
Speculative Code Compaction: Eliminating Dead Code via
Speculative Microcode Transformations

Logan Moody∗, Wei Qi∗, Abdolrasoul Sharifi∗, Layne Berry∗, Joey Rudek∗, Jayesh Gaur†,
Jeff Parkhurst‡, Sreenivas Subramoney†, Kevin Skadron∗, and Ashish Venkat∗

∗Department of Computer Science, University of Virginia
{lgm4xn, wq4sr, as3mx, vlb9ae, jer5ae, skadron, venkat}@virginia.edu

†Processor Architecture Research Lab, Intel Labs
{jayesh.gaur, sreenivas.subramoney}@intel.com

‡Intel Corporation
jeff.parkhurst@intel.com

Abstract—The computing landscape has been increasingly
characterized by processor architectures with increasing core
counts, while a majority of the software applications remain
inherently sequential. Although state-of-the-art compilers fea-
ture sophisticated optimizations, a significant chunk of wasteful
computation persists due to the presence of data-dependent
operations and irregular control-flow patterns that are unpre-
dictable at compile-time. This work presents speculative code
compaction (SCC), a novel microarchitectural technique that
significantly enhances the capabilities of the microcode engine to
aggressively and speculatively eliminate dead code from hot code
regions resident in the micro-op cache, and further generate a
compact stream of micro-ops, based on dynamically predicted
machine code invariants. SCC also extends existing micro-op
cache designs to co-host multiple versions of unoptimized and
speculatively optimized micro-op sequences, providing the fetch
engine with significant flexibility to dynamically choose from
and stream the appropriate set of micro-ops, as and when
deemed profitable.

SCC is a minimally-invasive technique that can be imple-
mented at the processor front-end using a simple ALU and a
register context table, and is yet able to substantially accelerate
the performance of already compile-time optimized and machine-
tuned code by an average of 6% (and as much as 30%),
with an average of 12% (and as much as 24%) savings in
energy consumption, while eliminating the need for profiling
and offering increased adaptability to changing datasets and
workload patterns.

Keywords-Microarchitecture, Speculation, Optimization

I. INTRODUCTION

The slowdown of Moore’s law has driven the micro-

processor industry to a formidable inflection point that

has been characterized by consistently diminishing rates of

improvement in the execution efficiency of modern general-

purpose processors, which continue to drive a substantial

chunk of the world’s computational demands. The software

landscape, on the other hand, has evolved rapidly over the

years, resulting in the emergence of complex workloads with

vastly diverse execution characteristics, exposing the already

widening semantic gap between the executable code and the

execution hardware.

Modern workloads, such as graph, media, and healthcare

analytics, increasingly feature data-dependent computation

and control flow patterns that often vary considerably with

changing datasets and configuration parameters [1], [2], [3],

[4]. This has greatly reduced the effectiveness of conven-

tional compiler optimizations that rely on hoisting program

invariants identifiable at compile-time to eliminate redundant

computation and further apply machine-specific optimizations

to the residual code. Run-time optimizations [5], [6], [7],

[8], [9], on the other hand, have largely been profile-guided

and conservative in nature, significantly limiting their ability

to adapt to changing execution profiles as datasets evolve,

notwithstanding high profiling overheads and deployment

costs. These obstacles have highlighted the pressing need for

systems that can aggressively and yet seamlessly optimize

machine code, adapting to the execution environment, even

post-compilation and post-deployment.

The key to this research is the observation that modern

datasets offer remarkable predictability, because data access

and control flow patterns in many workload-dataset pairs

manifest as invariants across long execution intervals, some-

times even spanning multiple program phases, unmasking a

heretofore untapped pocket of opportunity for speculatively

optimizing such code paths at run-time. This paper presents

speculative code compaction (SCC), a novel scheme for

speculatively optimizing machine code in execution to expose

and eliminate dead code, entirely at runtime within the

processor, based on dynamically predicted data and control

invariants, thereby enabling the continuous optimization of

inherently sequential code.

SCC is a prediction-driven microarchitectural technique

that advances state-of-the-art dynamic binary optimization

schemes in several important ways. First, it leverages the

rich contextual knowledge available from a wide array of

in-processor speculation techniques such as branch pre-

diction, address prediction, and value prediction to track

deterministic computational patterns in hot code regions and

further transform an instruction sequence in execution into



a compact stream of speculatively optimized instructions.

Second, it opens the door to the deployment of aggressive

and speculative dead-code elimination techniques that have

been traditionally deemed unsafe, thanks to the processor’s

ability to rollback execution to a safe point in the event of a

misprediction by flushing speculatively optimized instructions

and redirecting execution to the corresponding stream of

unoptimized instructions. Third, by exploiting predictability

as the basis for optimization, it offers seamless adaptability

to changing datasets and workload patterns, unlike existing

schemes that either require extensive profiling or tend to

make conservative assumptions when they lack adequate

context about the dynamic execution behavior.

More importantly, SCC is a minimally-invasive, hardware-

only strategy that neither requires the construction and

analysis of control-flow graphs or dynamic execution traces,

nor entails the application of multiple passes of sophisticated

optimizations, and is yet able to look ahead multiple hot

basic blocks (e.g., those that are resident in the micro-op

cache) to eliminate dead code in one single pass. In fact,

by extending the processor’s microcode engine to include a

simple ALU and a small architectural register file to track

data invariants, SCC is able to apply a suite of standard

peephole optimizations, including constant folding, constant

propagation, branch folding, and dead code elimination, in a

single pass, to speculatively transform a given sequence of

hot micro-ops into a more compact stream.

Due to the inherently speculative nature of our technique,

its profitability depends greatly upon the number and range of

speculatively identified data/control invariants, the confidence

in our predictions, and the overall coverage we are able to

achieve. Relying on only high confidence predictions might

yield fewer speculative invariants, resulting in low overall

code compaction. On the other hand, liberal use of invariants

predicted with low confidence might potentially allow for

more aggressive code compaction, but also significantly

increases the risk of squashing due to frequent mispredictions.

One of the major contributions of this work is an extensive

profitability analysis to identify an appropriate set of target

code regions that are amenable to run-time speculative trans-

formations, along with their associated predicted invariants

that yield the maximum gains. As a by-product of this

analysis, we arrive at several interesting insights that redefine

conventional branch and value prediction design practices,

in the renewed context of speculative code compaction.

Furthermore, to avoid the repeated cost of applying our

speculative transformations on the same code region, we

propose novel extensions to existing micro-op cache designs

to co-host multiple (unoptimized and speculatively optimized)

versions of micro-op sequences, enabling the processor

front-end to dynamically choose from alternate versions

based on the profitability analysis, and further stream the

appropriate set of instructions out of the micro-op cache.

There are substantial benefits to providing the front-end with

this choice and flexibility. First, it allows us to gracefully

recover from mispredictions by seamlessly switching to the

appropriate unoptimized micro-op sequence in the micro-

op cache, when available. Second, it allows us to cater to

oscillating data and branch access patterns by appropriately

chaining together multiple versions of speculatively optimized

micro-op sequences. Third, it equips us with the ability to

quickly react to changes in the dynamic execution behavior

(e.g., reaching the end of a hot loop) where a predicted

invariant may no longer continue to hold.

In summary, we make the following major contributions:

• We introduce SCC, a novel microarchitectural technique

that has the ability to leverage speculatively identified

program invariants to accelerate inherently sequential

and statically compile-time optimized code, without the

need for profiling, compiler metadata, or other source-

level information.

• Our technique is minimally invasive and can be imple-

mented completely within the processor front-end at

less than 1.5% in area overhead.

• We propose novel micro-op cache extensions to co-

host unoptimized and speculative optimized instruction

sequences, providing the front-end with significant

flexibility to choose from and stream the most profitable

instruction sequence at run-time.

• We conduct extensive profitability analyses and sensi-

tivity studies to understand the impact of speculative

processor features such as branch and value predictors

in the context of speculative code compaction.

• Overall, we achieve an average speedup of 6% and

as much as 30%, while saving an average of 12% on

average and as much as 24% in energy consumption.

II. RELATED WORK

In this section, we discuss relevant literature that is

most closely related, and further elucidate the distinguishing

aspects of the proposed work.

Dynamic Binary Optimization. Multiple software-

based dynamic binary instrumentation frameworks, such

as PIN [10], Valgrind [11], and DynamoRio [12], have

been proposed for program inspection, shepherding, security

hardening, performance analysis, binary lifting, and dynamic

optimizations among other applications [5], [6], [7], [8],

[9], [13], [14], [15], [16], [17], [18], [19], [20], [21], [22].

These techniques rely on heuristics and profiling information

to identify data and branch access patterns useful for

dynamic optimizations and machine-specific tuning. While

offline profiling requires multiple representative runs of

the application to accurately capture stable, representative

execution characteristics, online profiling may be limited to

certain hot-code regions to amortize the high cost of dynam-

ically probing performance counters and other management

overhead, resulting in low coverage for many applications.

