UC San Diego TSN

JACOBS SCHOOL OF ENGINEERING
Computer Science and Engineering

CONTEXT-SENSITIVE FENCING:
SECURING SPECULATIVE EXECUTION VIA MICROCODE CUSTOMIZATION

000

Mohammadkazem Taram, Ashish Venkat, Dean Tullsen
University of California San Diego, University of Virginia

PERFORMANCE V.S. SECURITY

LW

Security /' | | \Performance

PERFORMANCE V.S. SECURITY

LW

Security /' | | \Performance

PERFORMANCE V.S. SECURITY

| A LA

FO R ES HA OW Security /' | | \Performance

47

SPECTRE ATTACKS! < ~

» Leak secrets via side-channels + speculative execution

» Any modern processor with a Branch Predictor is vulnerable

Attacker

Speculative Execution

SPECTRE V1 — BOUNDS CHECK BYPASS < —

int Kernel api (int x){

y = array2[arrayl[x] * 64];

SPECTRE V1 — BOUNDS CHECK BYPASS < —

int Kernel api (int x)({

if (x < arrayl size) //bounds check
y = array2[arrayl[x] * 64];

SPECTRE V1 — BOUNDS CHECK BYPASS < —

000

int Kernel api (int x){

Mispredicted if x < arrayl size) //bounds check

(
y array2[arrayl[x] * 64]; //not taken/fallthrough code

SPECTRE V1 — BOUNDS CHECK BYPASS < —

000

int Kernel api (int x){

Mispredicted if x < arrayl size) //bounds check

(
y = array2[arrayl[x] * 64]; //not taken/fallthrough code

Too late to recover — data is exposed via side-channels

CURRENT SPECTRE V1 MITIGATIONS

CURRENT SPECTRE V1 MITIGATIONS

» Restricting Speculation Using Fences and Barriers:

if (x < arrayl size)
y = array2[arrayl[x] * 64];

CURRENT SPECTRE V1 MITIGATIONS

» Restricting Speculation Using Fences and Barriers:

if (x < arrayl size)

speculative fence;

y = array2[arrayl[x] * 64];

=

CURRENT SPECTRE V1 MITIGATIONS

» Restricting Speculation Using Fences and Barriers:

if (x < arrayl size)

/s/ Up to 10x Performance Overhead!

|l| I

O. Oleksenko, B. Trach, T. Reiher, M. Silberstein, and C.Fetzer. 2018. You Shall Not Bypass

I

THIS WORK : CONTEXT SENSITIVE FENCING

» Surgically injects fence micro-ops

THIS WORK : CONTEXT SENSITIVE FENCING

» Surgically injects fence micro-ops

Only When Necessary

THIS WORK : CONTEXT SENSITIVE FENCING

» Surgically injects fence micro-ops

Only When Necessary Right Type of Fence

THIS WORK : CONTEXT SENSITIVE FENCING

» Surgically injects fence micro-ops

Only When Necessary Right Type of Fence No Recompilation

MICRO-0P STREAM CUSTOMIZATION BY CONTEXT-SENSITIVE DECODING

Id t0, [0x803ac]
=]
2
c
' . o 2 r
Native Instructions " > 2 < add. 19,40, 1 S D =
(e.g., inc [0x803ac]) | | Q 5 5 c v
@) ®
@
o)
Q
@
st [0x803ac], t0

“Context-Sensitive Decoding: On-Demand Microcode Customization for Security and Energy Management”
ISCA 2018, IEEE Micro Top Picks 2019

MICRO-0P STREAM CUSTOMIZATION BY CONTEXT-SENSITIVE DECODING

Id t0, [0x803ac]
a FENCE
c
- Q .y m
Native Instructions > 2 < add. 19,40, 1 S D =
(e.g., inc [0x803ac]) | Q 5 5 c v
D (¢ D
8 FENCE
o ﬁ
@
st [0x803ac], t0

!

