shows the
interface types along with their average SUS scores, the average is
derived from years of surveys, and a category had to have at least
�fty surveys to be put in the table [4]. The SUS results show that the
Flicker hardware platform has usability demonstrably well above
average for prototyping batteryless Internet-of-Things devices.

In addition to the the SUS, participants were asked in the entry
survey to discuss if they would use the Flicker platform in the
future and in what contexts. Nearly 95% of participants agreed or
strongly agreed that Flicker could be used to to create devices for
many di�erent applications. Nearly 90% or participants agreed or
strongly agreed they would use Flicker on a new IoT project if it
was available. The same percentage was interested in learning more
about the platform and the context in the future. Every participant
agreed or strongly agreed that Flicker devices could be deployed
in a real environment for short-term use. A majority (58%) said the

same about long-term use in real environments. A plurality (32%)
agreed that Flicker devices could be deployed in a safety-critical
application.

5.3.4 Caveats and Discussion: Our user study investigated the
usability and acceptability of the core part of the Flicker platform—
rapidly prototyping batteryless IoT devices by hand—with one of
the major expected user groups (students) of these devices. How-
ever, the study did not look at the usability of di�erent parts of the
Flicker work�ow and toolchain, including con�guring the hard-
ware peripherals, and writing software that runs on the device, nor
at quantitative measures such as application development time and
coding overhead, nor did this study compare to other prototyping
platforms. We anticipate future work will attempt to �ll this gap, we
note that as this platform is the �rst of its kind, it is di�cult to fairly
compare to systems like Arduino or mBed. While this study is by no
means comprehensive, it demonstrates that the hardware devices
themselves are usable, and enable a broad range of applications.

5.4 Case Study
In this section we illustrate the new use cases and applications that
Flicker allows for batteryless intermittently powered devices. Often,
a single source of energy is not enough to power the tasks that a
developer wants to run for a given application. No current platform
supports multiple harvesters, so developers must make invasive
hardware changes to the platform to integrate a new harvesting
modality[18]. Flicker supports up to two harvesters at once, allow-
ing developers to iterate their tasks and programs through di�erent
application scenarios.

Application:We used Flicker to prototype an application for green-
house monitoring at the plant bed level, for the purpose of water
conservation. The dual harvesting sensor reads the leaf wetness
and barometric pressure opportunistically. The sensor harvests
solar, and RFID energy. The small solar panel does not generate
enough energy for expensive leaf wetness readings, but does gener-
ate enough energy for intermittent barometeric pressure readings,
if thresholds are set correctly. Because of the low energy require-
ment, the barometric peripheral charge threshold is set to the lowest
setting, and the interrupt threshold set just above it. The only time
enough energy is available to gather wetness readings is when the
RFID reader is used to power the sensor, therefore, the leaf wetness
interrupt threshold is set to the highest setting so that enough en-
ergy is available to complete the task when the Compute Board is
interrupted. In this greenhouse monitoring application, the RFID
reader sits on the overhead mechanical watering arm that moves
across the plant beds a few times a day. This means the only time
leaf wetness readings are needed, is when an RFID reader is present
to gather those readings. For our application, we simulated the
overhead mechanical watering arm movement in the lab using an
RFID Reader. The voltage trace of the application running is shown
in Figure 7.

This type of application would be very di�cult to design, build,
test, and deploy with conventional sensing platforms. Setting di�er-
ent trip points pre-deployment for the two peripherals is impossible
with the state of the art, as is using multiple harvesters. By allowing

Flicker Ba�eryless Platform SenSys ’17, November 6–8, 2017, Del�, Netherlands

RFID
R

F
ID RFIDSolar

0

1

2

3

4

0 10 20 30
Time (s)

Vo
lta

ge
 (

V
)

Multi Source Harvesting

Figure 7: Greenhousemonitoring prototyping case study, ca-
pacitor voltage trace shown.

quick prototyping with common peripherals, and adaptation to
multiple energy environments, a usable sensor can be deployed.