These approaches also typically rely on a software-based code



cache to store optimized code regions that are sufficiently hot,

thereby avoiding the repeated cost of run-time optimization.

However, unlike SCC, these approaches lack the flexibility of

automatically switching back and forth between unoptimized

and different speculatively optimized versions of the code,

seamlessly adapting to changing workload patterns.

Superoptimization. Massalin [23] first introduced the

idea of superoptimization – a technique that can further

reduce a compile-time optimized machine code sequence

into a functionally equivalent, but more compact and optimal

instruction sequence, greatly enhancing the quality of the

generated code. Since then, a number of superoptimiza-

tion [24], [25], [26], [27], [28], [29], [30], [31], [32],

[33] strategies have been described, with some relying on

classical peephole rules (e.g., constant folding, simple if-

conversion, redundant load elimination, etc.), and some others

automatically generating rules for optimization via stochastic

methods, implemented using standard static and dynamic

binary translation techniques. While SCC shares their goal

of optimizing already compile-time optimized machine code,

the microcode transformations that it deploys are aggressively

speculative and completely realized in hardware, and more

importantly, do not require functional equivalency tests.

Trace Caches and Trace Processors. Rotenberg, et

al. [34] introduced trace caches, which augment the pro-

cessor’s front-end with the ability to construct and cache

long streams of dynamic instructions called traces that span
multiple hot basic blocks that are not necessarily contiguous

in the instruction cache, implicitly predicting or “folding”

branches and thereby greatly improving the fetch throughput.

They further propose trace processors [35] that allow for the

parallel scheduling and execution of multiple independent

traces as a unit, opening the door to a variety of ILP-

enhancing optimizations [36], [37], [38], [39], [40], [41],

including instruction scheduling, move elimination, constant

propagation, and collapsing dependency chains.

Despite their potential benefits, trace processors tend to

suffer from inefficiencies that arise due to management and

storage overheads. In particular, trace-based optimizations

have been shown to be profitable only when multiple

independent execution traces that are sufficiently long are

made available for optimization. However, capturing and

caching long traces that don’t overlap is known to incur non-

trivial overheads in terms of latency, power, and hardware

complexity [42], [43], [44], [45]. The effectiveness of trace

caches and trace processors is also highly dependent on

their ability to accurately predict branch directions and

confidence, in order to construct stable traces [46]. Although

Intel’s Pentium 4 based on the Netburst microarchitecture

featured trace caches, they were discontinued in subsequent

generations and have since been replaced by simpler micro-

op caches [47] used to store decoded micro-ops, eliminating

the repeated cost of decoding complex x86 instructions into

internal micro-ops when cached translations are available.

Micro-op caches have been staple feature of Intel processors

since the Sandy Bridge microarchitecture.

SCC differs from trace processors in several key ways.

First, SCC is a lightweight, frontend-only enhancement

geared toward supplying the execution engine with a compact

instruction stream that is devoid of dead code, unlike trace

processors, whose primary goal is to extract and exploit

greater instruction-level parallelism by creating, scheduling,

and executing multiple independent traces in parallel using

dedicated trace processing engines. Second, unlike trace

processors, SCC does not construct long execution traces,

but simply generates a more compact version of decoded

micro-ops that are already resident in the micro-op cache,

thereby considerably alleviating concerns related to creation,

storage, and management of long traces. Third, while trace

processors also rely on value prediction to predict live-ins

to individual traces for enabling trace-level parallelism, SCC

takes a general and more aggressive approach by using

high-confidence predictions for potentially every instruction

during the compaction process. This allows for greater code

compaction even for highly optimized and machine-tuned

code, unlike trace-based optimizations whose effects tend to

wane as the level of optimization increases [48]. Fourth, by

allowing the fetch engine to choose from multiple versions of

optimized and unoptimized micro-op streams, SCC provides

significant flexibility by enabling speculative optimizations

only when deemed profitable.

Decode- and Rename-Time Code Customization. Code-
morphing architectures such IBM’s DAISY [30], Transmeta’s

Crusoe [49], and Nvidia’s Tegra K1 Denver [50] feature

a software- or firmware-based binary translation layer to

dynamically translate and optimize machine code from one

instruction set architecture to another. Further, several other

lightweight schemes for editing and customizing dynamic

instruction streams have been proposed in the literature for a

wide range of applications including silent store elimination,

reference combining, bounds checking, code decompression,

debug support, and on-demand de-vectorization [51], [52],

[53], [54], [55], [56], [57], [58], [59], [60]. In addition, Kotra,

et al. [61] demonstrate that micro-op cache is fragmented due

to terminating conditions and propose a Cache Line boundary

AgnoStic uoP cache design (CLASP) and compaction to

address the fragmentation. While some of these schemes

are deployed at the microcode engine, none of them take

advantage of data/control predictability to transform decoded

micro-op sequences into a more compact stream of specu-

latively optimized micro-ops, and most of them introduce

greater hardware complexity and power/area overhead, in

comparison to SCC that incurs just 1.5% in area overhead.

Furthermore, register renaming in modern out-of-order

superscalar processors offers an important avenue for opti-

mizing away redundant operations. This has been exploited

in multiple prior academic works [62], [63], [64] to per-

form move elimination, reassociation, constant propagation,



redundant-load elimination, and silent-store elimination,

among other optimizations. Recent Intel microarchitectures

feature several rename-time optimizations including move

elimination and zero/one idiom evaluation. However, the

key difference here is that SCC applies its transformations

based on dynamically-predicted program invariants rather

than the current register state, allowing for the exploitation

of a larger window of opportunity, resulting in a substantially

greater reduction in the overall dynamic instruction count.

In addition, EOLE [65] proposes an early execution scheme

such that instructions whose operands are immediate or

predicted can be executed in place, in-order without being fed

into the out-of-order engine. Finally, Perais [66] shows that

rename-time move elimination and zero/one idiom evaluation

may be leveraged to speculatively eliminate instructions

whose operands may be predicted. While SCC also leverages

value prediction to speculatively identify data invariants and

eliminate instructions, it does so earlier in the pipeline by

tracking hot code regions in the micro-op cache and employs

a wider range of optimizations.

Event-Driven Optimization. The literature also describes

several hardware-based event-driven and lead-follower ap-

proaches to dynamically optimize machine code in execution.

These approaches typically leverage a spare hardware context

to deploy a helper thread whose goal is to accelerate a given

main thread in execution by targeting a wide range of low-

level optimizations including prefetching, folding delinquent

branches, eliminating redundant computation along forward

load slices, and speculative parallelization of hot loops [67],

[68], [69], [70], [71]. In contrast, SCC does not need a spare

hardware context and is able to apply all of its speculative

transformations in a single pass.

Transactional Memory. Transactional Memory (TM) [72]

introduced the idea of executing code as a sequence of atomic

transactions, such that each transaction is validated before

committed, and if validation does not pass, the transaction

is aborted with no side effects and re-executed. While

Hardware Transactional Memory (HTM) entails significant

additional hardware complexity, Software Transactional Mem-

ory (STM) [73] can be implemented using first class C/C++

constructs [74] to block non-transactional accesses to a

memory location being accessed by an unfinished transaction.

However, software-based isolation barriers might incur a

high performance penalty, calling for sophisticated barrier

optimization techniques [75].

TM can also be used to support Thread Level Speculation

(TLS) [76], [77], [78], [79], a runtime technique that allows

multiple parts of sequential code to be run in parallel by

opportunistically assuming that they can be run in parallel

and rolling back upon violations. Our work falls into the

same general realm of dynamic optimization techniques, but

TM has not been applied to instruction-level optimizations

such as the ones discussed in this paper. Further, although

TM semantics include the ability to roll back state due to

instructions already retired from the reorder buffer, they may

be too heavyweight for tasks such as code compaction. It is,

however, an interesting direction for future work.

III. ARCHITECTURAL OVERVIEW

The key motivation behind this research is that modern

workloads spend a substantial chunk of their lifetime exe-

cuting a small number of hot-code regions, characterized by

predictable computational patterns that tend to manifest as

invariants over long execution intervals.

Modern processor front-ends and microcode engines have

the ability to not only track and cache hot code regions

in on-chip buffers such as the micro-op cache, but also

provide valuable snapshots of predictable computational

patterns through speculative features such branch and value

predictors. In this section, we provide a detailed architectural

overview of SCC that exploits and extends these fundamental

processor features to realize substantial gains in single thread

performance and efficiency.

Speculative Code Compaction. The central element of our

architecture is a speculative code compaction unit (shown in

Figure 1) that leverages these fundamental processor features

to analyze and transform hot micro-op sequences in the

micro-op cache, spanning as many as three micro-op ways

within a set (roughly 18 fused micro-ops or a 32-byte native

x86 code region), into one or more compact and speculatively

optimized micro-op sequences. In particular, when a micro-

op cache line reaches a preset hotness threshold, a code

compaction request is initiated by the processor front-end

and is queued up in a request queue that is appropriately sized

based on the fetch width of the processor. Our experiments

indicate that, on a processor modeled after Intel’s Icelake

architecture, even a request queue with as low as 6 entries

is capable of identifying several hot code regions amenable

for speculative code compaction.