“Context-Sensitive Decoding: On-Demand Microcode Customization for Security and Energy Management”
ISCA 2018, IEEE Micro Top Picks 2019

CONTEXT-SENSITIVE FENCING: AN EXAMPLE

Decoders

Fence Enforcement
Configurations Model
4 Specific Regular
0S :
Registers Decoders

X86 Instructions Macro-op Cont?)_(t- Micro-op
Dispatcher Sensitive Fusion
Micro-op Queue
MSROM

beq
add

CONTEXT-SENSITIVE FENCING: AN EXAMPLE

Decoders

Fence Enforcement
Configurations Model
4 Specific Regular
0S :
Registers Decoders

X86 Instructions Macro-op Contg)_(t- Micro-op
inc [0x803ac] Dispatcher Sensitive Fusion
Micro-op Queue
MSROM

beq
add

(*ptr) + +

CONTEXT-SENSITIVE FENCING: AN EXAMPLE

Decoders

Fence Enforcement
Configurations
OS—> Specific Regular
Registers Decoders
X86 Instructions Macro-op gont?t).(t- Micro-op
. : ensitive '
inc [0x803ac] il Dispatcher CHSIon

(*ptr) + +

Model

Micro-op Queue

Taint Tracking

beq
add

CONTEXT-SENSITIVE FENCING: AN EXAMPLE

Decoders

Fence Enforcement
Configurations Model
OS—> Specific Regular
Registers Decoders
| inc [0x803ac]
X86 Instructions MacrO'Op Cont?).(t- Micro--op
I Dispatcher Sensitive FENCE Fusion
1d t0,[0x803ac]

add t0, t0, 1 Micro-op Queue
st [0x803ac], t0

Taint Tracking

beq
add

CONTEXT-SENSITIVE FENCING: AN EXAMPLE

Decoders

Fence Enforcement
Configurations Model

OS—> Specific Regular

Registers Decoders
| inc [0x803ac]
X86 Instructions Macro-op Contg)_(t- MiCI’C-)-Op
Dispatcher Sensitive FENCE Fusion
1d t0,[0x803ac]

add t0, t0, 1 Micro-op Queue

st [0x803ac], t0 st
add

Taint Tracking

CONTEXT SENSITIVE FENCING

» Surgically injects fence micro-ops

Right Type of Fence Only When Necessary

10

BUT WHAT FENCE SHOULD WE USE?

Existing Intel Fences

Type of Fence

Instruction Opcode

Description

Privileged Serializing Instructions

INVD

Invalidate Internal Caches

INVEPT Invalidate Translations from EPT

INVLPG Invalidate TLLB Entries

INVVPID Invalidate Translations Based on VPID

LIDT Load Interrupt Descriptor Table Register

LGDT Load Global Descriptor Table Register

LLDT LLoad Local Descriptor Table Register

LTR LLoad Task Register

MOV Move to Control Register

MOV Move to Debug Register

WBINVD Write Back and Invalidate Cache

WRMSR Write to Model Specific Register
Non-Privileged Serializing Instructions | CPUID CPU Identification

IRET Interrupt Return

RSM Resume from System Management Mode
Memory Ordering Instructions SFENCE Store Fence

LFENCE LLoad Fence

MFENCE Memory Fence

11

BUT WHAT FENCE SHOULD WE USE?

Existing Intel Fences
Instruction Opcode

''''''''' '. AN In .‘ L‘.

