HIPStR: Heterogeneous-ISA Program State Relocation

Ashish Venkat Sriskanda Shamasunder Hovav Shacham Dean M. Tullsen
University of California, San Diego

On-chip Heterogeneity

"Big” Cores
- Cortex-A57 ” Litt | e”
& ,
Cortex-A53 CPUs C Ores

Adreno 430 GPU
OpenGL ES 20/31

OpenCL 1.2 Full
Content Security

¢ ryptogra ph ¢ Display Processing
AC C e I e ra t I O n 4K, Miracast, picture enhancement

Multimedia

Modem e i Processing
4% gen CAT6LTE i) 4K Encode/Decode
Ja Snapdragon Voice Activation
Gestures

Upto:3x20MHz CA Up to 55MP
. 12GPix/s bw Studio Access Security . 0
Irlr:age Slgnal Comers W Multimedia
rocessing Processing
Qualcomm Snapdragon 810

Offers varying degrees of micro-architectural complexity and specialization.

i

On-chip Heterogeneity

"Big” Cores

Adreno ISA
Location
& §
Cortex-A53 CPUs
Adreno 430 GPU
OpenGL ES 20/31
&
Content Security LPDDR4
i Hexagon DSP
Cryptogra phlc Kok I
AC ce I era t 10N 4K, Miracast, picture enhancement sor Engine
Multimedia
Mode P i
4% gen CAT':LTE D("C:Li':‘ «m
C u St O m = I SAS) Upto3x20MHz CA Up to SSMP Snapdragtg\e:moi:;Act'rvation
Image Signal Camara ¥ Studio Access Security
Processing
Qualcomm Snapdragon 810

ARM
”Little” Thumb
Cores
Digital Signal
Processing Hexagon
I\;Iultimgdia NEON
rocessing

Exploit both architectural (ISA) and micro-architectural heterogeneity to realize
Heterogeneous-ISA Chip Multiprocessors 3

A

Heterogeneous-ISA Chip Multiprocessors

Heterogeneous-ISA Chip Multiprocessor

\ 4

Alpha
Thumb Cortex A9 EV4

Xx86 core-i7

Custom ISA -~

* Prior research suggests and overa
single-ISA heterogeneous CMP targeted at general purpose computing.

allows different code
regions to execute on the ISA of preference, and thereby maximize performance.

——

=
UCSD

*Harnessing ISA Diversity: Design of a Heterogeneous-ISA Chip Multiprocessor, Ashish Venkat and Dean M. Tullsen, ISCA'14. [ﬁ‘

~

oA

Heterogeneous-ISA Chip Multiprocessors

Heterogeneous-ISA Chip Multiprocessor

Alpha
Thumb Cortex A9 EV4

Xx86 core-i7

Custom ISA -~

This talk will showcase the immense security potential of this architecture, in
particular, to thwart Return-Oriented Programming.

Buffer Overflow Exploits — Code Injection

Bad Behavior

1

Application Code

Malicious Code
/Iea -0x78(%ebp),%eax \

mov %eax,0x8(%esp)
mov -0x80(%ebp),%eax
mov %eax,0x4(%ebp)
movl S0x3,(%esp)

PC imp *%eax
A %

xor %eax, %eax

mov SO0x1, %al } >

xor %ebx, %ebx
int SOx80

Inject malicious code on stack/heap and subvert control flow

A

oA

Buffer Overflow Exploits — Code Reuse

Bad Behavior

1

Malicious Cod

Application Code

/Iea -0x78(%ebp),%eax \
mov %eax,0x8(%esp)
mov -0x80(%ebp),%eax
mov %eax,0x4(%ebp)
movl SO0x3,(%esp)

\jmp *%eax /

Return-Oriented Programming

HIPStR: Heterogeneous-ISA Program State Relocation

Randomize Program State

Q " across heterogeneous ISAs)
Migration Runtime Q

A L 3 A 1;