6 RELATEDWORK
Flicker is the �rst recon�gurable hardware platform designed from
the ground up for tiny, batteryless, energy harvesting, intermit-
tently powered sensors. While many platforms have allowed some
measure of recon�gurability, none support the constraints imposed
by an intermittent power supply requiring careful and direct man-
agement of multiple small energy stores and timekeeping. In the
sensing community there have been a wide range of platforms,
recon�gurable or not, that Flicker builds on. We describe platforms,
energy management techniques, and related work from the inter-
mittent computing �eld and place Flicker in the literature.

Recon�gurable Platforms: In both the commercial and research
communities, there are many recon�gurable platforms for sensing,
and support of the Internet-of-Things. Epic[15] was one of the �rst
sensing platforms that enabled a degree of freedom in assembling
application speci�c sensor node. Epic required hardware expertise,
and CAD tools to generate the �nal node, however, the core com-
putation, wireless, storage, and programming interface were all
standard. TandemStack[32] and other platforms[23] provide either
a common interconnect, modular plug and play hardware, or FPGA
based modules for faster prototyping and development of applica-
tion speci�c sensing devices Recent platform advances have focused
on recon�guring part of the analog sensing component[30] instead
of the full device, or focus on ultra low power interconnects for
millimeter scale sensing[26]. Commercial platforms like Arduino
support the concept of daughter boards, allowing for easy prototyp-
ing for the purpose of learning. Other platforms such as the Bosch
IoT XDK[5], and EnOcean[16] claim to support Internet-of-Things
applications, sometimes without batteries.

Each of these platforms falls short of providing a comprehen-
sive, intentionally designed platform for batteryless, intermittently
powered sensor prototyping in key ways. First, none of the plat-
forms allow using di�erent energy harvester, or multiple energy
harvesters at the same time. This is critical because of the broad
range of applications. Secondly, no platform enables recon�gura-
tion of energy management, charging, and interrupt priority per
peripheral. Without this, platform performance su�ers from lower
energy harvesting e�ciency, decreased availability, higher failure
rates[20]. Finally, each of these platforms ignores the critical need

for timekeeping through power failures. Each of these shortcomings
is addressed by Flicker.

Batteryless Platforms: Flicker is inspired by the United Federa-
tion of Peripherals (UFoP)[20]. Flicker generalizes the approach in
UFoP by allowing changes to charge points and interrupt points, en-
abling retasking, and dynamic priority, as well as recon�gurability
of the hardware platform.

Batteryless platforms have been built that harvest energy from
an RFID reader[31, 35], indoor solar[25], thermoelectric energy[9],
air�ow[34], and power outlets[14]. These single application, single
harvester platforms are not extensible or recon�gurable, do not
consider timekeeping as a �rst class priority, and do not separate
energy concerns to reduce failures. Energy-Harvesting Active Net-
worked Tags (EnHANTs)[25] can be attached to objects that are
traditionally not networked, such as books. The prototypes harvest
indoor light energy using custom organic solar cells. Campbell
et al.[8] proposed an architecture for energy harvesting in build-
ings based on event detection, but only allowed for a single energy
harvester (indoor solar) and did not develop a prototyping platform.

Unlike previous approaches and platforms mentioned, Flicker
provides an all in one plug and play solution to batteryless prototyp-
ing that includes energy management, timekeeping, and hardware
design, in a modular, quickly recon�gurable, extensible platform.
Flicker can be applied to a huge range of future and present appli-
cations, energy harvesting modalities, and sensing tasks.

Energy Harvesting: Previous work has characterized kinetic en-
ergy harvesting[17], developed techniques for harvesting RFID and
Solar energy[18], and even harvesting solar, thermal, and vibration
energy[3]. Flicker can harvest from multiple sources, but does so in
a naive manner, giving priority to the harvester with most voltage
potential. We view these related works as complementary to Flicker,
and hope to integrate these novel multi source energy harvesting
approaches into future versions of the platform.

