
OpenClock: A Testbed for Clock Synchronization
Research

Fatima M. Anwar, Amr Alanwar, and Mani B. Srivastava
University of California, Los Angeles, CA, USA

{fatimanwar, amr.alanwar, mbs}@ucla.edu

Abstract—Clock synchronization protocols have always been
tested and compared in controlled environments. The hardware
variability of different platforms, and network variability in
communication channels is often ignored. Most of the protocols
are not compared for faults, failures or adversarial attacks
because it is hard to reproduce them on different devices. The
presence of few clocks on a single device limits the use of
one device to test multiple synchronization protocols at once.
For fair comparison of multiple synchronization protocols, it
is essential that their disciplinable clocks are all derived from
the same clock hardware, and they process the same network
traffic. We propose OpenClock, a clock synchronization testbed
that manages synchronization resources and provides multiple
disciplinable clocks on a single platform. OpenClock features
a rich set of clocks for modular and extensible design, and
an attack simulator for testing algorithmic resilience. Users
can leverage the attack capability to find vulnerabilities in the
synchronization algorithms, and test the resilience of secure
algorithms. We prototype OpenClock on an embedded platform
and x86 desktop. We evaluate variants of PTP and NTP protocols
on the embedded platform under various clock parameters,
disciplining mechanisms, and attack scenarios.

I. INTRODUCTION

Hardware capabilities required for clock synchronization
have developed significantly in the past decade; hardware
timestamping feature is introduced for many processors, co-
processors [1], and network interface cards [2], and new
timing abstractions have been added in operating systems for
precise timing [3]. Systems have extensively made use of
time based technology developments to push for higher timing
accuracy. These systems however lack a comprehensive testing
environment to test and compare synchronization algorithms.

Multiple algorithms can be tested fairly if they experience
the same clock model. Clock models are quite complex; they
are affected by short and long term variations in clock jitter,
wander, and skew due to physical characteristics of oscillators
and environmental variations due to temperature and aging. It
is known in clock literature that no two clocks are the same,
Cho et al. [4] has even used unique clock characteristics for
fingerprinting electronic control units in cars.

Industrial and automotive applications heavily rely on clock
synchronization. These applications operate under uncertain
environments and prone to hardware faults, network failures,
or man in the middle attacks. To develop a clock synchroniza-
tion algorithm that is robust to faults, failures, and attacks,
comprehensive testing is necessary before practical deploy-
ments in safety critical applications. Unfortunately, many

Clock Management Engine

timeline 1 timeline X

PHC SYS PPHL
Clock Management Engine

Core NIC Timestamp 
packets

3

Select clocks
2

Timestamp 
packets

3

4

Fix timelines5

SyncService 1 SyncService X

Synch 
requirements

1

6Deliver time App Clocks

Network

SyncService
Synch 
setup

Time 
Synchronization

Time 
Retrieval

App

Platform Clocks

Synchronization Clocks

Network

App

Attack 
Simulator

Send 
timestamps

Fig. 1: Testbed architecture

algorithms are not tested for faults and attacks as it is hard to
reproduce them on distributed devices.

For fair algorithmic comparison, and the ability to test
algorithms under faults and attacks, we assert that it is essential
to provide a clock synchronization testbed on a single host,
as a single platform is subject to same hardware and network
conditions. The big challenge however in testing clock syn-
chronization algorithms on a single platform is the absence
of multiple similar clocks. We propose OpenClock, a testbed
that supports multiple virtual clocks derived from the same
physical clock, alleviating the bias in results from the physical
and network characteristics. OpenClock consists of multiple
components as shown in Figure 1. A clock management engine
initializes and manages three layers of clocks: platform clocks
that define the hardware timing capabilities, synchronization
clocks that assist time synchronization protocols, and applica-
tion clocks that provide the notion of time to applications.

As shown in Figure 1, OpenClock supports multiple clock
synchronization protocols in three key steps. First, the dashed
blue line represents the initial setup that bootstraps the required
clocks for synchronization. Second, the dotted red line shows
the interactions among clocks, synchronization services, and
the network to perform clock synchronization and discipline
the virtual clocks. Finally, the solid green line retrieves time
from disciplined virtual clocks and transfer it to applications.
These three steps are necessary in testing a clock synchroniza-
tion algorithm.