/ DBT Engine DBT Engine T
Randomize to perform to perform Randomize
Program State Program State Relocation Program State Relocation Program State
within each ISA Phase Change Attack Phase Change Attack within each ISA
‘¥ Detection Unit Detection Unit Detection Unit Detection Unit || oo

l High-Performance x86 Core ‘ l Low-Power ARM Core

Synergistically combines two strong and independent defense techniques:
* Binary Translation driven Program State Relocation
* Non-deterministic Execution Migration across Heterogeneous-ISAs

oA

oA

Outline

* Motivation
* Return-Oriented Programming

* HIPStR: Heterogeneous-ISA Program State Relocation

* Program State Relocation
* Heterogeneous-ISA Migration

e Evaluation

e Brute Force attacks
e JIT-ROP attacks
e Tailored Anti-diversification attacks

* Key Points

Return-Oriented Programming

Read only Text Section

ﬂa -Ox78(%ebp),%eax\ Stack

—

Caller Frame

ends here

10

mov %eax,0x8(%esp)
call d92e0 <memcpy>
ret
0x20d1b0
mov %edx,-0x94(%ebp)
movl S0x3,(%esp) Uyathee
mov %eax,0x4(%esp) Ox10ad
ret

Gadgets 0x80436a
Oxbfff8a40
xor %eax,%eax

0x74636570
ret
pop %ebx
ret
UCSD

3

oA

Return-Oriented Programming

Read only Text Section Exploit buffer overflow
ﬂa —Ox78(%ebp),%eax\ Stack
mov %eax,0x8(%esp)
call d92e0 <memcpy>
ret
0x870f65
mov %edx,-0x94(%ebp)
movl S0x3,(%esp) UREEe
mov %eax,0x4(%esp)
t
e 0x870234 _
xor %eax,%eax Caller Frame
ret ends here
pop %ebx
ret
\ / 11

oA

Return-Oriented Programming

Read only Text Section Return To Gadget 1

ﬂa -Ox78(%ebp),%eax\ Stack

mov %eax,0x8(%esp)
call d92e0 <memcpy>

ret

0x870f65

mov %edx,-0x94(%ebp) — Dynamic Execution

movl S0x3,(%esp) Stream
mov %eax,0x4(%esp)

ret 0x870234 /IOOP %ebx \

0x432a123
xor %eax,%eax

0x65708ad6
ret
pop %ebx
ret

N / N /

oA

Return-Oriented Programming

Read only Text Section Return To Gadget 2

ﬂa -Ox78(%ebp),%eax\ Stack

mov %eax,0x8(%esp)
call d92e0 <memcpy>

ret

0x870f65
mov %edx,-0x94(%ebp) — Dynamic Execution
movl S0x3,(%esp) Stream
mov %eax,0x4(%esp) Oxbfff8076
ret 0x870234 /pop %ebx \
xor %eax, %eax
0Ox432a123
xor %eax,%eax
0x65708ad6
ret
pop %ebx
ret

N / N /

oA

Return-Oriented Programming

Read only Text Section Return To Gadget 3

ﬂa -Ox78(%ebp),%eax\ Stack

mov %eax,0x8(%esp)
call d92e0 <memcpy>

ret

0x870f65

mov %edx,-0x94(%ebp) / OX87098d Dynamic EXECUtiOn
movl S0x3,(%esp) Stream

mov %eax,0x4(%esp) Oxbfff8076

et 0x870234 /IOOIO %ebx \

xor %eax, %eax

WO Ox432a123 mov %edx,-0x94(%ebp)
Xor %eax,%eax Ox65708ad6 movl SO0x3,(%esp)
ret mov %eax,0x4(%esp)

pop %ebx
ret

N / . /

oA

Escape from ROP

ROP thrives on 2 fundamental characteristics:
* Ability to hijack control flow
* Prior knowledge of gadget locations

oA

Escape from ROP

ROP thrives on 2 fundamental characteristics:

* Ability to hijack control flow
- Control Flow Integrity (CFl) Techniques take advantage of this.

- Classic CFl: Constrain control flow to a pre-defined CFG (hard to accomplish
without run-time knowledge).

- Modern CFl: CCFIR, bin-CFl, Branch Regulation, Code Pointer Integrity.
* Prior knowledge of gadget locations

Several backdoors exist that can completely bypass modern CFl
- Missing the Point(er) (Oakland’15)

- Out of Control (Oakland’14)

- Control Flow Bending (USENIX Security’15)

oA

Escape from ROP

ROP thrives on 2 fundamental characteristics:
* Ability to hijack control flow

* Prior knowledge of gadget locations
- Code Randomization Techniquestake advantage of this.

