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(a substantial chunk of our workloads is inherently sequential)
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The Widening Hardware-Software Gap

Despite advances in compiler technology, a considerable chunk of 
wasteful computation still persists even in highly machine-tuned code.

sum += 5*n;

i = 0;
while (i < n) {

a = 5;
if (a > 0) {

sum += a;
i++;

} else {
i += 2;

}
}

Optimizable at compile-time
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The Widening Hardware-Software Gap

Despite advances in compiler technology, a considerable chunk of 
wasteful computation still persists even in highly machine-tuned code.

i = 0;
while (i < n) {

a = x[i];
if (a > 0) {

sum += a;
i++;

} else {
i += 2;

}
}

i = 0;
sum = 0;
while (i < n) {

sum += x[i];
i++;

}

i = 0;
sum = 0;
i = 2*((n+1)/2)

Optimization 1 Optimization 2

Not optimizable at compile-time
But what if the values of array x are predictable at run-time?
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Speculative Code Compaction

Intel Front-end
Legacy Decode and μop 
Cache 
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.
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Step 3: Perform 
Optimizations
Track register context and 
prediction sources

Process one µop per cycle
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Hot 
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Req. 
ID

Reg Value
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ld t1, [ADDR]
ld t2, [ADDR + 8]
addi t3, t2, 2
beq t1, t3, foo
add t4, t5, t6

Step 5: Write to Optimized 
Partition
If there was sufficient 
shrinkage

Live-outs: 
t3 = 7

Opt. 
Code
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Squashing and Recovery
If a prediction source is 
mispredicted, we must 
redirect execution to 
unoptimized sequence
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Reg Value

t1

t2

t3

t4

Optimizations:

• Data Invariant 
Identification 

• Control Invariant 
Identification 

• Constant Folding 

• Constant 
Propagation 

• Branch Folding 

• Inlining Live Outs 
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Speculative Code Compaction

The majority of code compaction occurs within short, hot 
regions of code



Speculative Code Compaction

Benchmarks with high data and control predictability benefit the 
most from SCC



Speculative Code Compaction

SCC is able to reduce energy consumption even on applications 
which see no speedup
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• An aggressive scheme of dead code elimination implemented entirely within the 
processor front-end

• Minimally invasive (incurring just 1.5% in area overhead)
• Provides as much as 18% speedup (average of 6%) for SPEC applications

• Significant energy savings due to aggressive dead code elimination (an average 
of 12%)

• This research also involved several interesting explorations that study the 
sensitivity of our approach with different branch and value predictors
• Aggressive prediction could lead to aggressive compaction, but also increases the risk 

of squashing, suggesting a balanced approach.

Speculative Code Compaction



Thanks!

Questions?
www.github.com/logangregorym/gem5-changes

lgm4xn@virginia.edu

http://www.github.com/logangregorym/gem5-changes
mailto:lgm4xn@virginia.edu


Line selection logic extended to select line with highest 
profitability score 

Extensions to The Micro-op Cache



Additional states and transitions added to handle streaming 
from optimized partition

Fetch State Machine