OpenClock also has the capability of testing and comparing
algorithms under attacks. It consists of a network attack simu-
lator that can be used to inject different kinds of attacks. Users
leverage the attack simulator to test when their algorithms
fail. Users can also design new algorithms and test their



algorithms’ resilience to attacks. The attack simulator imitates
an adversary sitting on a network element that can arbitrarily
delay victims packets in the network. To present different ways
in which OpenClock can be used, we test three use cases
in this paper. However, OpenClock is not limited to these
use cases. First, we present an attack on NTP packets, then
compare performance of a simple NTP versus a relatively
secure NTP in the presence of attacks. We also show two
use cases that compare synchronization performance of two
protocols running different clock disciplining mechanisms in
different intervals.

In this work, we lay the foundations of a clock synchro-
nization testbed. Its usage can be extended in terms of syn-
chronization algorithms and their parameters, and the kinds of
hardware and network attacks. In the rest of the paper, we first
go over the categorization of clocks in OpenClock in Section
II. Then we explain the complete OpenClock architecture in
Section III followed by an evaluation in Section IV.

II. HIERARCHY OF CLOCKS

Clocks are used for timekeeping, timestamping, and
scheduling. A clock is represented by a timing stack. This
stack consists of an oscillator that oscillates at a particular
frequency. The frequency of oscillation corresponds to the
clock resolution. A counter counts the oscillations, and a
software converts those counts to a human readable time in
seconds. The ability of a clock to measure small time intervals
is limited by its resolution, and a clock can be no more
accurate to some reference time than its resolution.

A clock could either be a software abstraction in the
operating system or a logical mapping in the application. Our
proposed clock synchronization testbed OpenClock consists
of a hierarchy of clocks. The clocks at the bottom of the
hierarchy are (A) platform clocks; they represent the timing
characteristics of a particular hardware. The middle layer
in the clock hierarchy is comprised of (B) synchronization
clocks; they are derived from the platform clocks and assist
time synchronization protocols. The clocks at the top of
the hierarchy are (C) application clocks; they are derived
from synchronization clocks, and exposed to applications for
timekeeping, and timestamping.

A. Platform Clocks
Platform clocks define the timing capabilities of a given

platform. There are three types of platform clocks; a 1) system
clock, a 2) precise hardware clock, and a 3) peripheral clock.
Every device has at least one of these clocks. Below, we
explain the types of platform clocks in reference to the Linux
operating system.

1. System Clock provides a local sense of time to the
operating system and user processes. System time is the
number of time units passed since an epoch e.g, POSIX-
compliant systems such as Linux count seconds since 1st
January 1970. It’s timing stack is shown in Figure 2 (middle
vertical path). The system clock is typically implemented as
a programmable timer that periodically interrupts the CPU.

Linux Timing Stack

oscillators

hardware counters

cyclecounter clocksource

timekeepingtimecounter

ptp_clock posix_clock

/dev/ptpX CLOCK_REALTIME

Kernel Layer

registers
Hardware

User Layer

System Clock

pin capabilities

(PHC) Peripheral 
Clock

discipline memory mapped IO 
UIO

Kernel Layer

gettime()settime()adjtime()getres()

Fig. 2: The timing stack of three different Platform Clocks in
Linux OS

Linux uses timers as the basis for higher-level clock abstrac-
tions: the clocksource encapsulates a non-wrapping hard-
ware counter. The clocksource contains a member-function
for reading the hardware counter, and mult and shift
parameters that convert the counter value into nanoseconds
for timekeeping. CLOCK_REALTIME is the Linux system
clock that is exposed to userspace via the standardized POSIX
clock interface. This interface allows the system clock to be
disciplined using synchronization algorithms such as NTP [5]
and PTP [6]. We refer to the system clock as SYS from now
onward.

2. Precise Hardware Clock (PHC) is capable of times-
tamping events and scheduling tasks in hardware [7]. Unlike
system clock, a PHC provides hardware pins for precise
timestamping and accurate interrupt generation. In Figure 2
(left vertical path), an oscillator source is used to drive a
hardware counter, from which an overflow-safe logical PTP
clock ptp_clock is derived using the cyclecounter
and timecounter abstractions. This clock is exposed to
userspace as a PTP character device. It extends a POSIX clock
interface and implements hardware pin functionalities. A PTP
clock is also called a PHC. A userspace daemon can synchro-
nize this clock to other PHCs in the network. PHC provides
high synchronization accuracy and low synchronization jitter
because it timestamps network packets in hardware. We refer
to a PHC clock as PHC from now onward.