- Gadget Location Randomization and Obfuscation proposed at module,
function, basic block, and instruction levels.

- Not “fool-proof”. They just reduce the probability of a successful mount.

How easy is it to mount an attack with state-of-the-art randomization?
- Hacking Blind — Brute Force attack possible in under 20 minutes.
- Information Leakage - Just-In-Time ROP possiblein 23 seconds.

Need more randomness and more resilience to information leakage

oA

Escape from ROP

ROP thrives on 2 fundamental characteristics:
* Ability to hijack control flow
* Prior knowledge of gadget locations

Escape from ROP

ROP thrives on 4 fundamental characteristics:

* Ability to hijack control flow

* Prior knowledge of gadget locations

* Requires program state (registers/memory) to perform computation
* Knowledge of the underlying ISA

More Resilience to

More Randomness)
Information Leakage

Massive Attack
Surface Reduction

Low Performance
Overhead

HIPStR: Heterogeneous-ISA Program State Relocation 19

A

3

c
4
J

oA

Outline

* Motivation
* Return-Oriented Programming

* HIPStR: Heterogeneous-ISA Program State Relocation
* Program State Relocation
* Heterogeneous-ISA Migration

e Evaluation

e Brute Force attacks
e JIT-ROP attacks
e Tailored Anti-diversification attacks

* Key Points

20

Escape from ROP

ROP thrives on 4 fundamental characteristics:

* Ability to hijack control flow

* Prior knowledge of gadget locations

* Requires program state (registers/memory) to perform computation
* Knowledge of the underlying ISA

More Resilience to

More Randomness)
Information Leakage

Massive Attack
Surface Reduction

Low Performance
Overhead

HIPStR: Heterogeneous-ISA Program State Relocation 21

A

3

c
4
J

Program State Relocation
Architecture

Location
GPS, GLONASS, Beidou, Galileo Satellites Cortex-AS7
&
Cortex-AS3 CPUs
Adreno 430 GPU

Translation Engine or %al, 0x80c (%esp)
add Sc54, %esp

4™ gen CAT 6 LTE
Upto:@3x20MHz CA

add %eax, 0x48
call *(%eax)

22

Program State Relocation
Architecture

Dynamic Binary Translator

Program Binary Randomizer

Code Section

Processor

1
1
1
1
1

e Location -
! GPS, GLONASS, Beidou, Galileo Satellites = Cortex-AS7
! - & . =
L _rg t_ ____________________ 1 3 — Cortex-AS53 CPUs
-3

1
E . ! Code Cache
1 or %dl, %bl :) N e
| ret | > Translation Engine | or %al, 0x80c (%esp) !
e osssosssossoooooo-: 1 add $c54, %esp 1 oy
BB#3: | ret ! G

1
! 1
! e ——
, add %eax, 0x48 E
1 call *(%eax) !

All execution happens within the code cache, but it is critical to not leak

A

N

code cache addresses to the attacker.
23

A

c
4
J

Program State Relocation

Architecture

Program Binary

Code Section ||

Dynamic Binary Translator

|
! I
1
, add %eax, 0x48 i
call *(%eax) :

>

Randomizer

Y

Translation Engine

Code Cache

or %al, 0x80c (%esp)

|
|
. add $c54, %esp
| ret

Code Cache Miss Handler

Processor

Location
GPS, GLONASS, Beidou, Galileo Satellites

Cortex-AS7
A s . H
Cortex-AS3 CPUs

4™ gen CAT 6 LTE
Upto@x20MHz CA

H/W Return Address Table

Source Address Target Address

0x1001beef 0x08048abc

24

oA

Program State Relocation

Example
ROP gadget before PSR - -

Function-level Relocation Map

or %dl %bl Registers:

- ebx ->[esp+0x80c]
edx -> eax
esi -> [esp+0x1800]
ebp -> PSR Temporary

ROP gadget after PSR Stack Objects:

[esp+0x30] -> [esp + ox14a8]

or %al,0x80c(%esp) %RET -> [esp + 0xc58]

add $c54, %esp

ret

oA

Program State Relocation

Example
ROP gadget before PSR - -

Function-level Relocation Map

or %dl%bl Registers:

ret ebx -> [esp+0x80c]
edx -> eax
esi -> [esp+0x1800]
ebp -> PSR Temporary

ROP gadget after PSR Stack Objects:

[esp+0x30] -> [esp + ox14a8]

or %al,0x80c(%esp) %RET -> [esp + 0xc58]

add S$c54, %esp

ret

How much randomness does PSR provide?

