Execution Migration in a
Heterogeneous-ISA Chip Multiprocessor

Matthew DeVuyst Ashish Venkat Dean M. Tullsen
University of California, San Diego

=
UCsSD

Heterogeneous multi-core processors

* Could be composed of both high-performance
power-hungry cores and low-performance

power-efficient cores

e Each core could be specialized for a different

class of application

* Application could migrate
b/w cores during different

phases of execution

I Cryptography
High
Performance

Low

Power | High
DLP

FP intensive |

Heterogeneous multi-core processors

* Prior research has shown that a single-ISA
heterogeneous multicore processor can

— Outperform a homogeneous one by about 63%"

— Achieve upto 69% energy savings with only 3% drop in
performance”

* However, that research restricts cores to a single ISA to

avoid issues during migration
Cryptography

* Isthat really a necessary High
! . Performance
constraint? Because reducing ;
. . ower :
the cost of migration could *[')'f:)‘
eliminate this restriction. FP intensive |

3
* Rakesh Kumar, Keith Farkas, Norm P. Jouppi, Partha Ranganathan, Dean M. Tullsen, MICRO’03

Our contention is. ..

* Restricting cores to a single ISA eliminates an
important dimension of heterogeneity

* |SAs are designed for different goals:
— High performance (x86)
— Energy efficiency (ARM)

— Reduced code size - Thumb ISA consumes 30% less
power due to code compression

— Domain specific instructions
— Compute bound vs memory bound?
— ILP vs DLP?

However. ..

* Execution migration is importantina
heterogeneous multicore processor

— To find the best possible core for an application or a
section of an application

— To move processes to a lower
power core when the power
cord is plugged out

FP
High Performance BRNE
Core Core

— To move applications to , L1
cooler parts of the system
once a thermal threshold is aeollU | Low Power
Specific Core Core

reached |

— To perform load balancing L2 Cache

L2 Cache

Why is migration a hard problem?

* Transfer of memory image

* Transformation of architecture-specific
program state
— Reorder objects in memory
— Fix pointers

* Creating register state

Opportunity for on chip heterogeneity

Machine 1 Machine 2

A
M
@ Memory

* The Tui System, University of British Columbia, March 1997

Memory image transfer
State transformation

Total time:
140 + 20 = 160 ms*

State transformation
Total time: 20 ms

Two implications here

* Very fast migration

e State transformation
cost is highly exposed

Outline

Motivation

Our strategy

Compiling for heterogeneous-ISA architecture
— Memory image consistency

Program State Transformation
— Overview of migration

— Stack transformation

— Binary translation

Conclusion

Our strategy
]

Kernel Space Heterogeneous-ISA Architecture

Stack
l ISA - | ISA - |l
L1 [- [
T L2 12
. 11 IsA-
Data Sections L2

(.data, .bss, .tbss, .sdata, etc) o

Code Code Code
Section Section Section
ISA-I ISA-II ISA-11I Same data section for all ISAs =» Objects must be

consistently referenced by the same address in all ISAs

Reserved
9

Memory image consistency

* Data section consistency

— Ensure objects are placed at the same location for
all ISAs

* Code section consistency

— Ensure function pointers point to the same
function for all ISAs

e Stack consistency

— Ensure objects on the stack are consistently
placed for all ISAs

Optimize steady state performance or
Program transformation cost?

Static Compilation

Low performance impact

Place global variables and
Functions at the same address

- Program transformer doesn’t
need to reorder global objects

Program Transformation
Low transformation cost

Transform register state from
one ISA to another

- Allows compiler to use efficient
register allocation strategies

Place objects whose addresses
are taken at known locations

- Program transformer doesn’t
need to fix pointers

Transform stack frames to use
conventions of other ISA

- Allows compiler to use efficient
register allocation strategies

11

At what points can we migrate?

* At every instruction?
— Object placement is uniform across all ISAs in all sections
— Requires no transformation at runtime

— Heavily sacrifices architecture-specific compiler optimizations

* At specific points of equivalence
— Objects are consistently placed with minimal transformation
— We use function call sites as points of equivalence

— To support instantaneous migration, binary translation is
performed till a point of equivalence is reached

Outline

 Compiling for heterogeneous-ISA architecture
(Memory image consistency)
— Data section consistency
— Code section consistency
— Stack consistency

Data section consistency

* Ensure consistent endianness and basic data type

* For each global data section, ensure that the
following are consistent across ISAs

— Number of objects
— Size of each object
— Relative order in memory

— Alignment and padding rules

* Ensure dynamic memory allocation gives the
same virtual address regardless of the ISA

Code section consistency

ISA-1

ISA - 2

Qnd_function

<% Y
Ga rt_code_section:\

Function
Definitions

same offset
PR A BN

padding —

>
Ga rt_code_sectiorm

nop

Qnd_fu nction j

15

Stack Consistency

e Stack interaction is carefully optimized for each ISA.
Most objects on the stack would have to be moved at
runtime.