3. Peripheral Clock is a bare-metal peripheral clock on
a platform such as a co-processor clock. The applications
running on an operating system can access this clock via
the Userspace I/O (UIO) Linux kernel subsystem as shown
in Figure 2 (right vertical path). UIO maps regions of the
peripheral clock memory and registers directly into userspace,
with a small amount of kernel-space code to handle interrupts.
This allows most of the driver logic to run in userspace
instead of kernel-space, reducing the need for debugging
kernel modules. UIO is used because it has low latency and
is supported by both old and new Linux kernels. Thus a
peripheral’s clock is accessed at the userspace via UIO. We
refer to this clock as PPHL from now onward.

2



B. Synchronization Clocks

For the working of a time synchronization protocol, two
clocks are needed. A local clock that is used for timekeeping,
and a network interface clock that timestamps the incoming
and outgoing packets at the interface. For some platforms and
synchronization protocols, a single clock is used both for time-
keeping and packets timestamping (NTP [5]). While in others,
different clocks are used for timekeeping and timestamping
(PTP [6], FTSP [8]). OpenClock presents two synchronization
clocks that are derived from platform clocks.

1. Core Clock is the first synchronization clock. It does
timekeeping by providing a core sense of time to the entire
platform. For a clock to qualify as a core clock, it must provide
(i) the ability to read a strictly monotonic counter that cannot
be altered. Optionally, a core clock could have (ii) the ability
to generate interrupts at precise time, and (iii) provide the
hardware resolution and uncertainty associated with reading
the clock. Core clocks may also provide interfaces to expose
platform-specific functionality such as, timestamping and gen-
erating external events.

2. Network Interface Card Clock (NICC) is the second
synchronization clock. It timestamps the network packets in a
synchronization protocol. Only those network interfaces that
can accurately timestamp packet transmission and reception –
at the physical or MAC layers – are exposed as NICC. This
enables clock synchronization protocols to precisely estimate
the offset between two clocks, and the propagation delay
associated with a medium. Like core clocks, NICC provide the
ability to read time, and optionally provide I/O functionality
for precisely timestamping an event, or generating a very
deterministic pulse in the future. However, a NICC is not
necessarily monotonic and it can be disciplined. In addition,
NICC do not provide the ability to generate interrupts, and
cannot be used to accurately schedule user-level application
threads.

While every node must contain a core clock, the presence of
a NICC is optional. However, we believe that both categories
of clocks are required for precise clock synchronization.
Depending upon the hardware capabilities of a platform, and
synchronization requirements of an application, a core clock
can be derived from any platform clock, whereas, NICC can
only be derived from a PHC or a PPHL.

C. Application Clocks

Multiple clocks are needed to compare different synchro-
nization protocols on a single platform. We leverage a timing
abstraction called a timeline that derives its time using a
projection from core clock. Hence we have the capability to
maintain multiple core clock projections in the form of mul-
tiple timelines. The timeline abstraction was first proposed by
Anwar et al. [3] where they used it to synchronize distributed
clocks with desired accuracy. Note that in OpenClock, the
synchronization protocols discipline application clocks i.e. the
timelines. The synchronization clocks are not disciplined, they
are only used to assist the synchronization protocol.

Clock Management Engine

timeline 1 timeline X

PHC SYS PPHL
Clock Management Engine

Core NIC Timestamp 
packets

3

Select clocks
2

Timestamp 
packets

3

4

Fix timelines5

SyncService 1 SyncService X

Synch 
requirements

1

6Deliver time App Clocks

Network

SyncService
Synch 
setup

Time 
Synchronization

Time 
Retrieval

App

Platform Clocks

Synchronization Clocks

Network

App

Attack 
Simulator

Send 
timestamps

Fig. 3: Clock synchronization steps in OpenClock architecture

Timeline maintains a virtual time base with respect to an
epoch. The timeline abstraction enables the OS to provide
as many disciplinable clocks as needed by the applications.
Timelines enforce isolation among different synchronization
algorithms and their respective clock adjustment routines, by
providing a unique disciplinable virtual clock to each syn-
chronization protocol. An application creates a timeline with
a unique uuid and specifies its synchronization requirements
and protocols. These protocols synchronize their respective
timelines under the given requirements. Hence the timeline
abstraction provides a natural isolation among multiple proto-
cols running on the same platform.