In the next cycle, the request is dispatched to the SCC

unit, if available, at which point, it speculatively transforms

the micro-op sequence at the requested address, processing

one instruction every cycle, based on dynamically predicted

program invariants leveraging hints from in-processor features

such as the branch predictor, loop stream detector, and value

predictor. The SCC unit itself includes: (1) a register file

to track speculatively identified live integer and condition-

code registers, and (2) a simple integer ALU to evaluate

and speculatively eliminate dead code. Due to the front-

end placement of the integer ALU, we take a conservative

latency/power-sensitive approach by restricting the range of

operations it can perform to only simple integer arithmetic,

logic, and shift operations; as a result, the SCC unit in

our implementation forgoes optimization of floating-point

arithmetic, loads and stores, and complex integer operations

such as multiply and divide, but this would be an interesting

area for future work. However, despite this restriction, we

observe substantial reductions in the dynamic instruction



Figure 1: Architectural Overview of Speculative Code Compaction

count for most applications, including some that feature

intense floating-point activity, due to the sheer ubiquity of

code regions that use integer arithmetic and logic operations.

The SCC unit also interfaces with predictor units in the

processor to identify potential data and control invariants

that can be confidently predicted. In our experiments, we

observe that most 32-byte code regions are small enough

that they tend to use no more than four data invariants and

two control invariants that are speculatively identified. Based

on the type of the micro-op being processed and the set of

data and control invariants, the SCC unit is able to either

evaluate and speculatively eliminate the micro-op leveraging

the ALU or speculatively perform a suitable addressing

mode transformation on it, such as constant propagation

by conversion from register-register to register-immediate

format. The transformed micro-op is then placed in an

appropriately sized write buffer (can store 18 micro-ops

in our implementation modeled after Icelake), so that the

SCC unit can proceed to the next micro-op in sequence in

the next cycle.

Since the SCC unit operates in parallel with other existing

fetch logic that probes the predictors, we double the pre-

diction width (along with the associated logic) to allow the

fetch engine to simultaneously read two predictor entries at

once. We model this in CACTI [80] and report the associated

area and peak power overheads in Section VII. We also note

that a single copy of the prediction histories is maintained

in the predictor and therefore, when the SCC unit probes

the predictor for speculatively identifying potential data or

control invariants, it will provide a prediction based on the

current execution state, rather than the state it would be

in when the corresponding compacted instruction stream is

about to execute post-optimization. This limitation means that

when an optimized sequence of micro-ops is streamed, the

associated invariants might be identified using histories that

are potentially out-of-date. However, as detailed in Section V,

our profitability analysis unit ensures that an optimized micro-

op sequence is streamed only if the predicted invariants match

up with the current state of the predictor, thereby eliminating

potential squashing scenarios due to stale predictions.

The code compaction process is considered complete once

an appropriate stopping condition is reached. This is similar

to the criteria used in Intel processors to decide when to

stop streaming micro-ops from micro-op caches. In this

particular implementation of SCC, a stopping criteria is

satisfied when (a) the end of a 32-byte code region is reached,

(b) a micro-op cache miss occurs, or (c) more than two

branches are encountered in a 32-byte code region. The



Figure 2: Extensions to the Micro-Op Cache Organization and Line Selection Logic

resulting compacted instruction stream in the write buffer is

committed to the appropriate location in the micro-op cache,

if a predefined compaction threshold is reached, failing which

the contents of the write buffer are discarded.

Furthermore, while SCC is able to perform speculative

optimizations across basic blocks by identifying control

invariants and folding branches, it does not have the ability

to do so when presented with self-looping instructions where

the macro-operation is broken down into several micro-ops

with one of them being a branch micro-op whose target lies

within the same macro-operation (a common occurrence in

x86-based string manipulation instructions). When such self-

looping instructions are encountered or when self-modifying

code is detected, the compaction process is considered

aborted. However, we note that our ability to detect self-

modifying code during speculative code compaction is

limited to identifying stores whose addresses: (a) manifest

as speculative data invariants, and (b) occur in the same

32-byte code region that is currently being optimized (i.e.,

same index and tag bits).

Micro-Op Cache Extensions. In accordance with our goal

of timely acceleration of sequential code, we extend existing

micro-op cache designs to co-host multiple (both unoptimized

and optimized) versions of micro-op sequences, to avoid the

repeated cost of dynamic code transformation. Similar to

multithreaded implementations of Intel micro-op caches [81],

[82], [83], we divide the micro-op cache to include separate

partitions for unoptimized and optimized micro-op sequences

(as shown in Figure 2). The fetch state machine at the front-

end is also suitably modified with the ability to dynamically

choose from the different versions when available and further

stream the appropriate set of micro-ops out of the micro-op

cache. In particular, the index bits of the address is used

to simultaneously index into both partitions and then tag

comparison is performed to identify the appropriate line.

However, due to the fact that multiple optimized versions of

a given code region may be found in the micro-op cache, it is

possible that we produce one hit in the unoptimized partition

and multiple hits in the optimized partition. To identify the

most profitable instruction sequence to stream, we extend the

line selection logic for the optimized partition to only select

those lines that meet a dynamically identified confidence

threshold (see Section V) and then compute a profitability

score (which is essentially a sum of all confidence counters

and the compaction potential measured as the shrinkage in

the number of instructions) that allows it to select the most

profitable instruction stream.

We also extend the tag array of the unoptimized partition

to include a lock bit per cache line that will be turned on

for those lines currently under code compaction to ensure

that they do not get evicted. Note that a maximum of 3

cache lines (i.e., 18 fused micro-ops that belong to the same

32-byte code region) may be locked at any point of time,

as that is the granularity of optimization, unlike trace-based

architectures that tend to benefit from longer traces. Further,

compacted streams that correspond to a 32-byte code region

in the optimized partition are tagged by a set of saturating

counters to track confidence for each of the predicted invariant

(both data and control) in the compacted streams. In our

experiments, we find that the best performance benefits are

derived through aggressive speculation, and as a result we use

4-bit saturating counters for each of the predicted invariant,

allowing us to track a large spectrum of confidence levels.

As described in Section V, these counters are updated during

instruction execution whenever a prediction is validated.

Fetch Streaming Decisions. Given that the micro-op cache

can contain multiple versions of speculatively compacted

micro-op sequences, the fetch engine is tasked with the

decision of choosing from and streaming the most profitable

micro-op sequence into the pipeline, among the various



Figure 3: Example illustrating Speculative Code Compaction

choices available. To this end, the fetch engine is equipped

with a profitability analysis unit that makes a decision

based on three important heuristics – (a) code compaction

potential, (b) confidence levels of predicted invariants, and

(c) hotness of the compacted code region. It is important to

examine all three heuristics in unison since the greatest

performance benefits can be derived only by streaming

hot code regions that are characterized by both high code

compaction potential and low risk of squashing due to

mispredictions. The code compaction potential is measured as

the number of instructions eliminated by SCC for a particular

unoptimized micro-op sequence, and the confidence levels of

the predicted invariants are tracked using confidence counters

in the extended tag array. The hotness of any given line (in

both optimized and unoptimized partitions) is tracked using

hotness counters that get incremented every time the line is

accessed and decremented periodically. Note that we identify

the time period for decreasing hotness through a design

exploration that identifies the best threshold (at which the

highest performance is observed) for both the baseline and

SCC (specifically, every 3 cycles for optimized code and

every 28 cycles for unoptimized code).

Misprediction Recovery. Due to the aggressive application
of speculative transformations and the fact that the processor

front-end typically churns instructions at a much higher rate

than the rest of the pipeline, our proposed approach is prone

to occasional misspeculation scenarios. Therefore, it is critical

that we detect and recover from such scenarios as early in the

pipeline as possible, to preserve the performance gains due

to speculative code compaction. To this end, we leverage and

extend already-existing misprediction recovery mechanisms

in modern processors to minimize wasted processor cycles

due to misspeculation and further seamlessly redirect control

to the appropriate unoptimized micro-op sequence in the

micro-op cache when present, to ensure a quick turnaround.
However, as part of the prediction resolution/recovery

process, we also update invariant confidences for a compacted

instruction stream when a squash or commit signal is received.

This allows us to not only reward profitable instruction

streams whose predicted data and control invariants continue

to hold with high confidence for a long period of time, but

also gradually phase out stale ones whose predicted invariants

no longer, hold from the micro-op cache.

IV. SPECULATIVE CODE COMPACTION

The speculative code compaction process outlined in

the previous section entails the application of one of the

following speculative transformations on each micro-op being

processed. Note that the SCC unit processes micro-ops from

the unoptimized partition one at a time, and in program order.
Speculative Data Invariant Identification. Recall that

the SCC unit maintains an architectural register file to track

potential live values generated along the way. For any micro-

op being processed by the SCC unit, its corresponding source

operands are first looked up in the register file. If no live

values are found, it attempts to speculatively identify a

potential invariant by probing the value predictor for the

predicted outcome of the micro-op. If a sufficiently high-

confidence prediction is available, the predicted outcome is



recorded as a speculative data invariant in the SCC register

file, so that it can potentially be used while performing

speculative transformations such as constant propagation or

constant folding on a subsequent dependent micro-op.

