
Speculative Code Compaction: 
Eliminating Dead Code via Speculative Microcode 

Transformations

Logan Moody, Wei Qi, Abdolrasoul Sharifi, Layne Berry, Joey 
Rudek, Jayesh Gaur, Jeff Parkhurst, Sreenivas Subramoney, Kevin 

Skadron, Ashish Venkat



Speculative 
Code 
Compaction

Motivation

Overview of the Framework

Results

Conclusion



Software
(rapidly evolving, increasingly complex)

Hardware
(high core counts, specialized cores)

The Landscape of Modern Computing



Software
(a substantial chunk of our workloads is inherently sequential)

Hardware
(stagnation of single thread performance)

The Landscape of Modern Computing



The Widening Hardware-Software Gap

Despite advances in compiler technology, a considerable chunk of 
wasteful computation still persists even in highly machine-tuned code.

sum += 5*n;

i = 0;
while (i < n) {

a = 5;
if (a > 0) {

sum += a;
i++;

} else {
i += 2;

}
}

Optimizable at compile-time



The Widening Hardware-Software Gap

Despite advances in compiler technology, a considerable chunk of 
wasteful computation still persists even in highly machine-tuned code.

i = 0;
while (i < n) {

a = x[i];
if (a > 0) {

sum += a;
i++;

} else {
i += 2;

}
}

Not optimizable at compile-time



The Widening Hardware-Software Gap

Despite advances in compiler technology, a considerable chunk of 
wasteful computation still persists even in highly machine-tuned code.

i = 0;
while (i < n) {

a = x[i];
if (a > 0) {

sum += a;
i++;

} else {
i += 2;

}
}

But what if the values of array x are predictable at run-time?
Not optimizable at compile-time



The Widening Hardware-Software Gap

Despite advances in compiler technology, a considerable chunk of 
wasteful computation still persists even in highly machine-tuned code.

i = 0;
while (i < n) {

a = x[i];
if (a > 0) {

sum += a;
i++;

} else {
i += 2;

}
}

i = 0;
sum = 0;
while (i < n) {

sum += x[i];
i++;

}

i = 0;
sum = 0;
i = 2*((n+1)/2)

Optimization 1 Optimization 2

Not optimizable at compile-time
But what if the values of array x are predictable at run-time?



Speculative 
Code 
Compaction

Motivation

Overview of the Framework

Results

Conclusion



Speculative Code Compaction

Intel Front-end
Legacy Decode and μop 
Cache 



Speculative Code Compaction

Step 1: Hot Code Detection
Identify regions of hot code 
in µop cache

Hot 
Code



Speculative Code Compaction

Step 1: Hot Code Detection
Identify regions of hot code 
in µop cache

Hot 
Code

ld t1, [ADDR]
ld t2, [ADDR + 8]
addi t3, t2, 2
beq t1, t3, foo
.
.
.

foo: add t4, t5, t6



Speculative Code Compaction

ld t1, [ADDR]
ld t2, [ADDR + 8]
addi t3, t2, 2
beq t1, t3, foo
.
.
.

foo: add t4, t5, t6

Step 1: Hot Code Detection
Identify regions of hot code 
in µop cache

Hot 
Code



Speculative Code Compaction

Req. 
ID

ld t1, [ADDR]
ld t2, [ADDR + 8]
addi t3, t2, 2
beq t1, t3, foo
.
.
.

foo: add t4, t5, t6

Step 2: Generate Request 
for Hot Code Region
Request Optimization from 
Code Compaction Unit

Hot 
Code



Speculative Code Compaction

ld t1, [ADDR]
ld t2, [ADDR + 8]
addi t3, t2, 2
beq t1, t3, foo
.
.
.

foo: add t4, t5, t6

Req. 
ID

Step 3: Perform 
Optimizations
Track register context and 
prediction sources

Process one µop per cycle

Reg Value

t1

t2

t3

t4

Hot 
Code



Speculative Code Compaction

ld t1, [ADDR]
ld t2, [ADDR + 8]
addi t3, t2, 2
beq t1, t3, foo
.
.
.