III. OPENCLOCK ARCHITECTURE

We present OpenClock, a clock synchronization testbed that
is used to compare different synchronization algorithms on a
single platform. Figure 3 shows the OpenClock architecture. It
consists of a clock management engine that interacts with syn-
chronization services to manage and discipline timelines. The
detailed procedure is: (1) an application registers its synchro-
nization requirements with the clock management engine. (2)
This engine assigns a platform clock to core clock and NICC
according to the requirements. (3) If a different platform clock
is assigned to core and NICC, they both should synchronize
to each other and present the same time. NICC timestamps
network packets to synchronize to a reference time, and (4)
send those timestamps to all the synchronization services. (5)
These services utilize the timestamps in their algorithms to
calculate clock disciplining parameters, and fix their respective
timelines. Note that each synchronization service disciplines
its corresponding timeline. (6) The applications can then
retrieve synchronized time from their timelines, and compare
the performance of different synchronization algorithms. We
now cover the key components of OpenClock in detail.

A. Clock Management Engine

The clock management engine initializes and manages the
hierarchy of clocks (explained in Section III). This engine
assess the hardware timing capabilities of a platform and
expose them as platform clocks. SYS is present on every

3



Precise Timestamping is the key!

17

phc2phc
(highest accuracy)

phc2sys
(medium accuracy)

sys2sys
(low accuracy)

Start of Frame 
Delimiter interrupt pin

GPIO capabilities Software timestamping

Y

Y

Y

N

NN

N

Hardware 
timestamping

Fig. 7: Decision tree for choosing a time synchronization
service based on hardware capabilities
to provide the reference time to the timeline’s subgroup. The
synchronization rate is determined by the highest accuracy
requirement in the network. Hence, the node which has the
highest requirement in its timing subgroup can become a
master and push packets with a rate corresponding to its
accuracy requirement.

Synchronization Service: The synchronization service op-
erates in userspace and comprises of Core-NIC Synchroniza-
tion and Timeline Synchronization daemons, as shown in Fig-
ure 6. The Timeline Synchronization daemon is implemented
by patching the Linux PTP Project [21]. It calculates clock
discipline parameters, and disciplines the /dev/timelineX
character devices through the .settime and .adjtime
POSIX clock APIs. The mappings are stored in the kernel
so that the timeline reference can be easily returned using the
.gettime POSIX clock API. A detailed description of PTP
can be found in Appendix C.

We also create a synchronization service phc2phc that aligns
two Precise Hardware Clocks (PHC): clocks which support
hardware timestamping and GPIO with external hardware
timestamping, and deterministic hardware interrupt capabili-
ties. Our implementation performs Core-NIC synchronization
using phc2phc. If one of the clock is not a PHC, we use the
phc2sys [21] service to synchronize clocks. The decision tree
in Figure 7 shows how timestamping and GPIO capabilities
of a clock influence our choice of synchronization service.
Certain network interfaces do not support hardware times-
tamping, but provide a hardware interrupt upon the Start of
Frame Delimiter (SFD) of a synchronization packet. In this
case, if the core clock is a PHC, it can timestamp the SFD
interrupt in hardware and run phc2phc across multiple nodes
for high accuracy. However, certain network interfaces neither
expose a PHC, nor support SFD. In this case, the core clocks
resort to software time stamping and perform sys2sys. Table I
lists some example network interfaces with different hardware
capabilities and the corresponding synchronization service.

TABLE I: Network Interface Capabilities

NIC Capabilities Service
TI CPSW PHC, GPIO interrupt phc2phc
AT86RF233 PHC, SFD interrupt phc2phc
DW1000 PHC, SFD interrupt phc2phc
IEEE 802.11 None sys2sys

System Uncertainty Estimation Service: This service tries
to get a probabilistic estimate of the OS clock read uncertainty

by reading the core clock in a tight loop from userspace,
via a privileged interface (/dev/qotadm). By taking the
difference of consecutive timestamps, the service calculates
the uncertainty distribution.

D. Linux QoT Core Kernel Module
The Linux QoT Core, shown as the central component in

Figure 6, is implemented as a loadable kernel module. It
consists of the following sub-modules.