Description

O0—r Require Privileged Access

S
[l Clobber Architectural Registers

@] Enforced Early in the Pipeline

Memory Ordering Instructions SFENCE Store Fence
LFENCE LLoad Fence
| MFENCE | Memory Fence

11

EXISTING FENCES: SERIALIZING INSTRUCTIONS (S1)

=
n
r~
-
c
O
=
o
-
O
®
0O
o
Q.
®
-

—

0
)
-
0
-
@

—

N4

O
7
9 C
Q =
O
>

N4

Jwwon

> Enforced early in the pipeline

- » Examples:

» All Serializing Instructions
» Intel’s MFENCE
» Intel’s SFENCE

12

EXISTING FENCES: INTEL LFENCE

m .
= = » Enforced early in the pipeline
2
5 . o - - » Example:
3 5 [k [C 2
- 5 = = 3 » Intel’s LFENCE
® D =5 —
9,
o
Q
@

N4

13

LATE ENFORCEMENT FENCES

Macro-op
Stream

» Shifts fence enforcement towards the
leaking structure

» Reduces the impact on other instructions

" Macro-to-pop
Translation

Unit

pu-op Queue

Load Store-Queue

[u-op Dispatcher J

Cache
Controller

Cache

Mem
Controller

FU1 FU2
RS RS
RS RS
RS RS

Mem

14

LATE ENFORCEMENT FENCES

Macro-o % \
P Macro-to-pop

Stream | Translation Load Store-Queue
\ Unit)
r o
) e
@)
— M
O O
! s
> Shifts fence enforcement towards the @ I
, D — 3 | Cache
leaking structure 3 a |
o 2| | Fu1 FU2 I
> Reduces the impact on other instructions L 24— — %%
B — | &s RS
RS RS
Mem
{

Controller

Controller

14

LATE ENFORCEMENT FENCES

Macro-o % \
P Macro-to-pop

Stream | Translation Load Store-Queue
. Unit
r o
) e
@)
— M
O O
! s
> Shifts fence enforcement towards the @ I
, D — 3 | Cache
leaking structure 3 a |
o 2| | Fus FU2 IR
> Reduces the impact on other instructions Iy SR - — i %E,
I RS RS I H
RS RS
Mem
{

Controller

Controller

14

NEWLY PROPOSED FENCES

» Load-Store Queue LFENCE (LSQ-LFENCE)
» Load-Store Queue MFENCE (LSQ-MFENCE)

» Reservation Station Fence (RSFENCE)
» Cache Fence (CFENCE)

Macro-op
Stream

' Macro-to-pop |
Translation

Unit

D Y

>

() —>
>

O

(@)

Q

-

-

LSQ-Fences
Load Store-Queue
| Cfence
> \
o
) L

BN | O

- — —| ®©

o O O

L

b

qv)

@ | Cache

D]

Q| | FU1 FU2 v _

5 S

T EBEEN RS 2
1 RS
< RS
Mem
RS-Fence

Controller

Controller

15

CACHE FENCE (CFENCE)

» Allows all the load and stores to pass
» CFENCE labels any subsequent load as a non-modifying load
> non-modifying loads to pass through the CFENCE

» Non-modifying loads are restricted from modifying the cache state.

{
iy

CFENCE

Non-Modifying

Non-Modifying

Non-Modifying

At

16

CACHE FENCE (CFENCE)

Normal Load

Cache Controller

Update Metadata Fetch Cache Block
(LRU bits) from memory

Update Cache

Serve the request

17

CACHE FENCE (CFENCE)

Non-Modifying Load

Cache Controller

Fetch Cache Block
from memory

Serve the request

FENCE ENFORCEMENT POLICIES

RESULTS

LSQ-MFENCE
CFENCE

HHEHEHEEHEEEEERRHHEHEY

o0
U S
< B0

-
8 g L
S 2=
T EX
rrdﬁw
S N
O T =
4 B
L D S
O & <
o 9
ucw
O 5 ©
A

S
0 3
mo
R
N
S 5
o
o &
D)
O
U &
LV o
S
x:
5 2
< O

gmean

sjeng bzip2 ping llu gcc ls nginx omnet

PS

19

CONTEXT SENSITIVE FENCING

» Surgically injects fence micro-ops

Only When Necessary

20

FENCE FREQUENCY OPTIMIZATIONS

» Liberal Injection
» Injects fences before all the loads of a program

» completely stops speculation

jeq
ld
add
ld

ld

21

FENCE FREQUENCY OPTIMIZATIONS

» Liberal Injection
» Injects fences before all the loads of a program

» completely stops speculation

jeq
Fence
ld
add
Fence
ld
Fence
ld

22

FENCE FREQUENCY OPTIMIZATIONS

» Basic Block-Level Fence Insertion*
» Speculation begins with a branch prediction