X86 stack frame

registers spill

locals and temporaries
(high to low)

argument n

argument 0

Each instruction operand can relocate to 213-216
random stack objects.

A

X86-PSR stack frame

Randomization Space

arguments
register spill

Randomization Space

register spill 2-16 pages of
randomness per frame
arguments
locals

Randomization space
aggregates

Frame Entropy
27

oA

Program State Relocation

Performance

B PSR-0O1 B PSR-0O2 PSR-0O3 B Native Performance

o 100%

(@]

S 80%

£

S 60%

& 40% -

(D)

£ 20% -

o

e 0% -
*0"’\@/

» Overall performance degradation vs native unsecure execution = 13%

» Speedup over competition = 16%

Program State Relocation
Entropy

100

30

N A D
© O O

Entropy per gadget
(in bits)

@)

M state-of-the-art M PSR

> Entropy provided by PSR supersedes state-of-the-art defenses (64-bits)
» Entropy provided by PSR can be orthogonally applied on other defenses

A

U

N

SD

oAl

Is PSR capable of detecting an attack?

* Compulsory miss: An indirect jump/returnto a basic block that was
never translated by PSR.

* Conflict miss: An indirect jump/return to a basic block that was
previously evicted.

* ROP attack: An indirect jump/return that can hijack control-flow.

HIPStR: Heterogeneous-ISA Program State Relocation

Randomize Program State

Q " across heterogeneous ISAs)
Migration Runtime Q

A L 3 A 1;

/ DBT Engine DBT Engine T
Randomize to perform to perform Randomize
Program State Program State Relocation Program State Relocation Program State
within each ISA Phase Change Attack Phase Change Attack within each ISA
‘¥ Detection Unit Detection Unit Detection Unit Detection Unit || oo

l High-Performance x86 Core ‘ l Low-Power ARM Core

Synergistically combines two strong and independent defense techniques:
* Binary Translation driven Program State Relocation
* Non-deterministic Execution Migration across Heterogeneous-ISAs

31

oA

Escape from ROP

ROP thrives on 4 fundamental characteristics:

* Ability to hijack control flow

* Prior knowledge of gadget locations

* Requires program state (registers/memory) to perform computation
* Knowledge of the underlying ISA

More Resilience to

More Randomness)
Information Leakage

Massive Attack
Surface Reduction

Low Performance
Overhead

HIPStR: Heterogeneous-ISA Program State Relocation 2

A

3

c
4
J

Execution Migration in a Heterogeneous-ISA CMP

ISA-I relocation map Stack transformation on core -ll MigwatidmtoeGawestdt 1!

L

Migration Runtime <«— Stack . ‘
&) Heterogeneous-ISA Architecture

ISA-ll relocation map l
1‘ ISA - | ISA - II
| L1]
Data Sections L2 | L2
ISA agnostic
PC — L1 ISA-lI
L2 |
PC
Code Section Code Section
’ (ISA —1) (ISA —11)

«— PC
——__ transformable basic block

(known at compile-time)
Colgtivie enbitoeioesbiafernpable BB. Natjve execution on core - Il 33

A

3

When is the right time to migrate?

* Performance-induced Migrations:
* Migrate execution when a program phase-change alters the ISA of preference.

* Provides as much as 9% additional speedup, sacrificing only 0.3% for migration
overhead.

* Security-induced Migrations:

* Migrate execution (probabilistically) when an indirect control transfer misses
the code cache.