Scheduler Interface: Each active timeline maintains a red-
black tree of waiting threads, ordered by their wake-up times
in the timeline reference. When an application thread issues
a timed wait request, the thread is suspended and en-queued
on a red-black tree corresponding to the timeline to which it
is bound. Waking up applications from their suspended state
relies on the interrupt functionality of the core clock. When
the callback triggers, the interrupt handler checks each active
timeline for tasks that need to be woken up, and moves such
tasks from the wait queue to the ready queue. Subsequently,
the task is scheduled as per its priority, and the policy being
used by the scheduler. This introduces scheduling uncertainty,
as other threads may also be present on the ready queue.
Before the task is actually scheduled, the core returns a
timestamp of the scheduling instant along with an uncertainty
estimate. This enables an application to take a decision, based
on the received QoT. The scheduling policy agnostic design,
enables the stack to be portable to a range of different Linux
kernels, and prevents it from being tied down to a specific
kernel version. It also gives the opportunity for OS developers
to use scheduling policies best suited for the target platform.
Future implementations of the stack will include techniques to
probabilistically compensate for the scheduling uncertainty.

Decisions on waking up a task, or programming the next
interrupt callback, rely on the projections between core time
and the timeline references. The scheduling interface com-
pensates for any synchronization changes to these projections.
When a synchronization event occurs, the interface checks the
head of the timeline queue, to decide whether the change in
the projection, necessitates a task to be scheduled earlier than
previously estimated.

User Interface: The core exposes a set of thread-
safe ioctl interfaces in the form of a character device,
/dev/qotusr, to userspace. It gives user applications the
ability to create/destroy a timeline, read timestamps with un-
certainty estimates, as well as issue timed waits on a timeline
reference. The user interface also provides applications the
ability to access the external timestamping and event triggering
functionality of the core clock (if supported by hardware).

Admin Interface: This is a special character device
/dev/qotadm, which enables a privileged daemon to control
specific parameters of the QoT stack. It provides an ioctl
interface, which allows a privileged user to get information on
clocks, switch between different core clocks, as well as get/set
the OS uncertainty associated with reading timestamps.

Sysfs Introspection: The core provides a sysfs interface
for a user to view and change the state of the system using

DW1000

AT86RF233

LPC1768

Ethernet

Fig. 4: Hardware capabilities of clocks influence synchroniza-
tion performance (adapted from [3])

platform and operating system. However, this clock does not
have the hardware capabilities to measure precise intervals
or schedule tasks at precise time instants. PHC have these
hardware capabilities but it’s been tied to ethernet interfaces
on certain platforms. In our previous work [2], we show if a
network interface support certain hardware features, we can
expose it as a PHC by writing drivers for it. We propose that
besides network interfaces, a processor clock or a co-processor
clock can also be converted to a PHC, given that they have
necessary hardware functionalities. In this work, we expose a
processor (AM335X) as a PHC because it is capable of times-
tamping and scheduling hardware events. We use the processor
timer and wrote a kernel module to transform it into a PHC.
The clock management engine also initializes any PPHL on
a platform. For example, on the beaglebone black platform,
there is a Programmable Realtime Unit (PRU) that has good
timing capabilities. Our previous work cyclops [1] exposes
PRU as a timing device and synchronizes it to the processor
clock. We utilize the PRU clock as PPHL in OpenClock, and
we believe similar peripherals on other platforms can provide
a PPHL platform clock. Hence a SYS, PHC, and PPHL are
initialized and managed by the clock management engine.

After initializing the platform clocks, the clock management
engine assigns the platform clocks to synchronization clocks
based on the synchronization requirements. It also dynamically
switches core clocks and NICC to different platform clocks.
For example, if a user wants to run NTP, the engine selects
core clock as SYS and leave the NICC empty. If the user wants
to run PTP, core clock is selected as SYS and NICC as PHC.
To run the QoT Stack [3] with highest accuracy, both core
clock and NICC are chosen as PHC.
We know that the hardware capabilities influence the accuracy
of a synchronization protocol. In Figure 4, the flow chart and
the accompanying hardware platforms provide a guideline;
given certain capabilities, how would you traverse down
the flowchart to determine which accuracy the protocol will
achieve. For example, given an Intel edison platform, the
clock management engine cannot select either the core or
the NICC as a PHC because edison is incapable of hardware
timestamping. On the other hand, for a DW1000 platform
interfaced with Beaglebone Black, the engine selects both the
core and NICC to be a PHC [3]. For LPC1768, only core clock
is a PHC, while NICC is empty.