» A fence between branch and subsequent loads

* Targeted Optimization — Only protects against variant 1

jeq
Fence
ld
add
Fence
ld
Fence
ld

23

FENCE FREQUENCY OPTIMIZATIONS

» Basic Block-Level Fence Insertion
» Speculation begins with a branch prediction

» We want a fence between each branch and
subsequent loads

* Targeted Optimization — Only protects against variant 1

jeq
Fence
1ld
add
ld

ld

24

FENCE FREQUENCY OPTIMIZATIONS

» Taint-Based Fence Insertion
» Even one fence per basic block is too conservative

> Attacker performs operations based on untrusted data
(e.g., attacker controlled out of bound index)

» Insert fences for only vulnerable loads that operate on untrusted data

» Dynamic Information Flow Tracker (DIFT)

25

DLIFT- AN INFORMATION FLOW TRACKER FOR SPECTRE ERA

» Classic Information Flow Trackers
» Maintain and Evaluate Taints at Late Stages of the Pipeline

» Not so useful for Spectre!

26

DLIFT- AN INFORMATION FLOW TRACKER FOR SPECTRE ERA

» Classic Information Flow Trackers
» Maintain and Evaluate Taints at Late Stages of the Pipeline

» Not so useful for Spectre!

26

DLIFT- AN INFORMATION FLOW TRACKER FOR SPECTRE ERA

» (Classic Information Flow Trackers

» Maintain and Eva

» Not so useful for Dete Ct
The

Threat
before
It's too late.