Intermittent Computing: Other related work comes from e�orts
to simplify the programming, testing, and evaluation of battery-
less, intermittently powered devices . Recently, tools for debugging
(EDB)[12] batteryless programs, and emulating energy harvesting
environments have been created (Ekho)[19]. These simplify devel-
opment and allow rigorous in-lab testing. Other work has tried to
simplify the programming and task management for intermittent
computing[7, 24, 29]. We view this work as complementary to our
own, in fact, each of these techniques could be immediately used
with Flicker.

7 DISCUSSION AND FUTUREWORK
Flicker enables many use cases and new applications that were pre-
viously impossible without deep hardware knowledge, and large
investments of time and money. Flicker While powerful and com-
plete, there are many areas we envision where Flicker could be
improved and augmented. In this section we discuss current limita-
tions and tradeo�s of Flicker, and describe some potential avenues
for future research.

Balancing Modularity: Flicker currently o�ers a core of twelve
modules that can serve many applications. Additionally, Flicker

SenSys ’17, November 6–8, 2017, Del�, Netherlands Josiah Hester and Jacob Sorber

makes it easy to add new peripherals, or modify existing peripher-
als. This modularity can be detrimental. Flicker is a step towards
building a community around batteryless sensors; part of a com-
munity is being able to easily share, reuse, and re adapt code and
hardware. If many di�erent generations or versions of hardware are
allowed to propagate, or closed source hardware is mixed in, this
will only hurt the community. We hope to address this by introduc-
ing standard APIs, and solidifying around a few standard modules
(like the twelve currently in existence), as well as providing an
on-line resource for code examples, best practices, and ordering
hardware.

Tuning Thresholds: Just as in previous work on Federating En-
ergy storage for tiny batteryless sensors (FedEnergy)[20], �guring
out the best voltage thresholds is di�cult and imprecise. Energy en-
vironments change, and application requirements vary; for Flicker
this can become more complex, as designers now have a choice of
harvesters and peripherals. This ability to choose and set voltage
thresholds for charging and peripheral wake up interrupts with-
out a hardware revision gives maximum �exibility to the user, but
choosing the best set of thresholds still requires careful considera-
tion.

The added �exibility comes at a energy and space cost. Peripher-
als on Flicker are larger in size than peripherals using FedEnergy,
because of the lower component costs of using static, hardware de-
�ned thresholds. This also means that static, FedEnergy will always
be lower energy overhead than Flicker. However, the �exibility
o�ered by Flicker is worth it, especially for developers not capable
of redesigning hardware. Additionally, Flicker software tools can
generate a static FedEnergy version from the Flicker version, for
long term deployments and sensor building at scale.

Runtime Adaptation: Dynamic Federated Energy allows chang-
ing task charging and interrupt thresholds at runtime, enabling
adaptation of tasks to the energy environment in-situ. However, as
discussed, tuning is hard when not much is known about future
energy harvesting conditions or even task schedules. If a simple
metric could be developed for deciding when to adapt, and adap-
tation cost could be lowered by advances in low power memory,
runtime adaptation could become incredibly useful.

Toolchain Integration: Flicker can be used with the two main
tools for working with intermittently powered devices, Ekho, and
the Energy Interference Free Debugger (EDB), without any hard-
ware changes. Ekho emulates energy harvesting conditions, so an
Ekho device can be plugged directly into one of the harvesting ports
of the Compute Board, just as with any other device. Two Ekho
devices are required to emulate multi source harvesting. With EDB,
there are some constraints. Since EDB needs access to a few I/O
pins, as well as the capacitor voltage for full functionality (break-
points, watchpoints, and energy guards), an entire peripheral slot
must be dedicated to using EDB. In the future, we hope to create a
dedicated port for using EDB so that all three peripheral ports can
be used when debugging.

Hardware improvements: Now that the baseline hardware, soft-
ware, and �rmware are implemented in the Flicker ecosystem, other
harvesting modalities, sensors, and application can be imagined.
In the short-term, we plan to support eInk displays that can hold

their image even when the device has lost power. We are currently
implementing NFC and thermal energy harvesters to support more
environments and applications. In order to support long-term de-
ployments with Flicker hardware, we plan to support mass storage
peripherals using microSD cards or large FRAM memory ICs.