foo: add t4, t5, t6

Reg Value

t1

t2

t3

t4

Step 3: Perform 
Optimizations
Speculative Data Invariant 
Identification – Value 
Prediction

Req. 
ID Hot 

Code



Speculative Code Compaction

ld t1, [ADDR]
ld t2, [ADDR + 8]
addi t3, t2, 2
beq t1, t3, foo
.
.
.

foo: add t4, t5, t6

Reg Value

t1

t2

t3

t4

7

Step 3: Perform 
Optimizations
Speculative Data Invariant 
Identification – Value 
Prediction

Req. 
ID Hot 

Code



Speculative Code Compaction

ld t1, [ADDR]
ld t2, [ADDR + 8]
addi t3, t2, 2
beq t1, t3, foo
.
.
.

foo: add t4, t5, t6

Reg Value

t1 7

t2

t3

t4

Step 3: Perform 
Optimizations
Speculative Data Invariant 
Identification – Value 
Prediction

Req. 
ID Hot 

Code



Speculative Code Compaction

ld t1, [ADDR]
ld t2, [ADDR + 8]
addi t3, t2, 2
beq t1, t3, foo
.
.
.

foo: add t4, t5, t6

Reg Value

t1 7

t2

t3

t4

Step 3: Perform 
Optimizations
Speculative Data Invariant 
Identification – Value 
Prediction

Req. 
ID Hot 

Code

5



Speculative Code Compaction

ld t1, [ADDR]
ld t2, [ADDR + 8]
addi t3, t2, 2
beq t1, t3, foo
.
.
.

foo: add t4, t5, t6

Reg Value

t1 7

t2 5

t3

t4

Step 3: Perform 
Optimizations
Constant Folding

Req. 
ID Hot 

Code



Speculative Code Compaction

ld t1, [ADDR]
ld t2, [ADDR + 8]
addi t3, t2, 2
beq t1, t3, foo
.
.
.

foo: add t4, t5, t6

Reg Value

t1 7

t2 5

t3

t4

Step 3: Perform 
Optimizations
Constant Folding

Req. 
ID Hot 

Code



Speculative Code Compaction

ld t1, [ADDR]
ld t2, [ADDR + 8]
addi t3, t2, 2
beq t1, t3, foo
.
.
.

foo: add t4, t5, t6

Reg Value

t1 7

t2 5

t3

t4

Step 3: Perform 
Optimizations
Constant Folding

Req. 
ID Hot 

Code
7



Speculative Code Compaction

ld t1, [ADDR]
ld t2, [ADDR + 8]
addi t3, t2, 2
beq t1, t3, foo
.
.
.

foo: add t4, t5, t6

Reg Value

t1 7

t2 5

t3 7

t4

Step 3: Perform 
Optimizations
Dead code Elimination

Req. 
ID Hot 

Code



Speculative Code Compaction

ld t1, [ADDR]
ld t2, [ADDR + 8]
addi t3, t2, 2
beq t1, t3, foo
.
.
.

foo: add t4, t5, t6

Reg Value

t1 7

t2 5

t3 7

t4

Step 3: Perform 
Optimizations
Constant Propogation

Req. 
ID Hot 

Code



Speculative Code Compaction

ld t1, [ADDR]
ld t2, [ADDR + 8]
addi t3, t2, 2
beq t1, t3, foo
add t4, t5, t6

Reg Value

t1 7

t2 5

t3 7

t4

Step 3: Perform 
Optimizations
Branch Elimination

Req. 
ID Hot 

Code



Speculative Code Compaction

ld t1, [ADDR]
ld t2, [ADDR + 8]
addi t3, t2, 2
beq t1, t3, foo
add t4, t5, t6

Reg Value

t1 7

t2 5

t3 7

t4

Step 4: Dump Live-outs
In order to maintain proper 
register state, we must 
dump live outs