If a speculative invariant is identified for a given micro-

op, it is marked as a prediction source and is retained in

the compacted instruction stream to allow us to recover

from a potential value misprediction. Note that prediction

sources may not be eliminated as they are used for validating

predictions. This is illustrated in Figure 3(a), where the load

micro-op is speculatively identified as a prediction source

and the register t1 as a speculative data invariant. We find

that redundant loads that access hot data structures, such as

large matrices that are infrequently updated, but frequently

accessed, are one of the prime sources of speculative data

invariants, in addition to highly predictable program counter-

relative loads that access data from constant pools.

Speculative Constant Folding. If the values of all

the source operands of the micro-op being processed are

available and valid in the SCC register file (i.e., they were

identified as speculative invariants by an older micro-op in

the unoptimized instruction stream being processed), they

are fed as live input values to the SCC ALU, which then

speculatively evaluates the micro-op as a constant expression,

and subsequently eliminates it as dead code. Following our

example in Figure 3(a), the addi instruction has one of its

source operands register t1 available in the SCC register

file as a live value (previously identified as a speculative

invariant). Since its other source operand is an immediate

value, the entire operation can be speculatively folded away,

eliminating the entire micro-op. The destination register t2
is recorded as a live out in the SCC register file with its

speculatively folded value (in this case, 12).

Speculative Constant Propagation. If the values of only

some source operands are available in the SCC register file,

an addressing mode transformation is applied such that the

micro-op is converted to its corresponding immediate version.

That is, speculative data invariants that manifest as constants

are encoded in the immediate fields of the micro-op. This

entails editing appropriate fields in the decoded micro-op to

ensure that the respective source operands are immediately

available as constants rather than requiring a register lookup.

In our example from Figure 3(a), this transformation is

applied on the add micro-op, since its source operand t5
is not available as a live value in the SCC register file,

although its other source operand t2 is. Note that constant

propagation reduces the number of renaming operations

and register lookups, while simultaneously improving the

effective instruction-level parallelism, due to fewer overall

read-after-write dependencies.

Speculative Branch Folding. If the micro-op is a control

instruction, but the branch direction and target can be deduced

based on the speculatively identified live values in the SCC

register file, the entire branch can be eliminated. Further, the

SCC unit is then instructed to pivot and start processing micro-

ops at the speculatively identified branch target, in the next

cycle, provided that they are resident in the micro-op cache.

This is illustrated in our example from Figure 3(b), where the

beq instruction gets eliminated since the branch direction and

target can be evaluated based on the speculatively identified

live values of its source registers t1 and t3. In this particular

case, the branch direction speculatively evaluates to taken,
and the SCC unit is instructed to pivot to the add micro-op

that can be found at the branch target.
Speculative Control Invariant Identification. Similar to

the case of speculative data-invariant identification, the SCC

unit may also probe the branch prediction unit to identify

potential control invariants, in case the micro-op being

processed is a branch operation that cannot be folded. Again,

if a high-confidence prediction is available, the instruction

is marked as a prediction source and therefore may not

be eliminated). Just like the case of speculative branch

folding, the predicted target is then used in the next cycle

to obtain the next micro-op to be processed, as long as it

is resident in the micro-op cache. This can be observed

from our example in Figure 3(c), where the beq instruction

is speculatively identified as a prediction source, and is

predicted by the branch predictor to be taken with high

confidence. As a result, the SCC unit starts processing micro-

ops at the predicted target (i.e., loop) in the next cycle.

This allows us speculatively identify values that manifest as

invariants across different basic blocks, uncovering greater

potential for dead code elimination, as shown in the example.

Inlining Live Outs. Finally, for every micro-op that

is a prediction source (both data and control sources),

all speculatively identified live data values in the SCC

register file, excluding the one generated by that micro-

op, are marked as live outs, to be made visible at the

time of instruction rename, similar to existing rename-time

optimizations such as move elimination. This ensures that the

register state remains consistent in the event of a potential

value misprediction. Live outs are also inlined at the end

of every compacted instruction stream (i.e., when the last

micro-op of a compacted instruction stream is issued), so that

they become immediately available to subsequent younger

instructions in the pipeline. To perform this efficiently, we

leverage existing rename-time schemes such as Physical

Register Inlining [84] that has the ability to efficiently track

constants of narrow widths in renaming structures, thereby

limiting the impact on access latency and hardware overhead,

and then propagate them to dependent instructions. We

include a sensitivity analysis in Section VII to evaluate the

feasibility of leveraging such techniques.

To illustrate the full process of speculative code compaction

for a given hot code region resident in the micro-op cache,

consider Figure 4, which shows (a) a compiler-optimized

basic block in the SPEC CPU 2017 benchmark, xalancbmk,
that consists of 7 native x86 instructions, (b) its corresponding



Figure 4: Speculative Code Compaction on a hot kernel found in the SPEC CPU 2017 application xalancbmk

Figure 5: Fetch State Machine extended for SCC

micro-op translation, which consists of 13 micro-ops, and (c)

the compacted version of the given unoptimized micro-op

sequence, which consists of just 4 micro-ops, completely fold-

ing away the branch, redirecting execution to the appropriate

branch target.

V. THE FETCH STATE MACHINE

In this section, we describe extensions to the fetch unit

that allow us to make profitable streaming decisions and

gracefully recover from misspeculation, thereby maximizing

the gains due to speculative code compaction.

Figure 5 shows the modified state machine for an x86-

based fetch engine that already has the ability to switch back

and forth between the micro-op cache and the traditional

decode pipeline. Note that SCC introduces an additional

source for fetching micro-ops, i.e., the optimized micro-op

cache partition, and in ensuring that micro-op sequences

are sourced profitably from the appropriate partitions, it

introduces a few additional transitions to the fetch state

machine, the rationale for which is described below.

Profitability Analysis. Given the inherently speculative

nature of the proposed transformations, it is imperative that

the fetch engine selectively optimizes only those micro-op

sequences where the benefits of SCC outweigh the potential

squashing overheads. To this end, we modify the fetch engine

such that it is able to (a) dynamically identify and reward

well-behaving speculatively-optimized instruction streams

that are characterized by high compaction but incur few

mispredictions if any, and (b) penalize and eventually phase

out instruction streams whose predicted invariants have

become stale over time, not only limiting squashing, but

also making room in the micro-op cache for newer and

potentially more useful instruction streams.

To identify well-behaving and profitable instruction

streams, the fetch engine is equipped with a profitability

analysis unit that is triggered when multiple versions of a

micro-op sequence (both unoptimized and speculatively opti-

mized) are available in the micro-op cache for streaming. The

profitability analysis unit determines that the speculatively-

optimized instruction sequence is indeed profitable for stream-

ing if the following conditions are met: first, the saturating

confidence counters for the speculatively identified control

invariants indicate that the instruction stream has not crossed

a dynamically identified threshold of mispredictions (that is

tuned on the basis of the rate at which mispredictions increase

or decrease); second, all of the predicted data invariants match

up with the current state of the value predictor, indicating that

the invariants identified at the time of optimization continue

to hold; third, the instruction stream is characterized by high

compaction potential in terms of the number of micro-ops

deemed speculatively dead and eliminated; and finally, the

instruction stream meets a predefined hotness threshold.

Further, when multiple speculatively-optimized instruction

streams are available due to difference in the number, range,

and confidence of predicted invariants used for optimization,

the instruction stream that has the highest data invariant

confidence and provides the greatest compaction is chosen.

Hosting and streaming from multiple speculatively-optimized

instruction streams is a unique feature of this work, and we

observe that this is especially useful for code regions where



Baseline Processor
Frequency 2.4 GHz ICache 32 KB, 8-way
Fetch width 6 fused μops DCache 48 KB, 8-way
μop cache 2304 μops, 8-way IDQ 140 entries
Branch LTAGE Value H3VP
Predictor Predictor
RAS 64 entries BTB 4096 entries
Dispatch width 10 unfused μops ROB 352 entries
Register file 256 INT/FP LQ/SQ 128/72 entries
Commit width 10 unfused μops Functional Int ALU (6)
Squash width 10 unfused μops Units FPALU (3)
L2 Cache 512 KB 8-way L3 Cache 8 MB 16-way
L1I/L1D Repl. Pol. LRU L2/L3 Repl. Pol. Random

Table I: Microarchitectural Configuration Parameters

the outcome of an instruction oscillates predictably, with

high confidence, albeit between a limited set of data values.