Community Building: Flicker is an open source, open hardware
initiative that seeks to empower sensing experts and non experts
alike to build comprehensive batteryless sensing applications for the
vision of the Internet-of-Things. Important to our e�ort is develop-
ing materials that help our community, and generate We anticipate
immediate future work centered around designing documentation,
writing tutorials and new libraries, formalizing the batteryless sens-
ing toolchain, and engaging in community building and outreach.

8 CONCLUSIONS
Batteryless, energy harvesting, intermittently powered sensors are
an emerging class of device that de�nes and enables the vision of the
Internet-of-Things. Despite the importance of these devices, current
sensing platforms are application speci�c, lack recent advances in
energy management and timekeeping, and are limited in �exibility
and usability.

In this paper we have presented Flicker6, an open-source, open-
hardware prototyping platform intentionally built for batteryless,
energy harvesting, intermittently powered sensing. With Flicker,
developers and system designers can quickly prototype devices
for new applications in many �elds, with many energy harvest-
ing modalities. Flicker is comprised of a recon�gurable hardware
platform that lets designers replace sensor, harvester, and com-
munication peripherals at will, without hardware experience or
design abilities. Flicker hardware manages harvested energy in a
novel, and dynamic way, allowing for easy adjustment of charging
thresholds and interrupt routines depending on application, energy
harvester, peripheral, or any other developer constraint. Flicker
also includes software tools to streamline the prototyping process,
all the way through to deployment.

Flicker is extensible by platform and software developers who
want to add new sensors, new runtime techniques, or even new
operating systems. We implemented Flicker in a small form factor
for multi source harvesting from RFID, Solar, and Kinetic energy
sources. Our Flicker implementation supports a broad range of
environmental and motion sensors, and communicates through
Bluetooth LE, low frequency radios, or RFID backscatter. We evalu-
ated the usability of Flicker in a user study with 19 participants, and
found it had above average or excellent usability according to the
well known System Usability Survey (SUS). We believe Flicker will
support the emerging batteryless sensing community and bring
about exciting new applications, and research directions.

ACKNOWLEDGMENTS
The authors would like to thank: Diana Zhang and Tamara Or-
tega for initial work on Flicker; Kevin Storer for helpful input on
designing the user study; our shepherd, Kay Römer and the anony-
mous reviewers, for helpful comments. This research is based upon
work supported by the National Science Foundation under grant
6Find the Flicker platform release at
https://github.com/PERSISTLab/FlickerPlatform

https://github.com/PERSISTLab/FlickerPlatform

Flicker Ba�eryless Platform SenSys ’17, November 6–8, 2017, Del�, Netherlands

CNS-1453607. Any opinions, �ndings, and conclusions or recom-
mendations expressed in this material are those of the authors
and do not necessarily re�ect the views of the National Science
Foundation

REFERENCES
[1] Arduino. 2016. Arduino: Open-source electronic prototyping platform.

https://www.arduino.cc/. (October 2016).
[2] Domenico Balsamo, Alex S Weddell, Geo� V Merrett, Bashir M Al-Hashimi,

Davide Brunelli, and Luca Benini. 2015. Hibernus: Sustaining computation
during intermittent supply for energy-harvesting systems. IEEE Embedded
Systems Letters 7, 1 (2015), 15–18.

[3] Saurav Bandyopadhyay and Anantha P Chandrakasan. 2012. Platform architec-
ture for solar, thermal, and vibration energy combining with MPPT and single
inductor. IEEE Journal of Solid-State Circuits 47, 9 (2012), 2199–2215.

[4] Aaron Bangor, Philip T. Kortum, and James T. Miller. 2008. An Empirical Evalua-
tion of the System Usability Scale. International Journal of HumanâĂŞComputer
Interaction 24, 6 (2008), 574–594. DOI:https://doi.org/10.1080/10447310802205776
arXiv:http://dx.doi.org/10.1080/10447310802205776

[5] Bosch. 2016. XDK Cross Domain Development Kit. http://xdk.bosch-
connectivity.com/. (October 2016).