(a) phc2phc

-0.04 -0.02 0 0.02

Accuracy (microsec)

0

100

200

300

400

P
ro

b
a

b
ili

ty
 D

e
n

si
ty

(b) sys2phc

-5 0 5

Accuracy (microsec)

0

100

200

300

(c) sys2sys

-50 0 50

Accuracy (microsec)

0

200

400

600

Fig. 5: Comparison of time accuracies for different synchro-
nization clocks

To test the affect of platform clock on the synchronization
accuracy, we run an experiment to synchronize the core clock
with the NICC on one device. We use three different combi-
nations of SYS and PHC. In the first experiment, both the core
and NICC are PHC, and the synchronization accuracy achieved
is in the order of nanoseconds as shown in Figure 5a. In the
second experiment, we choose core as SYS and NICC as PHC,
and the accuracy reduced to microseconds in Figure 5b. In the
last experiment, we choose both the core and NICC as SYS.
The accuracy reduced even further to 10s of microseconds in
Figure 5c.

In OpenClock, besides using the traditional protocols, users
can write their own synchronization protocols and choose
any platform clock to act as core or NICC. The user also
has the advantage of testing established time synchronization
algorithms such as NTP and PTP with different clock settings.
In OpenClock, a user specifies its own clock of choice, if
however a user doesn’t specify the synchronization clocks,
the engine choose SYS to be the default core clock as it is
available on every platform. The engine also maintains default
clock settings for known synchronization protocols but they
can be overridden if desired.

After assigning desired platform clocks to synchronization
clocks, the engine creates timelines as application clocks. Re-
calling from Figure 3, a timeline is a projection of core clock’s
time. The engine maintains the projection parameters for all
timelines, and provides an interface to all synchronization
services to change the projection parameters of their respective
timelines.

B. Synchronization Service

As shown in Figure 3, multiple synchronization services
work with the clock management engine in OpenClock. A syn-
chronization service utilizes the engine’s interface to discipline
its timeline. OpenClock also provides multiple parameters that
tune the performance of a synchronization algorithm. The two
tunable parameters are, the 1) synchronization interval, and
the 2) clock discipline mechanism. These tunable parameters
can be changed during initialization or at runtime. The perfor-
mance is enhanced by reducing the first tunable parameter i.e.
the synchronization interval. To tune the other parameter, one
has to choose between two different mechanisms to discipline
a clock. A feedback mechanism timestamps packets and

4



calculates synchronization parameters from the disciplined
clock. On the other hand, a feedforward mechanism is
based on a clock that is never disciplined. The calculated
synchronization parameters reflect the local clock’s relative
drift with respect to global time.
Using OpenClock, users can write their own synchronization
algorithms and specify their own tunable parameters.

C. Network Attacks Simulator
OpenClock supports comparison of multiple algorithms

under fair conditions. It also provides an opportunity to
compare algorithmic resilience to attacks on network packets.
With the system and network attacks on the rise, there is
a need to design algorithms that are both resilient to faults
and attacks. OpenClock lets the user test its algorithms
under various kinds of attacks by providing a network
attack simulator. This simulator injects delays in packets
transmission and reception as shown in Figure 3. These
attacks compromise the accuracy of time by delaying the
packets to be timestamped. The attacks can be injected in
both forward and reverse paths in the network. The attacked
packets are fed to the synchronization algorithms that need to
be compared.

To use the OpenClock testbed, a user provides a configuration
file to the system. This file specifies the name of timelines,
types of clocks, protocols for timelines along with their
tunable parameters, and an attack indicator. One example
configuration file is shown below,
timeline1{

Core: SYS
NICC: PHC
SYNC:{

protocol: PTP
servo: feedforward
interval: 1

}
attack: true

}

timeline2{
...
}
...

Here, the user has defined two timelines. On one timeline,
she configures core clock as SYS and NICC as PHC running
PTP algorithm that synchronizes to a master every second
using a feedforward clock disciplining mechanism.

IV. EVALUATION

The purpose of providing a testbed for clock synchro-
nization protocols is to compare multiple algorithms under
same hardware and network conditions. OpenClock leverages
timeline to provide multiple disciplinable clocks on a single
platform and run multiple protocols. Below, we provide three
use cases that show case different ways in which OpenClock
could be used. Nonetheless, the usage of this testbed is not
limited to these test cases.
Use Case 1: Effect of network attacks on synchronization
error: When a network packet moves from client to server,
the adversary in a network router can delay the packet. We

0 2000 4000 6000 8000 10000

Common events

500

600

700

800

900

S
yn

ch
ro

n
iz

a
tio

n
 E

rr
o

r 
(m

ill
is

e
c)