Misspeculation Recovery. To limit the squashing over-

heads introduced by a few select instruction streams that

feature aggressive speculation, we extend the misprediction

recovery mechanism to ensure that, regardless of the decision

made by the profitability analysis unit, we automatically

select the unoptimized micro-op cache partition as our

fetch source when the following conditions are met (as

shown in Figure 5): first, the offending instruction that

caused the misprediction was issued out of the speculatively-

optimized micro-op cache partition and was marked as a valid

prediction source by the SCC unit; second, the reason for

misspeculation is due to a speculative processor feature that

is related to the optimizations enabled by SCC (for example,

it is not due to speculative memory disambiguation). These

conditions are instrumental in ensuring that we stop fetching

stale instruction streams from the optimized partition whose

predicted invariants no longer continue to hold, and as a

result get gradually phased out and replaced by newer, more

relevant, and hot instruction streams.

Finally, we also ensure that confidence counters in specu-

lation structures such as the branch and value predictors are

always updated, even if the squash/commit signal is received

due to a speculatively optimized instruction. This is important

because it ensures that predictor state always remains current

and does not go out-of-sync when speculatively-optimized

instruction streams are being executed.

VI. METHODOLOGY

This section describes our baseline architecture, modeling

assumptions, and experimental methodology.

Baseline and Modeling Assumptions. Table I describes

the microarchitectural configuration of our baseline processor,

which is modeled after Intel’s Icelake microarchitecture. We

use the gem5 [85] architectural simulator for performance

evaluation and the McPAT [80] framework for modeling

area and power overheads due to the additional structures

introduced in SCC. We integrate the H3VP [86] and

EVES [87] predictors from the 2019 Championship Value

Prediction (CVP) into our simulator framework, as we use

value prediction as our primary mechanism to predict data

invariants. Finally, we also extend both gem5 and McPAT

to model micro-op caches and micro-op fusion as described

in Intel’s Architecture Optimization Manual [81], with a

hotness-based replacement policy as described by Ren, et

al. [82]. While these extensions allow us to model Intel’s

front-end microarchitecture as closely as possible, on par

with or ahead of contemporary research in the field, certain

simulator-imposed limitations still exist. In particular, due

to the propreitary nature of the macro-to-micro-op mapping

used by Intel, we rely on the mapping scheme provided by

the gem5 simulator, which might not necessarily capture

potential optimized mapping schemes used in state-of-the-art

commercial implementations.

Workload Selection. To evaluate the performance and

energy savings potential of SCC, we construct workloads

using 11 benchmarks from the SPEC CPU 2017 benchmark

suite [88] and 8 benchmarks from the PARSEC 3.0 bench-

mark suite. We include all SPEC CPU 2017 INT applications

except x264 and omnetpp. We were unable to successfully

run x264 on gem5 (even on the latest version without our

changes) due to a bug in the implementation of certain

x86 SSE instructions that the benchmark uses. However, we

include the PARSEC version of the benchmark x264 in our

analysis. Furthermore, our checkpoint generation simulations

for omnetpp failed due to high memory usage, as a result

of which we were able to generate a checkpoint for one

only simpoint (with a weight of 0.16). While we observe a

speedup of 48% for this simpoint, we did not include it in

the paper as it is not representative of the entire application

and could potentially artificially inflate our speedup.

To account for phase behavior, we use the SimPoint [89]

methodology to break down each application into multiple

simpoints that include representative runs of 100 million

dynamic instruction intervals sampled using the PIN instru-

mentation framework [90]. Since our goal is to speculatively

optimize already compile-time optimized code, we compile

all benchmarks with the highest level of optimization using

the LLVM compiler framework [91].

VII. RESULTS

In this section, we first discuss results from our best

microarchitectural configurations and then delve into detailed

sensitivity studies that show the effect of various parameters

and microarchitectural structures on our ability to successfully

optimize inherently sequential code.

A. Performance Evaluation

Code Compaction Potential. Figures 6 (top panel) shows

the compaction potential of SCC (broken down by each

individual optimization) measured in terms of the dynamic

committed instruction count reduction achieved on already

compile-time optimized code. Note that we also include the

partitioned baseline (although it performs similarly to the

original baseline) as it is an important step in enabling SCC.



Figure 6: Performance Evaluation: Code Compaction Potential and Normalized Execution Time Comparison

We make several key observations from this experiment.

First, we find that the majority of our code compaction

benefits arise from applying speculative optimizations on

short micro-op sequences that occur within a basic block.

This includes identifying speculative data invariants and

then performing constant folding and propagation (fourth

bar from the left). Second, we observe that a considerable

chunk of the micro-ops eliminated via constant folding are

comprised of register-immediate move instructions (third

bar from the left), calling for more aggressive move and

zero/one idiom elimination at the front-end of the pipeline,

even before the rename stage. Third, although we observe

that speculative data invariants get routinely propagated as

constants to dependent instructions across branch boundaries,

the potential for speculative folding constants and thereby

eliminating instructions across basic blocks seems to be

limited. While more code compaction is possible through

the aggressive application of speculative optimizations across

different basic blocks, such instruction streams are also

more prone to squashing and are deemed less profitable

for streaming.

Overall, we see uniformly high instruction count reduction

on all applications, except the benchmarks lbm, wrf, and
x264 that spend most of their time executing floating-point

and SIMD instructions that are currently unoptimizable by

SCC. On average, we are able achieve an instruction count

reduction of 7.63% for SPEC and 9.86% for PARSEC.

While the goal of SCC is to eliminate wasteful computation

and generate compact instruction streams, it also does so

speculatively and therefore runs the risk of incurring more

than usual squashing overheads. As a result, dynamic instruc-

tion count as a metric, while useful to understand the extent

of achievable code compaction, does not provide sufficient

insights into the overall profitability of the technique.

Impact on Execution Time. To examine its performance

potential, we next turn to Figure 6 (middle panel) that

compares SCC with the baseline architecture, in terms of the

normalized execution time, again broken down by different

optimizations. We notice several interesting trends and make

high-level observations about the different benchmarks. First,

workloads with high data and control predictability such as

freqmine, perlbench, and xalancbmk, benefit the most from

SCC. In these applications, we observe that as the level

of optimization increases, there is also a small uptick in

the squashing overhead (as seen from the bottom panel of

Figure 6 that counteracts the benefit due code compaction.

Second, in benchmarks such as vips and exchange, we observe
a significant speedup due to speculative move elimination

alone, despite its limited ability to reduce the dynamic

instruction count on those benchmarks. Upon further analysis,

we are able to uncover an interesting side-effect of SCC that

significantly improves the predictability of certain hard-to-

predict branches. More specifically, we observe that the top

ten critical branches in these applications occur as part of

compacted instruction streams that are deemed profitable,

reducing their misprediction rate over the course of execution.

We attribute this to the fact that the confidence counters

associated with each compacted instruction stream (stored

as part of the extended tag array in the micro-op cache)

also act as local predictors for branches occurring in those



Figure 7: Examining Fetch Sources to analyze the impact on Micro-Op Cache Utilization

Figure 8: Energy Savings Potential of SCC

streams, providing high confidence predictions and in many

cases, limiting the impact of negative branch interference.

Third, we observe that inherently memory-bound applications

such as mcf and xz do not benefit from SCC from a

performance standpoint, despite their potential for high

instruction count reduction. Similarly, we do not observe a

speedup on low ILP application such as leela and swaptions
due to frequent reorder buffer full scenarios. In contrast, on

high ILP applications such as deepsjeng and streamcluster,
we observe a limited speedup as they are bottlenecked by a

finite instruction queue.

Overall, we outperform the baseline architecture by an

average of 5.81% for SPEC and 5.80% for PARSEC.

Impact on Micro-Op Cache Utilization. One of the major

features of SCC is its ability to co-host unoptimized and

optimized micro-op sequences in the micro-op cache, and

allow the fetch engine to choose from and stream different

versions of unoptimized and optimized micro-op sequences

based on the profitability heuristics. Figure 7 shows the

number of micro-ops sourced by the fetch engine from: (a)

the instruction cache, (b) the unoptimized micro-op cache

partition, and (c) the optimized micro-op cache partition, for

both SCC (right bar) and the baseline (left bar). We draw

two major conclusions from this result. First, the number

of instruction cache accesses for SCC is consistently lower

than that of the baseline across most benchmarks, indicating

that the micro-op cache utilization improved, despite it being

partitioned amongst unoptimized and optimized instruction

sequences. This is because partitioning the micro-op cache

has limited impact on performance (as shown in Figure 6)

due to the already high number of conflict misses in certain

critical cache sets, but more importantly, top hot code regions

in the micro-op cache tend to get optimized by SCC, and

if deemed profitable, tend to stay in the optimized partition,

freeing up space in the micro-op cache, resulting in fewer

micro-op cache misses and saving the relatively expensive

trip (in terms of both time and energy) to the instruction

cache. In other words, organizing the micro-op cache into

optimized and unoptimized partitions also has the side-effect

of improving the associativity of certain critical code regions

that map to the same set. This phenomenon can be evidenced

in the application x264 where the micro-op cache hit rate

gets almost doubled due to fewer conflicts in certain critical

sets. Second, for most benchmarks, the fraction of micro-

ops streamed from the optimized partition dominates the

overall fetch bandwidth. This implies that not only do we

have the ability to aggressively optimize hot code regions

in the micro-op cache, but our profitability heuristics allow

us to successfully ensure that the most profitable compacted

instruction streams stay in the optimized partition.