[6] John Brooke and others. 1996. SUS-A quick and dirty usability scale. Usability
evaluation in industry 189, 194 (1996), 4–7.

[7] M. Buettner, B. Greenstein, and D. Wetherall. 2011. Dewdrop: An Energy-Aware
Runtime for Computational RFID. In Proc. 8th USENIX Conf. Networked Systems
Design and Implementation (NSDI’11). ACM, Boston, MA, USA, 197–210.

[8] Bradford Campbell and Prabal Dutta. 2014. An energy-harvesting sensor archi-
tecture and toolkit for building monitoring and event detection. In Proceedings
of the 1st ACM Conference on Embedded Systems for Energy-E�cient Buildings.
ACM, 100–109.

[9] Bradford Campbell, Branden Ghena, and Prabal Dutta. 2014. Energy-harvesting
Thermoelectric Sensing for Unobtrusive Water and Appliance Metering. In Pro-
ceedings of the 2Nd International Workshop on Energy Neutral Sensing Systems
(ENSsys ’14). ACM, New York, NY, USA, 7–12. DOI:https://doi.org/10.1145/
2675683.2675692

[10] Gregory Chen, Hassan Ghaed, Razi M. Haque, Michael Wieckowski, Yejoong
Kim, Gyouho Kim, David Fick, Daeyeon Kim, Mingoo Seok, Kensall Wise, David
Blaauw, and Dennis Sylvester. 2011. A Cubic-Millimeter Energy-Autonomous
Wireless Intraocular Pressure Monitor. IEEE International Solid-State Circuits
Conference (2011).

[11] Alexei Colin and Brandon Lucia. 2016. Chain: Tasks and Channels for Reliable
Intermittent Programs. In Proceedings of the 2016 ACM SIGPLAN International
Conference on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA 2016). ACM, New York, NY, USA, 514–530. DOI:https://doi.org/10.1145/
2983990.2983995

[12] Alexei Colin, Alanson P. Sample, and Brandon Lucia. 2015. Energy-interference-
free System and Toolchain Support for Energy-harvesting Devices. In Proceedings
of the 2015 International Conference on Compilers, Architecture and Synthesis
for Embedded Systems (CASES ’15). IEEE Press, Piscataway, NJ, USA, 35–36.
http://dl.acm.org/citation.cfm?id=2830689.2830695

[13] Samuel DeBruin, Bradford Campbell, and Prabal Dutta. 2013. Monjolo: An
Energy-harvesting Energy Meter Architecture. In Proceedings of the 11th ACM
Conference on Embedded Networked Sensor Systems (SenSys ’13). ACM, New York,
NY, USA, Article 18, 14 pages. DOI:https://doi.org/10.1145/2517351.2517363

[14] Samuel DeBruin, Branden Ghena, Ye-Sheng Kuo, and Prabal Dutta. 2015.
Powerblade: A low-pro�le, true-power, plug-through energy meter. In Proceed-
ings of the 13th ACM Conference on Embedded Networked Sensor Systems. ACM,
17–29.

[15] Prabal Dutta, Jay Taneja, Jaein Jeong, Xiaofan Jiang, and David Culler. 2008. A
building block approach to sensornet systems. In Proceedings of the 6th ACM
conference on Embedded network sensor systems. ACM, 267–280.

[16] EnOcean. 2016. EnOcean: Self Powered IoT. https://www.enocean.com/en/.
(October 2016).

[17] Maria Gorlatova, John Sarik, Guy Grebla, Mina Cong, Ioannis Kymissis, and Gil
Zussman. 2014. Movers and shakers: Kinetic energy harvesting for the internet
of things. In ACM SIGMETRICS Performance Evaluation Review, Vol. 42. ACM,
407–419.

[18] Jeremy Gummeson, Shane S Clark, Kevin Fu, and Deepak Ganesan. 2010. On
the limits of e�ective hybrid micro-energy harvesting on mobile CRFID sensors.