Req. 
ID Hot 

Code

Live-outs: 
t3 = 7



Speculative Code Compaction

ld t1, [ADDR]
ld t2, [ADDR + 8]
addi t3, t2, 2
beq t1, t3, foo
add t4, t5, t6

Reg Value

t1 7

t2 5

t3 7

t4

Step 4: Dump Live-outs
In order to maintain proper 
register state, we must 
dump live outs

Req. 
ID Hot 

Code Live-outs: 
t3 = 7



Speculative Code Compaction

Hot 
Code

Req. 
ID

Reg Value

t1 7

t2 5

t3 7

t4

ld t1, [ADDR]
ld t2, [ADDR + 8]
addi t3, t2, 2
beq t1, t3, foo
add t4, t5, t6

Step 5: Write to Optimized 
Partition
If there was sufficient 
shrinkage

Live-outs: 
t3 = 7

Opt. 
Code



Speculative Code Compaction

Reg Value

t1

t2

t3

t4

Hot 
Code

Subsequent Executions
Next time the head PC is 
fetched, probe both 
partitions and perform
profitability analysis

Opt. 
Code
Opt. 
Code



Speculative Code Compaction

Reg Value

t1

t2

t3

t4

Hot 
Code

Subsequent Executions
Next time the head PC is 
fetched, probe both 
partitions and perform
profitability analysis

Opt. 
Code
Opt. 
Code Opt. 

Code



Speculative Code Compaction

Reg Value

t1

t2

t3

t4

Hot 
Code

Subsequent Executions
Next time the head PC is 
fetched, probe both 
partitions and perform
profitability analysis

Opt. 
Code
Opt. 
Code

Opt. 
Code



Speculative Code Compaction

Reg Value

t1

t2

t3

t4

Hot 
Code

Subsequent Executions
Next time the head PC is 
fetched, probe both 
partitions and perform
profitability analysis

Opt. 
Code
Opt. 
Code

Opt. 
Code



Speculative Code Compaction

Reg Value

t1

t2

t3

t4

Hot 
Code

Opt. 
Code

Opt. 
Code

Squashing and Recovery
If a prediction source is 
mispredicted, we must 
redirect execution to 
unoptimized sequence



Speculative Code Compaction

Reg Value

t1

t2

t3

t4

Optimizations:

• Data Invariant 
Identification 

• Control Invariant 
Identification 

• Constant Folding 

• Constant 
Propagation 

• Branch Folding 

• Inlining Live Outs 



Speculative 
Code 
Compaction

Motivation

Overview of the Framework

Results

Conclusion



Speculative Code Compaction

The majority of code compaction occurs within short, hot 
regions of code



Speculative Code Compaction

Benchmarks with high data and control predictability benefit the 
most from SCC



Speculative Code Compaction

SCC is able to reduce energy consumption even on applications 
which see no speedup



Speculative 
Code 
Compaction

Motivation

Overview of the Framework

Results

Conclusion



• An aggressive scheme of dead code elimination implemented entirely within the 
processor front-end

• Minimally invasive (incurring just 1.5% in area overhead)
• Provides as much as 18% speedup (average of 6%) for SPEC applications

• Significant energy savings due to aggressive dead code elimination (an average 
of 12%)

• This research also involved several interesting explorations that study the 
sensitivity of our approach with different branch and value predictors
• Aggressive prediction could lead to aggressive compaction, but also increases the risk 

of squashing, suggesting a balanced approach.

Speculative Code Compaction



Thanks!

Questions?
www.github.com/logangregorym/gem5-changes

lgm4xn@virginia.edu

http://www.github.com/logangregorym/gem5-changes
mailto:lgm4xn@virginia.edu


Line selection logic extended to select line with highest 
profitability score 

Extensions to The Micro-op Cache



Additional states and transitions added to handle streaming 
from optimized partition

Fetch State Machine