B. Power, Area, and Energy Evaluation

We next turn our attention to the energy savings potential

of SCC (considering the entire chip). Clearly, from Figure 8,

we see that the energy savings benefits of SCC is even

greater than its performance potential. In fact, even though



Figure 9: Sensitivity to different Value Predictor Designs: EVES vs. H3VP

Figure 10: Sensitivity to Micro-op Cache Partition Sizes

we observe only a small speedup in benchmarks such as

xz and mcf, we consistently save more than 20% in energy

for most applications, going up to 24% for SPEC and 22%

for PARSEC. This is not only due to the elimination of

dead code propagating through much of the processor’s back

end, but also because we have greatly improved the hit rate

and average residency in the micro-op cache, by dividing it

into optimized and unoptimized partitions, converting several

misses into hits, significantly reducing the energy expended

while making instruction cache accesses.

Furthermore, recall that SCC is a minimally-invasive

technique that only adds a small integer ALU and a register

file to keep track of speculatively identified live values; the

resulting area and peak power overheads of these minor

extensions to the front-end are a meagre 1.5% and 0.62%

respectively. Overall, we achieve an average of 12% savings

in energy consumption.

C. Sensitivity Analysis

Value Predictor Configurations. We explore two state-

of-the-art value predictors from the Championship Value

Prediction workshop: (a) H3VP, which is a 3-period predictor

that captures oscillating patterns, and (b) EVES, which

leverages enhanced stride history. Figure 9 shows the result

of this exploration. We observe that both predictors perform

similarly across most benchmarks in the specific context

of SCC, despite the fact that EVES is known to provide

higher accuracy and avoid penalties due to squashing, as

can be seen from the middle and bottom panels of the

figure. Notable exceptions include xalancbmk, where H3VP

outperforms EVES, suggesting that the application benefits

from aggressive speculative optimizations. In this particular

case, we observe that our profitability analysis unit already

takes care of penalizing and phasing out speculatively

optimized instruction streams with high misprediction rate.

However, this depends highly on the nature of the workload.

For example, on applications such as gcc, we observe that

EVES provides better performance with SCC by avoiding

expensive squash penalties, while simultaneously identifying

a tangible set of instruction sequences that can benefit from

speculative code compaction.



Figure 11: Sensitivity to Constant Width Configurations

Micro-op Cache Partition Sizes. We next examine the

sensitivity of SCC to the micro-op cache partition sizes. We

explore three configurations where we allocate – (a) one-third

(12 sets), (b) half (24 sets), and (c) two-thirds (36 sets), to

the optimized partition of the micro-op cache (as shown in

Figure 10). We find that best benefits are obtained when the

unoptimized partition is larger than the optimized partition

(i.e., 12 sets and 36 sets respectively). We attribute this

to the following major reasons. First, a larger unoptimized

partition allows us to track a greater chunk of hot code regions

and thereby facilitate greater code compaction. Second, the

optimized partition typically also exhibits greater utilization

due to the fact it stores compacted instruction streams with

high shrinkage that have been deemed profitable over the

course of the application’s execution.

Constant Widths. Finally, recall that, for every prediction

source, speculatively computed live-outs need to be made

available to dependent instructions in their immediate form,

to ensure a consistent register state in the event of a potential

misprediction. To examine the feasibility of efficiently

performing this by leveraging a low-overhead rename-time

approach such as physical register inlining [84], we explore

multiple constant widths. Figure 11 shows the result of this

experiment. We observe that we are able to retain most of

our benefits even when we are restricted to only propagate

constants that are 16-bit wide, and a further restriction to

propagating only 8-bit constants impacts instruction count

reduction by 6.8% and slows down performance by only

4.9% on average in comparison to no restriction on the

constant widths. Furthermore, we observe only 0.78% of the

dynamic instructions (averaged across all benchmarks) carry

live-outs over the course of execution, with 0.62% carrying

only one live-out and 0.11% carrying two live-outs. This

effectively allows us to propagate live-out values in rename-

time structures such as the map table without significant

impact on latency and hardware overhead.

VIII. CONCLUSION

This work proposes Speculative Code Compaction (SCC),

an aggressive scheme of dynamic binary optimizations, im-

plemented entirely in hardware within the processor, while in-

curring just 1.5% in area overhead. It speculatively compacts

hot code regions in the micro-op cache by leveraging a wide

array of existing speculation techniques in modern processors,

such as branch prediction and value prediction. Due to

the aggressive deployment of speculative transformations,

SCC outperforms a baseline processor architecture modeled

after Intel’s Icelake by as much as 18% for SPEC and

30% for PARSEC, providing speedups on traditionally low

ILP applications, and saves as much as 22% in energy for

PARSEC and 24% for SPEC.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers

and the shepherd for their many helpful suggestions and

comments. This research was supported by NSF Grant CNS-

1850436, NSF/Intel Foundational Microarchitecture Research

(FoMR) Grant CCF-1912608, a Semiconductor Research

Corporation (SRC) contract 2019-NM-2875, and CRISP, one

of six centers in JUMP, an SRC program, sponsored by

MARCO and DARPA.

APPENDIX

A. Abstract
The artifact for this paper describes the frameworks used

for our evaluations. It consists of a simulation infrastructure
that evaluates the performance and power usage of SCC. The



main results of the paper from Figure 6 can be reproduced
using the gem5 simulator. The power results in Figure 8 can
be reproduced using McPAT. Specifically, we provide scripts
to reproduce results for:

• Figure 6 (Top): Executed Micro-op Count for both Baseline
and SCC

• Figure 6 (Middle): Speedup for both Baseline and SCC
• Figure 8: Energy Consumption for both Baseline and SCC

Please note that the scripts can be modified to reproduce

any of the results presented in the paper, including the

sensitivity experiments.

B. Artifact check-list (meta-information)
• Program: SPEC CPU2017 and PARSEC 3.0
• Compilation: LLVM with -O3
• Run-time environment: All simulations were preformed on

CentOS Linux release 7.9.2009
• Hardware: Gem5 simulator
• Metrics: Execution time, instruction count reduction, and

dynamic energy consumption
• Output: The gem5 simulations provides a statistics output file,

containing cycles spent and overall dynamic instruction count.
McPAT provides detailed power consumption characteristics.

• Experiments: Scripts and instructions are provided in the
artifact README files.

• How much disk space required (approximately)?: About
250 GB of disk space is required for the SPEC 2017 simpoints,
and around 5 GB is needed for the gem5 code and binaries.

• How much time is needed to prepare workflow (approxi-
mately)?: About 30 minutes to download the frameworks and
install requirements, and around 30 minutes to compile gem5.

• How much time is needed to complete experiments
(approximately)?: Assuming enough available parallelism,
the gem5 experiments need at least 6 hours.

• Publicly available?: Yes, the code is available on Github (see
Section A.3.1).

• Code licenses (if publicly available)?: GPL v3
• Workflow framework used?: Yes, bash and slurm scripts are

provided.
• Archived: 10.5281/zenodo.7018601

C. Description

1) How to access: The artifact is available on github at

the following URL: https://github.com/logangregorym/gem5-

changes.

2) Hardware dependencies: Any modern Linux cluster

should be able to reproduce these experimental results.

3) Software dependencies: We provide Simpoints created

from SPEC 2017 benchmarks for the artifact evaluators, but

we cannot publish them as they are under copyright. Other

programs used for evaluations are publicly available.

D. Installation

The artifact provides scripts to install requirements as well

as building the provided tools.

E. Experiment workflow

This section provides a high-level overview of the ex-

perimental workflow. Please follow the instructions in the

README for a detailed, step-by-step guide.

For the performance evaluation, we need to first compile

the gem5 code and prepare our benchmark programs. Then,

we run multiple gem5 simulations for each set of benchmark

programs. Each experiment is configured to represent one of

the following optimization levels: (1) a baseline with classic

value prediction, (2) the same baseline with half the micro-op

cache size, (3) SCC with simple move elimination, (4) SCC

with propagation, constant folding, and move elimination, (5)

SCC with propagation, constant folding, branch folding, and

move elimination, and (6) full Speculative Code Compaction.

For artifact evaluation we provide scripts for reproducing the

main result, (1) and (6). However, the scripts can be easily

modified to produce any of the listed experiments. Finally,

once the simulations are completed, we run the provided

scripts to extract the results from gem5 simulations and plot

the figures.

To obtain power results, we run McPAT on the completed

gem5 simulation stats files to obtain dynamic energy con-

sumption numbers. Then a script to extract the numbers and

plot the graphs is provided.

F. Evaluation and expected results

The gem5 simulations should result in performance,

instruction count, and energy numbers that match exactly

those presented in the paper.