* To minimize the number of transformations, ensure that
the following are consistent
— Direction of stack growth
— Size of each stack frame

— Offset of different regions of a stack frame from the frame
pointer (Add padding where necessary)

— Alignment of objects in a stack frame

e Allocate large aggregate objects and objects whose
addresses are taken at the beginning of a region

Stack Consistency —an example

N TN T

callee saved calleg LR
callee saved . registers
registers registers :
local variables
local variables +
local variables + caller saved
+ caller saved registers
caller saved registers (low to high)
registers (high to low)

(high to low) argument n Sgp
argument n . argument n
e argument 4 o
argument 0 argument 0

For the purpose of this research, we use only
ARM and MIPS

callee saved
registers

padding

local variables
+

caller saved
registers
(high to low)

padding

Sgp - padding
for X86, ARM

argument n

argument O

17

Outline

Motivation
Our strategy
Compiling for heterogeneous-ISA architecture

— Memory image consistency

Program State Transformation
— Overview of migration
— Stack transformation

— Binary translation

Conclusion

18

Overview of migration

Stack transformation on core -ll

Migration requested !!

Stack Heterogeneous-ISA Architecture

) ISA - | ISA - Il
L1 \ L1 |
Data Sections L2 | L2

PC =—b oL asA-
L2

PC o

Code Section Code Section
(ISA = 1) (ISA =11)

:>P\

Niativg treealéidoroarcooee 1 11 Native execution on core - I 19

Equivalence point

Execution Migration Timeline

Migration Requested

t=0 t=tl t=12 t=13
>
Native Executionon ISA 1 BmarY Stack . Natlv.e
Translation| Transformation| Execution
< > OnlISA2

Migration Overhead

Time

Migration Overhead = Binary Translation + Stack Transformation

20

Outline

Motivation

Our strategy

Compiling for heterogeneous-ISA architecture
— Memory image consistency

Overview of migration

Stack Transformation
— Mechanisms

— Results

Binary Translation

— Mechanisms
— Results

21

Stack Transformation

e Goal of stack transformation

— To move values of local variables in open function activations to
the right stack offsets

— To fix all return addresses
— To create register state for migrated-to core

 To perform this, we collect the following information
during compilation for each ISA

— Frame layout for each function

— Function call site details

— Location of variables at each function call site

— Sets of spilled caller and callee saved registers

— List of live registers across each function call site

Stack Transformation — An example

startup _routine()

live registers

live registers

1

local variables

return address

local variables

caller spill space

return address

caller spill space

variable UID

- ——— = =)

callee spill space

- —————)

local variables

callee spill space

return address

local variables

caller spill space

return address

live registers

]

callee spill space

caller spill space

local variables

callee spill space

return address

local variables

caller spill space

return address

caller spill space

23

Microseconds

Stack Transformation Costs

1200

Stack Depth =3 Stack Depth 30 Average Stack Depth =

1000 /'
800 /

600
/ B ARM to MIPS
400 j B MIPS to ARM
B lllll [
. | B
N & : &
&\6‘ R

.Q
e‘O ¢ @
Q

'b

QJ

X

9 é \\e}
>

‘“ K\

Directly proportional to number of frames processed (stack depth)
Average Stack Transformation cost = 300 ps

Copy + Transformation costs from prior research = 160 ms

> 500X Speedup 24

Execution Migration Timeline

Migration Requested

t=0 t=tl t=12 t=13
>
Native Executionon ISA 1 BmarY Stack . Natlv.e
Translation| Transformation| Execution
< > OnlISA2

Migration Overhead

Time

Migration Overhead = Binary Translation + Stack Transformation

25

Outline

Motivation
Our strategy

Compiling for heterogeneous-ISA architecture
— Memory image consistency

Overview of migration
Stack Transformation

Binary Translation
— Mechanisms
— Results

Conclusion

26

Binary Translation

Facilitates instantaneous migration

Classic JIT dynamic translation is performed at
the point of migration till an equivalence point
(function call) is reached

Conventional binary translators execute
trillions of instructions

We execute a smaller number of instructions
at the time of migration

Our binary translator is optimized for the
migration use case 27

Binary Translation —

source block 1

“from isa instrn”

indirect/conditional
branch/ function call

source block 2

“from isa instrn”

indirect/conditional
branch/ function call

source block 3

“from isa instrn”

indirect/conditional
branch/ function call

FErtaohftaimlertdd boddk

chaining translated block 1

“toisa instrn”

jump to TB 2

Translation
Engine

translated block 2

“to isa instrn”