26

DECODER-LEVEL (SPECULATIVE) INFORMATION FLOW TRACKER

Fetch/Decode

Register Tainted
rax No
rbx No

Speculative Taint Map

Execute

Taint Evaluator

Taint

Taint

Commait

Commit
Logic

Register

Tainted

rax

No

rbx

Yes

Arch. Taint Map/RF

DECODER-LEVEL (SPECULATIVE) INFORMATION FLOW TRACKER

Fetch/Decode

|

add (%rbx), %rax

Register Tainted
rax No
rbx No

Speculative Taint Map

Execute

Taint Evaluator

Commait

Commit
Logic

Register

Tainted

rax

No

rbx

Yes

Arch. Taint Map/RF

DECODER-LEVEL (SPECULATIVE) INFORMATION FLOW TRACKER

Fetch/Decode 5 Execute Commit

|

add (%rbx), %rax

Taint Evaluator

Commit
Logic

Not Tainted

Register Tainted Register Tainted
rax No 5 E rax No
rbx No rbx Yes

Sp@CUlative Taint Map ; ; Arch. Taint Map/RF

DECODER-LEVEL (SPECULATIVE) INFORMATION FLOW TRACKER

Fetch/Decode 5 Execute

Fence-Free

Translation
Taint Evaluator

ld t1, (%rbx) :
add t1, %rax, %rax B

Not Tainted

Register Tainted
rax No
rbx No

Speculative Taint Map

Commait

Commit
Logic

Register

Tainted

rax

No

rbx

Yes

Arch. Taint Map/RF

DECODER-LEVEL (SPECULATIVE) INFORMATION FLOW TRACKER

Fetch/Decode

Fence-Free
Translation

Not Tainted

Register

Tainted

rax

No

rbx

No

Speculative Taint Map

Execute

ld t1, (%rbx)
add t1, %rax, %rax

Taint Evaluator

Commait

Commit
Logic

Register

Tainted

rax

No

rbx

Yes

Arch. Taint Map/RF

DECODER-LEVEL (SPECULATIVE) INFORMATION FLOW TRACKER

Fetch/Decode

Fence-Free
Translation

Not Tainted

Register

Tainted

rax

No

rbx

No

Speculative Taint Map

Execute

ld t1, (%rbx)
add t1, %rax, %rax

Taint Evaluator

Commait

Under-T ainted?i Commit
Logic

Register

Tainted

rax

No

rbx

Yes

Arch. Taint Map/RF

27

DECODER-LEVEL (SPECULATIVE) INFORMATION FLOW TRACKER

Fetch/Decode 5 Execute Commit

Fence-Free

Translation |
: Taint Evaluator Under-Tainted?: Commit
Logic

Not Tainted

Register Tainted

Register Tainted

rax No rax No

rbx No rbx Yes

Speculative Taint Map add t1, %rax, %ra . Arch. Taint Map/RF

DECODER-LEVEL (SPECULATIVE) INFORMATION FLOW TRACKER

Commait

Fetch/Decode 5 Execute

Fence-Free
Translation

Not Tainted

Register Tainted

rax No
rbx Yes ,
Speculative Taint Map 5 add t1, %rax, %ra

Taint Recovery Copy

Taint Evaluator Under-Tainted?i Commit
Logic

Register

Tainted

rax

No

rbx

Yes

Arch. Taint Map/RF

DECODER-LEVEL (SPECULATIVE) INFORMATION FLOW TRACKER

Fetch/Decode 5 Execute Commit

|

Fence-Free

Translation |
: Taint Evaluator Under-Tainted?: Commit
Logic

Not Tainted

add (%rbx), %rax

Register Tainted

Register Tainted

rax No rax No
rbx Yes : : rbx Yes
Speculative Taint Map i add t1, %rax, %ra . Arch. Taint Map/RF

Taint Recovery Copy

DECODER-LEVEL (SPECULATIVE) INFORMATION FLOW TRACKER

Fetch/Decode 5 Execute Commit

|

add (%rbx), %rax

Fence-Free

Translation |
: Taint Evaluator Under-Tainted?: Commit
Logic

Register Tainted

Register Tainted

rax No rax No
rbx Yes : : rbx Yes
Speculative Taint Map i add t1, %rax, %ra . Arch. Taint Map/RF

Taint Recovery Copy

DECODER-LEVEL (SPECULATIVE) INFORMATION FLOW TRACKER

Fetch/Decode : Execute E Commit
8 Fence Injection
: Taint Evaluator Under-Tainted?: Commit
FENCE 5 ; Logic
dt1, (%rbx) [;
add (%rbx). %rax add t1, xrax, xrax & 5

Register Tainted

Register Tainted

rax No rax No
rbx Yes : : rbx Yes
Speculative Taint Map i add t1, %rax, %ra . Arch. Taint Map/RF

Taint Recovery Copy

RESULTS — FENCE FREQUENCY OPTIMIZATION

1.60
== Always Fencing
1.59 - DLIFT-Based Fencing
150 - DLIFT + Once per BB
1.45 -
» Taint-Based CFENCE 2, .
£l
injection reduces the 5 a5
performance overhead ¢ ., . 2
w - s
to just 7.7% 8 1o - 53
E 2
5 1.20 - =
= 3
1.15 - %
1.10 1 %
1.05 - o
1.00 =

PS sjeng bzip2 ping llu gcc Is nginx omnet gmean

CONTEXT-SENSITIVE FENCING

| /s/ Low Performance Overhead

29

CONTEXT-SENSITIVE FENCING

| /s/ Low Performance Overhead

m No Recompilation

29

CONTEXT-SENSITIVE FENCING

| /s/ Low Performance Overhead

m No Recompilation

n Minimal Changes to Processor

29

THANKS!
QUESTIONS?