In Proceedings of the 8th international conference on Mobile systems, applications,
and services. ACM, 195–208.

[19] Josiah Hester, Timothy Scott, and Jacob Sorber. 2014. Ekho: Realistic and Repeat-
able Experimentation for Tiny Energy-Harvesting Sensors. In Proc. 12th ACM
Conf. Embedded Network Sensor Systems (SenSys’14). ACM, Memphis, TN, USA,
1–15.

[20] Josiah Hester, Lanny Sitanayah, and Jacob Sorber. 2015. Tragedy of the Coulombs:
Federating Energy Storage for Tiny, Intermittently-Powered Sensors. In Proceed-
ings of the 13th ACM Conference on Embedded Networked Sensor Systems (Sen-
Sys ’15). ACM, New York, NY, USA, 5–16. DOI:https://doi.org/10.1145/2809695.
2809707

[21] Josiah Hester, Nicole Tobias, Amir Rahmati, Lanny Sitanayah, Daniel Holcomb,
Kevin Fu, Wayne P Burleson, and Jacob Sorber. 2016. Persistent Clocks for
Batteryless Sensing Devices. ACM Transactions on Embedded Computing Systems
(TECS) 15, 4 (2016).

[22] Texas Instruments. MSP430FRxx FRAM Microcontrollers. http:
//www.ti.com/lsds/ti/microcontrollers_16-bit_32-bit/msp/ultra-low_power/
msp430frxx_fram/overview.page. (????). Accessed: 2015-10-13.

[23] A. E. Kouche, H. S. Hassanein, and K. Obaia. 2014. WSN platform Plug-and-
Play (PnP) customization. In Intelligent Sensors, Sensor Networks and Information
Processing (ISSNIP), 2014 IEEE Ninth International Conference on. 1–6. DOI:https:
//doi.org/10.1109/ISSNIP.2014.6827642

[24] Brandon Lucia and Benjamin Ransford. 2015. A Simpler, Safer Programming
and Execution Model for Intermittent Systems. In Proceedings of the 36th ACM
SIGPLAN Conference on Programming Language Design and Implementation (PLDI
’15). ACM, New York, NY, USA, 575–585. DOI:https://doi.org/10.1145/2737924.
2737978

[25] Robert Margolies, Maria Gorlatova, John Sarik, Gerald Stanje, Jianxun Zhu, Paul
Miller, Marcin Szczodrak, Baradwaj Vigraham, Luca Carloni, Peter Kinget, and
others. 2015. Energy-Harvesting Active Networked Tags (EnHANTs): Prototyp-
ing and Experimentation. ACM Transactions on Sensor Networks (TOSN) 11, 4
(2015), 62.

[26] Pat Pannuto, Yoonmyung Lee, Ye-Sheng Kuo, ZhiYoong Foo, Benjamin Kempke,
Gyouho Kim, Ronald G. Dreslinski, David Blaauw, and Prabal Dutta. 2015.
MBus: An Ultra-low Power Interconnect Bus for Next Generation Nanopower
Systems. In Proceedings of the 42Nd Annual International Symposium on Com-
puter Architecture (ISCA ’15). ACM, New York, NY, USA, 629–641. DOI:https:
//doi.org/10.1145/2749469.2750376

[27] Joseph Polastre, Robert Szewczyk, Alan Mainwaring, David Culler, and John
Anderson. 2004. Analysis of wireless sensor networks for habitat monitoring. In
Wireless sensor networks. Springer, 399–423.

[28] Amir Rahmati, Mastooreh Salajegheh, Dan Holcomb, Jacob Sorber, Wayne P
Burleson, and Kevin Fu. 2012. TARDIS: Time and remanence decay in SRAM to
implement secure protocols on embedded devices without clocks. In Proceedings
of the 21st USENIX conference on Security symposium. USENIX Association, 36–36.