G. Experiment customization

All gem5 options can be viewed by running the command:

./build/X86/gem5.opt ./configs/example/se.py \\
--help

The options for running baseline simulations are:

--caches --l2cache --cpu-type=O3_X86_icelake_1 \\
--mem-type=DDR4_2400_16x4 --mem-size=64GB \\
--mem-channels=2 --enable-microop-cache \\
--enable-micro-fusion --lvpredType=eves \\
--predictionConfidenceThreshold=15 --l3cache\\
--enableValuePredForwarding \\
--predictingArithmetic=1 \\
--enableDynamicThreshold --forceNoTSO \\
--uopCacheNumSets=48 --uopCacheNumWays=8 \\
--uopCacheNumUops=6

The options for running SCC simulations are:

--caches --l2cache --cpu-type=O3_X86_icelake_1 \\
--mem-type=DDR4_2400_16x4 --mem-size=64GB \\
--mem-channels=2 --enable-microop-cache \\
--enable-micro-fusion --lvpredType=eves \\
--enable-superoptimization \\
--predictingArithmetic=1 \\
--usingControlTracking=1 --usingCCTracking=1 \\
--predictionConfidenceThreshold=5 \\
--uopCacheNumSets=24 --uopCacheNumWays=8 \\
--uopCacheNumUops=6 --specCacheNumWays=4 \\
--specCacheNumSets=24 --specCacheNumUops=6 \\
--l3cache --lvpLookupAtFetch \\
--enableDynamicThreshold --forceNoTSO



H. Methodology

Submission, reviewing, and badging methodology:

• https://www.acm.org/publications/policies/artifact-

review-badging

• http://cTuning.org/ae/submission-20201122.html

• http://cTuning.org/ae/reviewing-20201122.html

REFERENCES

[1] L. A. Barroso and U. Hölzle, “The Datacenter as a Computer:
An Introduction to the Design of Warehouse-Scale Machines,
Second Edition,” Synthesis Lectures on Computer Architecture,
Jul 2013.

[2] S. Sahu, A. Mhedhbi, S. Salihoglu, J. Lin, and M. T. Özsu,
“The Ubiquity of Large Graphs and Surprising Challenges of
Graph Processing,” in Proceedings of the VLDB Endowment,
Dec 2017.

[3] S. D. Fihn, J. Francis, C. Clancy, C. Nielson, K. Nelson,
J. Rumsfeld, T. Cullen, J. Bates, and G. L. Graham, “Insights
from Advanced Analytics at the Veterans Health Administra-
tion,” Health Affairs, Jul 2014.

[4] R. Cheng, J. Hong, A. Kyrola, Y. Miao, X. Weng, M. Wu,
F. Yang, L. Zhou, F. Zhao, and E. Chen, “Kineograph:
Taking the Pulse of a Fast-Changing and Connected World,”
in Proceedings of the 7th ACM European Conference on
Computer Systems, 2012.

[5] J. Lu, H. Chen, R. Fu, W.-C. Hsu, B. Othmer, P.-C. Yew,
and D.-Y. Chen, “The Performance of Runtime Data Cache
Prefetching in a Dynamic Optimization System,” in Proceed-
ings of the 36th Annual IEEE/ACM International Symposium
on Microarchitecture, Dec 2003.

[6] R. Joshi, M. D. Bond, and C. Zilles, “Targeted Path Pro-
filing: Lower Overhead Path Profiling for Staged Dynamic
Optimization Systems,” in Proceedings of the 2nd Annual
IEEE/ACM International Symposium on Code Generation and
Optimization, 2004.

[7] S. Hu and J. E. Smith, “Using Dynamic Binary Translation
to Fuse Dependent Instructions,” in Proceedings of the
2nd Annual IEEE/ACM International Symposium on Code
Generation and Optimization, 2004.

[8] M. D. Bond and K. S. McKinley, “Practical Path Profiling for
Dynamic Optimizers,” in Proceedings of the 3rd IEEE/ACM In-
ternational Symposium on Code Generation and Optimization,
2005.

[9] M. A. Laurenzano, Y. Zhang, L. Tang, and J. Mars, “Protean
Code: Achieving Near-Free Online Code Transformations for
Warehouse Scale Computers,” in Proceedings of the 47th
Annual IEEE/ACM International Symposium on Microarchi-
tecture, 2014.

[10] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood, “Pin: Building
Customized Program Analysis Tools with Dynamic Instrumen-
tation,” ACM SIGPLAN Notices, Jun 2005.

[11] N. Nethercote and J. Seward, “Valgrind: A Framework for
Heavyweight Dynamic Binary Instrumentation,” in Proceed-
ings of the 28th ACM SIGPLAN Conference on Programming
Language Design and Implementation, 2007.

[12] D. Bruening, T. Garnett, and S. Amarasinghe, “An Infrastruc-
ture for Adaptive Dynamic Optimization,” in Proceedings
of the 1st IEEE/ACM International Symposium on Code
Generation and Optimization, 2003.

[13] M. DeVuyst, A. Venkat, and D. M. Tullsen, “Execution
migration in a heterogeneous-isa chip multiprocessor,” in
Proceedings of the Seventeenth International Conference
on Architectural Support for Programming Languages and
Operating Systems, 2012.

[14] A. Venkat and D. M. Tullsen, “Harnessing isa diversity: Design
of a heterogeneous-isa chip multiprocessor,” in Proceedings of
the International Symposium on Computer Architecture, 2014.

[15] A. Venkat, A. Krishnaswamy, K. Yamada, and R. Palanivel,
“Binary Translation driven Program State Relocation,” in
United States Patent Grant US009135435B2, 2015.

[16] A. Venkat, S. Shamasunder, H. Shacham, and D. M. Tullsen,
“Hipstr: Heterogeneous-isa program state relocation,” in Pro-
ceedings of the International Symposium on Architectural
Support for Programming Languages and Operating Systems,
2016.

[17] A. Venkat, Breaking the ISA Barrier in Modern Computing.
PhD thesis, UC San Diego, 2018.

[18] A. Venkat and T. M. D. Basavaraj, Harsha, “Composite-ISA
Cores: Enabling Multi=ISA Heterogeneity using a Single ISA,”
in HPCA, 2019.

[19] J. Smith and R. Nair, Virtual Machines: Versatile Platforms
for Systems and Processes. Jun 2005.

[20] W. Cheng, Q. Zhao, B. Yu, and S. Hiroshige, “Tainttrace:
Efficient Flow Tracing with Dynamic Binary Rewriting,” in
Proceedings of the 11th IEEE Symposium on Computers and
Communications, 2006.

[21] J. Yang, K. Skadron, M. L. Soffa, and K. Whitehouse,
“Feasibility of Dynamic Binary Parallelization,” in Proceedings
of the 4th USENIX Conference on Hot Topics in Parallelism,
May 2011.

[22] A. Homescu, S. Neisius, P. Larsen, S. Brunthaler, and M. Franz,
“Profile-Guided Automated Software Diversity,” in Proceedings
of the 11th IEEE/ACM International Symposium on Code
Generation and Optimization, 2013.

[23] H. Massalin, “Superoptimizer: A Look at the Smallest Pro-
gram,” in ACM SIGPLAN Notices, Oct 1987.

[24] S. Bansal and A. Aiken, “Automatic Generation of Peephole
Superoptimizers,” in Proceedings of the 12th International
Conference on Architectural Support for Programming Lan-
guages and Operating Systems, Oct 2006.

[25] S. Bansal and A. Aiken, “Binary Translation using Peephole
Superoptimizers,” in Proceedings of the 8th USENIX Confer-
ence on Operating Systems Design and Implementation, Dec
2008.



[26] T. Granlund and R. Kenner, “Eliminating Branches Using a
Superoptimizer and the GNU C Compiler,” ACM SIGPLAN
Notices, Jul 1992.

[27] R. Joshi, G. Nelson, and K. Randall, “Denali: A Goal-Directed
Superoptimizer,” ACM SIGPLAN Notices, 2002.

[28] E. Schkufza, R. Sharma, and A. Aiken, “Stochastic Superop-
timization,” in SIGARCH Computer Architecture News, 2013.

[29] R. Tate, M. Stepp, Z. Tatlock, and S. Lerner, “Equality
Saturation: A New Approach to Optimization,” in ACM
SIGPLAN Notices, Jan 2009.

[30] K. Ebcioglu, E. Altman, M. Gschwind, and S. Sathaye,
“Dynamic Binary Translation and Optimization,” IEEE Trans-
actions on Computers, 2001.

[31] E. R. Altman, D. Kaeli, and Y. Sheffer, “Welcome to the
Opportunities of Binary Translation,” Computer, Mar 2000.

[32] K. Ebcioğlu, E. R. Altman, M. Gschwind, and S. Sathaye, “Op-
timizations and Oracle Parallelism with Dynamic Translation,”
in Proceedings of the 32nd Annual ACM/IEEE International
Symposium on Microarchitecture, 1999.