)

Jump and link to T.E

translated block 3
Stack

“to isa instrn”

jump and link to T.E /

Transformer

[/I“

28

Multiple-entry Multiple-exit
Translation Block Chaining

— h > P

j q

TBZ

k

TB X

TBY

Performance Metrics

Native MIPS (# instructions = SRC)

translation translation

execution execution

MIPS on ARM (# instructions = TOTAL)

We measure two ratios
* Total to Source Ratio (TOTAL/SRC) — Includes translation costs

* Target to Source Ratio (TGT/SRC) — Excludes translation costs

Both these ratios must be as low as possible for best performagoce

When the next function call is miles away...

>

Native MIPS
translation translation
—————— P—————— - D>

execution execution
MIPS on ARM

>

Native MIPS
translation translation
—————— PP = = = = D———D>_ = >

execution execution execution from code cache
MIPS on ARM

* Execution mostly happens from code cache by virtue
of MEME chaining

* TOTAL/SRC = TGT/SRC

31

Expected Time To Next Call Site

70
60
50
40
30
20
10

Dynamic Instructions (millions)

0

L .

bzip2 crafty gap gzip mcf parser perlomk twolf vortex vpr
B ARM — No dummy calls B MIPS — No dummy calls
ARM - With Dummy Calls M MIPS - With Dummy Calls

* Bzip, gap and mcf have millions of instructions to translate before next
function call

 Dummy calls reduce binary translation time but affect native performance

32

Binary Translation Costs
- Total to Source Ratio

350

300
2

200

150

100

50

0

bzip2 crafty gzip parser perlbmk twolf vortex
|

ARM to MIPS = B MIPS to ARM

Ul
o

Total to Source Ratio

* bzip2, gap and mcf have millions of instructions to translate before reaching a

function call, and perl has a long running loop.
* They spend most of the time in code cache by virtue of MEME chaining
33

When the next function call is miles away...

>

Native MIPS
translation translation
—————— P—————— - D>

execution execution
MIPS on ARM

>

Native MIPS
translation translation
—————— PP = = = = D— = D

execution execution execution from code cache
MIPS on ARM

e TOTAL/SRC = TGT/SRC
* So, we still want TGT/SRC ratio to be low

34

Target to Source Ratio

Binary Translation Costs
- Target to Source Ratio

3.00

2.50 -

2.00 -

1.50 -

1.00 -

0.50 -

0.00 -

bzip2 crafty gap gzip mcf parser perlbmk twolf vortex

B ARM to MIPS B MIPS to ARM

Lower the target-to-source ratio, better the performance

vpr

35

ISA-specific optimizations

* Lazy condition code evaluation
— Evaluate a condition code only when necessary
* Register Allocation
— Map frequently used SRC registers to registers in TGT
— Cache frequently used unmapped registers
— Use adaptive register allocation strategies

e Cache frequently used immediate values

e Other optimizations
— Group predicated instructions
— Lazy PC update
— Constant folding/Constant Propagation

Target to Source Ratio

Target to Source Ratio

ISA specific optimizations

ARM to MIPS

¥ No optimization

B Lazy CC Evaluation
“ All Optimizations

MIPS to ARM

B Without Register/Immediate Cache
B With Register/Immediate Cache

37

Execution Migration Timeline

Migration Requested

Binary Stack Native
Translation| Transformation| Execution
> onlISA 2

Native Executionon ISA 1

<€

Migration Overhead

Time

Migration Overhead = Binary Translation + Stack Transformation
Total Performance Overhead =
Native execution (overhead due to static compilation) +
Binary Translation +
Stack Transformation

38

Total Performance Overhead

1

o 0.9

(&)

: - -

g ——compilation overhead

s 0.85

"5 —compilation + stack transformation overhead

a

0.8 I . .
compilation + stack transformation + binary
translation overhead
0.75
0 100 200 300 400 500 600

Migration frequency (milliseconds)

* Performance vs. migration frequency when migrating back and forth
between an ARM core and a MIPS core

e With migrations occurring every 87 milliseconds (nearly every timer
interrupt), performance drops down by just about 5% .

Conclusion

* Current heterogeneous multicore architectures do not
allow dynamic migration between heterogeneous cores.

* Recent research proposals allow migration, but constrain
heterogeneity to a single ISA.

 QOur execution migration strategy all but eliminates this
barrier, enabling the architect to exploit the full benefits
of heterogeneity.

e By significantly reducing the cost of memory
transformation and employing fast binary translation,
total overhead is reduced to less than 5% even if
migrations happen at nearly every timer interrupt.

Thank Youl!