[29] Ben Ransford, Jacob Sorber, and Kevin Fu. 2011. Mementos: System Support for
Long-Running Computation on RFID-Scale Devices. In Proc. 16th Int’l Conf. Archi-
tectural Support for Programming Languages and Operating Systems (ASPLOS’11).
ACM, Newport Beach, CA, USA, 159–170.

[30] Brandon Rumberg, David W Graham, Spencer Clites, Brandon M Kelly, Mir Mo-
hammad Navidi, Alex Dilello, and Vinod Kulathumani. 2015. RAMP: accelerating
wireless sensor hardware design with a recon�gurable analog/mixed-signal plat-
form. In Proceedings of the 14th International Conference on Information Processing
in Sensor Networks. ACM, 47–58.

[31] Alanson P Sample, Daniel J Yeager, Pauline S Powledge, Alexander V Mamishev,
and Joshua R Smith. 2008. Design of an RFID-based battery-free programmable
sensing platform. IEEE Transactions on Instrumentation and Measurement 57, 11
(2008), 2608–2615.

[32] Oliver Stecklina, Dieter Genschow, and Christian Goltz. 2012. TandemStack-A
Flexible and Customizable Sensor Node Platform for Low Power Applications..
In SENSORNETS. 65–72.

[33] Ivan Stoianov, Lama Nachman, Sam Madden, and Timur Tokmouline. 2007.
PIPENET: A wireless sensor network for pipeline monitoring. In 2007 6th Interna-
tional Symposium on Information Processing in Sensor Networks. IEEE, 264–273.

[34] Tianyu Xiang, Zicheng Chi, Feng Li, Jun Luo, Lihua Tang, Liya Zhao, and Yaowen
Yang. 2013. Powering indoor sensing with air�ows: a trinity of energy harvesting,
synchronous duty-cycling, and sensing. In Proceedings of the 11th ACMConference
on Embedded Networked Sensor Systems. ACM, 16.

[35] Hong Zhang, Jeremy Gummeson, Benjamin Ransford, and Kevin Fu. 2011. Moo:
A batteryless computational RFID and sensing platform. Department of Computer
Science, University of Massachusetts Amherst., Tech. Rep (2011).

https://doi.org/10.1080/10447310802205776
http://arxiv.org/abs/http://dx.doi.org/10.1080/10447310802205776
https://doi.org/10.1145/2675683.2675692
https://doi.org/10.1145/2675683.2675692
https://doi.org/10.1145/2983990.2983995
https://doi.org/10.1145/2983990.2983995
http://dl.acm.org/citation.cfm?id=2830689.2830695
https://doi.org/10.1145/2517351.2517363
https://doi.org/10.1145/2809695.2809707
https://doi.org/10.1145/2809695.2809707
http://www.ti.com/lsds/ti/microcontrollers_16-bit_32-bit/msp/ultra-low_power/msp430frxx_fram/overview.page
http://www.ti.com/lsds/ti/microcontrollers_16-bit_32-bit/msp/ultra-low_power/msp430frxx_fram/overview.page
http://www.ti.com/lsds/ti/microcontrollers_16-bit_32-bit/msp/ultra-low_power/msp430frxx_fram/overview.page
https://doi.org/10.1109/ISSNIP.2014.6827642
https://doi.org/10.1109/ISSNIP.2014.6827642
https://doi.org/10.1145/2737924.2737978
https://doi.org/10.1145/2737924.2737978
https://doi.org/10.1145/2749469.2750376
https://doi.org/10.1145/2749469.2750376

	Abstract
	1 Introduction
	2 Building for Batteryless
	2.1 Limitations of Static Federated Energy

	3 Flicker
	3.1 Flicker Modules
	3.2 Reconfigurable Federated Energy
	3.3 Peripheral Ports
	3.4 Failure-Tolerant Timing
	3.5 Auto-Detecting Configurations
	3.6 Flicker Workflow

	4 Implementation
	4.1 Hardware
	4.2 Software

	5 Evaluation
	5.1 Overhead
	5.2 Performance
	5.3 User Study
	5.4 Case Study

	6 Related Work
	7 Discussion and Future Work
	8 Conclusions
	Acknowledgments
	References