* Forces an attacker to chain gadgets from different ISAs, making exploit
generation extremely difficult.

ol
P

Migration Overhead

(in the absence of an attack)

5% -

©
© —x86 to ARM
< 4% -
= 4% —ARM to x86
> o/ - . . .
& 3% —Baseline Migration Overhead
c
O 2% Security-induced
"F'U (at CC size of 768KB) Performance-induced Migration Overhead
@ 1% /
E O% |
< O 00 O N < OO0 O N < OO O AN < O ON <« O
O N I O AN 1 O O OO N O O N T M ANAN I O O
N < OO N < ONOCTEHEIS MO DL N~NOCSES NMWLNSNSN O O
I A AN AN AN AN AN OO on <
Code Cache Size (KB)

With a code cache as small as 768KB, we perform no security-induced migrations in the absence of an attack.
35

A

3

c
4
J

HIPStR: Heterogeneous-ISA Program State Relocation

Heterogeneous-ISA migration
shields PSR from JIT-ROP
attacks

PSR renders brute-force
attacks computationally
infeasible

Together, they form a formidable defense

A

3

c
4
J

oA

Outline

* Motivation
* Return-Oriented Programming

* HIPStR: Heterogeneous-ISA Program State Relocation

* Program State Relocation
* Heterogeneous-ISA Migration

e Evaluation

* Brute Force attacks
e JIT-ROP attacks
* Tailored Anti-diversification attacks

* Key Points

37

Brute Force Attacks

Goal: Construct a simple 4-gadget shellcode exploit.
i.e., populate %eax, %ebx, %ecx, and %edx with attacker-provided values.

ROP Payload

R

No - send feedback Yes — Respawn

worker thread

38

Feedback Intelligence
Need just 20 minutes to accomplish all of this.

A

!

Brute Force Attack Surface under PSR

¥ Eliminated Gadgets B Surviving Gadgets

=
N
o

120

Number of Gadgets
(in thousands)

Best Case Scenario: Brute Force with surviving gadgets would take 56 trillion years to break PSR
39

> 3

Just-In-Time Code Reuse Attacks

Goal: Construct a simple 4-gadget shellcode exploit.
i.e., populate %eax, %ebx, %ecx, and %edx with attacker-provided values.

Exploit memory disclosure

- Continuouslyleak code pages
(including code cache

KI Mine gadgets ROP Payload
Reconstruct CFG (i‘f C ’f) |
o)
= Thousands of gadgets in just 23 seconds 40

JIT-ROP Attack Surface under HIPStR

PSR-only
HIPStR

R
o N

) OO

JIT-ROP Attack Surface
(in thousands)

M Eliminated Gadgets M Surviving Gadgets

Only 27 gadgets bypass migration — insufficient to construct a simple shellcode exploit.
41

Al

c
4
J

oA

Software Diversity vs ISA Diversity

Isomeron (NDSS 2015):

Why not migrate execution to a randomized version (isomer) of the
same ISA at the flip of a coin?

Migration Migration

N N
x86 X86' VS X86 ARM

< 7

Migration Migration

oA

Tailored Anti-Diversification Attacks

* NOP gadgets: Gadget performs useful operation in one ISA (isomer) and
acts as a NOP in another.

* Immutable gadgets: Gadget performs the same operation on both ISAs
(isomers) without clobbering any previously stored values.

HIPStR Attack Surface Reduction

o 1024
S 512
> 256
>
2 128
w
5 0 64
2 2 32
E &
3 W 1p
§ 8
o 4
(o}
X 2
1

7

(EEE—

\f)

Isomeron
—=PSR
-o—Heterogeneous-ISA
—=—=PSR + |someron
—e—H|PStR

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Migration Probability

Hundreds of gadgets survive Isomeron, but only 2 gadgets survive HIPStR

44 [m

oA

HIPStR Performance

Relative Performance

100% -
95% -
90% - @gﬁ?__———-_@
85% - I
80% - ’ : . . o
. @—‘—‘—‘—‘—‘—‘—‘—2—‘—@
70% - —e—|someron
65% 1 _a-PSR+Isomeron
(o) -
60% —e—HIPStR (with 256KB code cache)
(o) -
23;’ —a—H|PStR (with 2MB code cache)
(s 1 1 T T ! : I I |

0] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Migration Probability
HIPStR outperforms Isomeron by an average of 15.6%

oA

Key Points

* Harnessing ISA Diversity is important — it not just beneficial in terms of
performance and efficiency, but provides immense security benefits.

* HIPStR removes one of the last remaining constants available to the
attacker — knowledge of the underlying ISA.

* HIPStR outperforms the only other JIT-ROP defense by 15.6%, while
simultaneously providing greater protection against JIT-ROP, Blind-ROP,

and many evasive variants.

Thank You!

47