(a) Timeline 1: NTP without sanity check

0 2000 4000 6000 8000 10000

Common events

-15

-10

-5

0

5

10

S
yn

ch
ro

n
iz

a
tio

n
 E

rr
o

r 
(m

ill
is

e
c)

(b) Timeline 2: NTP with sanity check

Fig. 6: Comparison of synchronization accuracies for unmod-
ified NTP running in Timeline 1, and modified NTP running
on Timeline 2 under network attacks. (a) Timeline 1 fluctuates
and accumulates large error over time, while (b) Timeline 2
accumulates less error

refer to it as the forward path attack. The adversary can
also delay the packet in the opposite direction i.e. when the
packet moves from server to client in the network. We term
it as reverse path attack. Multiple protocols are subjected to
these attacks. In NTP, if an attacker is able to attack sufficient
number of packets, it can manipulate the Marzullo’s algorithm
[9] to converge to a time desired by the attacker. We simulate
both forward and reverse path attacks in OpenClock. We use
these attacks to understand how NTP algorithms can be fooled.
We run unmodified NTP on one timeline, and assume that
the attacker is compromising more than half the packets from
the NTP servers. By adding 2 second forward path delay to
4 out of 6 packets coming from 6 different NTP servers in
the network, we slowly shift the timeline’s notion of time
away from the global time. We then modify NTP algorithm by
adding a sanity check. This check sorts the timestamps from
multiple servers based on their offsets, then carefully discards
first half or the last half of NTP timestamps. We run the un-
modified NTP on timeline1 and modified NTP on timeline2 at
the same time processing the same attacked network packets.
Our results in Figure 6 show that the attacks led to an increase
in unmodified NTP’s synchronization error, while the modified
NTP experience less degradation in synchronization accuracy.
So far in this work, we simulate network attacks and test for
resilience against those attacks. We can also test for hardware
attacks (temperature variations etc.) by simulating their effect
in the testbed.
Use Case 2: Effect of clock discipline mechanism on
synchronization error: To understand which clock discipline
mechanism enhances system performance, we run PTP on two
timelines. Timeline 1 employs feedback discipline using PTP
PI servo while Timeline 2 runs feedforward discipline using
linear regression. Both timelines choose SYS for core clock
and PHC for NICC. The results for both the timelines is shown
in Figure 7. We explain the results with the next use case.
Use Case 3: Effect of synchronization parameters on error:
There exists multiple tunable parameters in a synchronization
protocol that can affect the performance. For example, to study
the affect of synchronization period on the error, we run PTP
with a feedback PI servo on two timelines. Both timelines use
SYS for core clock and PHC for NICC. The only difference

5



0 2000 4000 6000 8000 10000

Common events

-3000

-2500

-2000

-1500

-1000

-500

0

500
S

yn
ch

ro
n
iz

a
tio

n
 E

rr
o
r 

(n
a
n
o
se

c)

(a) Timeline 1 Feedback synchronization error: (from left to right) synchronization period is 1sec, 4sec, 8sec, 16sec respectively

0 2000 4000 6000 8000 10000

Common events

0

2000

4000

6000

8000

10000

12000

14000

S
yn

ch
ro

n
iz

a
tio

n
 E

rr
o
r 

(n
a
n
o
se

c)

(b) Timeline 2 Feedforward synchronization error: (from left to right) synchronization period is 1sec, 4sec, 8sec, 16sec respectively

0 2000 4000 6000

Common events

-12000

-10000

-8000

-6000

-4000

-2000

0

S
yn

ch
ro

n
iz

a
tio

n
 E

rr
o
r 

(n
a
n
o
se

c)

0 2000 4000 6000

Common events

-12000

-10000

-8000

-6000

-4000

-2000

0
S

yn
ch

ro
n
iz

a
tio

n
 E

rr
o
r 

(n
a
n
o
se

c)

0 1000 2000 3000 4000

Common events

-20000

-18000

-16000

-14000

-12000

-10000

 -8000

 -6000

 -4000

S
yn

ch
ro

n
iz

a
tio

n
 E

rr
o
r 

(n
a
n
o
se

c)

0 1000 2000 3000 4000

Common events

-21000

-20000

-19000

-18000

-17000

-16000

-15000

-14000

-13000

S
yn

ch
ro

n
iz

a
tio

n
 E

rr
o
r 

(n
a
n
o
se

c)

0 1000 2000 3000 4000

Common events

-40000

-35000

-30000

-25000

-20000

-15000

S
yn

ch
ro

n
iz

a
tio

n
 E

rr
o
r 

(n
a
n
o
se

c)

0 1000 2000 3000 4000

Common events

-34000

-32000

-30000

-28000

-26000

-24000

-22000

S
yn

ch
ro

n
iz

a
tio

n
 E

rr
o
r 

(n
a
n
o
se

c)

Fig. 7: Visualizing effect of two tunable parameters in this figure, the first parameter is clock discipline mechanism that changes
from top to bottom row. The second parameter is synchronization period that changes from left to right. Synchronization error
increases with an increase in synchronization period. This is evident in both (a) and (b) going from left to right. Comparison
of feedforward and feedback for 1 second shows that feedback performs well for small synchronization periods. As we move
to higher periods, the feedforward error tends to converge

between the two timelines is that Timeline 1 has a synchro-
nization period of 1 second while Timeline 2 has a period of 4
seconds. The results in Figure 7 show that both feedback and
feedforward have different impact on synchronization error
with increase in period. Feedforward performs better at higher
periods because it disciplines clock by measuring relative drift
that can only be measured accurately over long durations.

V. CONCLUSION

When designing new time synchronization algorithms, they
are compared with the established algorithms on distributed
platforms. We argue that such comparisons are not fair as
distributed platforms are subject to hardware and network
variabilities. Moreover, many algorithms are not tested for
attacks as it is hard to simulate same attacks on multiple
platforms. We design and implement OpenClock, a real testbed
that overcomes these limitations: (1) it provides multiple dis-
ciplinable clocks on a single platform to circumvent hardware
variability, (2) it provides adjustable parameters for timelines
to tune the synchronization performance. (3) OpenClock also
presents an attack simulator that injects same attack to all
algorithms under test. The benefit of an attack simulator is
two folds: it can help find vulnerabilities in an algorithm,
and help test resilience of algorithms under those attacks.
OpenClock can be extended in multiple ways. Developers
can write their own synchronization algorithms, present new
dynamically tunable parameters, and define new hardware
and network attacks. Our modular design based on clocks

hierarchy and timelines provides programming and porting
flexibility.

REFERENCES

[1] A. Alanwar, F. M. Anwar, Y.-F. Zhang, J. Pearson, J. Hespanha, and M. B.
Srivastava, “Cyclops: Pru programming framework for precise timing ap-
plications,” in Precision Clock Synchronization for Measurement, Control,
and Communication (ISPCS), 2017 IEEE International Symposium on.
IEEE, 2017, pp. 1–6.

[2] F. M. Anwar and M. B. Srivastava, “Precision time protocol over lr-wpan
and 6lowpan,” in Precision Clock Synchronization for Measurement, Con-
trol, and Communication (ISPCS), 2017 IEEE International Symposium
on. IEEE, 2017, pp. 1–6.

[3] F. Anwar, S. D’souza, A. Symington, A. Dongare, R. Rajkumar, A. Rowe,
and M. Srivastava, “Timeline: An operating system abstraction for time-
aware applications,” in Real-Time Systems Symposium (RTSS), 2016
IEEE. IEEE, 2016, pp. 191–202.

[4] K.-T. Cho and K. G. Shin, “Fingerprinting electronic control units for
vehicle intrusion detection.” in USENIX Security Symposium, 2016, pp.
911–927.

[5] D. L. Mills, “Internet time synchronization: the network time protocol,”
Communications, IEEE Transactions on, vol. 39, no. 10, 1991.

[6] K. Lee, J. C. Eidson, H. Weibel, and D. Mohl, “Ieee 1588-standard for a
precision clock synchronization protocol for networked measurement and
control systems,” in Conference on IEEE, vol. 1588, 2005, p. 2.

[7] R. Cochran and C. Marinescu, “Design and implementation of a ptp clock
infrastructure for the linux kernel,” in Precision Clock Synchronization for
Measurement Control and Communication (ISPCS), 2010 International
IEEE Symposium on. IEEE, 2010, pp. 116–121.

[8] M. Maroti, B. Kusy, G. Simon, and A. Ledeczi, “The flooding time
synchronization protocol,” in SenSys, Proceedings of the 2nd international
conference on Embedded networked sensor systems, 2004.

[9] K. Marzullo and S. Owicki, “Maintaining the time in a distributed
system,” ACM SIGOPS Operating Systems Review, vol. 19, no. 3, pp.
44–54, 1985.

6

View publication statsView publication stats

https://www.researchgate.net/publication/325973602