[33] J. C. Dehnert, B. K. Grant, J. P. Banning, R. Johnson,
T. Kistler, A. Klaiber, and J. Mattson, “The Transmeta Code
Morphing/spl trade/Software: Using Speculation, Recovery,
and Adaptive Retranslation to Address Real-Life Challenges,”
in Proceedings of the 1st IEEE/ACM International Symposium
on Code Generation and Optimization, 2003.

[34] E. Rotenberg, S. Bennett, and J. E. Smith, “Trace Cache:
A Low Latency Approach to High Bandwidth Instruction
Fetching,” in Proceedings of the 29th Annual IEEE/ACM
International Symposium on Microarchitecture, 1996.

[35] E. Rotenberg, Q. Jacobson, Y. Sazeides, and J. Smith, “Trace
Processors,” in Proceedings of the 30th Annual IEEE/ACM
International Symposium on Microarchitecture, 1997.

[36] D. H. Friendly, S. J. Patel, and Y. N. Patt, “Putting the Fill
Unit to Work: Dynamic Optimizations for Trace Cache Mi-
croprocessors,” in Proceedings of the 31st Annual IEEE/ACM
International Symposium on Microarchitecture, 1998.

[37] Q. Jacobson and J. E. Smith, “Instruction Pre-processing in
Trace Processors,” in Proceedings of the 5th International
Symposium on High-Performance Computer Architecture,
1999.

[38] S. J. Patel, M. Evers, and Y. N. Patt, “Improving Trace Cache
Effectiveness with Branch Promotion and Trace Packing,” in
Proceedings of the 25th Annual International Symposium on
Computer Architecture, 1998.

[39] S. Patel and S. Lumetta, “rePLay: A Hardware Framework
for Dynamic Optimization,” IEEE Transactions on Computers,
2001.

[40] R. Rosner, M. Moffie, Y. Sazeides, and R. Ronen, “Selecting
Long Atomic Traces for High Coverage,” in Proceedings of
the 17th Annual International Conference on Supercomputing,
2003.

[41] W. Zhang, S. Checkoway, B. Calder, and D. M. Tullsen,
“Dynamic Code Value Specialization Using the Trace Cache
Fill Unit,” in Proceedings of the 24th International Conference
on Computer Design, Oct 2006.

[42] S. Patel, D. Friendly, and Y. Patt, “Critical Issues Regarding
the Trace Cache Fetch Mechanism,” tech. rep., University of
Michigan, 1997.

[43] M. Postiff, G. Tyson, and T. N. Mudge, Performance Limits
of Trace Caches. 1998.

[44] B. Black, B. Rychlik, and J. P. Shen, “The Block-Based
Trace Cache,” in Proceedings of the 26th Annual International
Symposium on Computer Architecture, 1999.

[45] A. Ramirez, J. L. Larriba-Pey, and M. Valero, “Trace Cache
Redundancy: Red and Blue Traces,” in Proceedings of the
6th International Symposium on High-Performance Computer
Architecture, 2000.

[46] M. Co, D. A. B. Weikle, and K. Skadron, “Evaluating Trace
Cache Energy Efficiency,” ACM Transactions on Architecture
and Code Optimization, Dec 2006.

[47] B. Solomon, A. Mendelson, R. Ronen, D. Orenstien, and
Y. Almog, “Micro-Operation Cache: A Power Aware Frontend
for Variable Instruction Length ISA,” in Proceedings of the
2001 International Symposium on Low Power Electronics and
Design, 2001.

[48] D. L. Howard and M. H. Lipasti, “The Effect of Program
Optimization on Trace Cache Efficiency,” in Proceedings of
the 8th International Conference on Parallel Architectures and
Compilation Techniques, 1999.

[49] J. C. Dehnert, B. K. Grant, J. P. Banning, R. Johnson,
T. Kistler, A. Klaiber, and J. Mattson, “The Transmeta
Code Morphing Software: Using Speculation, Recovery, and
Adaptive Retranslation to Address Real-Life Challenges,” in
Proceedings of the 1st IEEE/ACM International Symposium
on Code Generation and Optimization, 2003.

[50] D. Boggs, G. Brown, N. Tuck, and K. S. Venkatraman,
“Denver: Nvidia’s First 64-bit ARM Processor,” IEEE Micro,
2015.

[51] I. Kim and M. H. Lipasti, “Implementing Optimizations at
Decode Time,” in Proceedings of the 29th Annual International
Symposium on Computer Architecture, 2002.

[52] M. L. Corliss, E. C. Lewis, and A. Roth, “DISE: A Pro-
grammable Macro Engine for Customizing Applications,” in
Proceedings of the 30th Annual International Symposium on
Computer Architecture, 2003.

[53] M. L. Corliss, E. C. Lewis, and A. Roth, “Low-Overhead
Interactive Debugging via Dynamic Instrumentation with
DISE,” in Proceedings of the 11th International Symposium
on High-Performance Computer Architecture, Mar 2005.

[54] M. L. Corliss, E. C. Lewis, and A. Roth, “A DISE Implemen-
tation of Dynamic Code Decompression,” in Proceedings of
the 2003 ACM SIGPLAN Conference on Language, Compiler,
and Tool for Embedded Systems, Jun 2003.



[55] M. L. Corliss, E. C. Lewis, and A. Roth, “Using DISE to
Protect Return Addresses from Attack,” SIGARCH Computer
Architecture News, Mar 2005.

[56] M. Taram, A. Venkat, and D. Tullsen, “Mobilizing the Micro-
Ops: Exploiting Context Sensitive Decoding for Security
and Energy Efficiency,” in Proceedings of the 45th Annual
International Symposium on Computer Architecture, 2018.

[57] M. Taram, A. Venkat, and D. M. Tullsen, “Context-sensitive
decoding: On-demand microcode customization for security
and energy management,” MICRO, 2019.

[58] M. Taram, D. Tullsen, A. Venkat, H. Sayadi, H. Wang,
S. Manoj, and H. Homayoun, “Fast and efficient deployment
of security defenses via context sensitive decoding,” in
Government Microcircuit Applications and Critical Technology
Conference (GOMACTech), 2019.

[59] M. Taram, A. Venkat, and D. Tullsen, “Context-Sensitive
Fencing: Securing Speculative Execution via Microcode
Customization,” in ASPLOS, Proceedings of the 24th Interna-
tional Conference on Architectural Support for Programming
Languages and Operating Systems.

[60] R. Sharifi and A. Venkat, “CHEx86: Context-Sensitive Enforce-
ment of Memory Safety via Microcode-Enabled Capabilities,”
in Proceedings of the 47th Annual IEEE/ACM International
Symposium on Computer Architecture, 2020.

[61] J. B. Kotra and J. Kalamatianos, “Improving the Utilization
of Micro-operation Caches in x86 Processors,” in Proceedings
of the 53rd Annual IEEE/ACM International Symposium on
Microarchitecture, 2020.

[62] S. Jourdan, R. Ronen, M. Bekerman, B. Shomar, and A. Yoaz,
“A Novel Renaming Scheme to Exploit Value Temporal
Locality Through Physical Register Reuse and Unification,”
in Proceedings of the 31st Annual IEEE/ACM International
Symposium on Microarchitecture, 1998.

[63] V. Petric, T. Sha, and A. Roth, “Reno: A Rename-Based In-
struction Optimizer,” in Proceedings of the 32nd International
Symposium on Computer Architecture, 2005.

[64] B. Fahs, T. Rafacz, S. J. Patel, and S. S. Lumetta, “Continuous
Optimization,” in Proceedings of the 32nd Annual Interna-
tional Symposium on Computer Architecture, Jun 2005.

[65] A. Perais and A. Seznec, “EOLE: Paving the Way for an
Effective Implementation of Value Prediction,” in Proceedings
of the 41st Annual International Symposium on Computer
Architecture, 2014.

[66] A. Perais, “Leveraging Targeted Value Prediction to Unlock
New Hardware Strength Reduction Potential,” in Proceedings
of the 54th Annual IEEE/ACM International Symposium on
Microarchitecture, 2021.

[67] W. Zhang, B. Calder, and D. Tullsen, “An Event-Driven Mul-
tithreaded Dynamic Optimization Framework,” in Proceedings
of the 14th International Conference on Parallel Architectures
and Compilation Techniques, 2005.

[68] W. Zhang, D. M. Tullsen, and B. Calder, “Accelerating and
Adapting Precomputation Threads for Effcient Prefetching,”
in Proceedings of the 13th International Symposium on High
Performance Computer Architecture, 2007.

[69] J. Mars and R. Hundt, “Scenario Based Optimization: A
Framework for Statically Enabling Online Optimizations,”
in Proceedings of the 7th Annual IEEE/ACM International
Symposium on Code Generation and Optimization, 2009.

[70] H.-W. Tseng and D. M. Tullsen, “Data-Triggered Threads:
Eliminating Redundant Computation,” in Proceedings of the
17th International Symposium on High Performance Computer
Architecture, Feb 2011.

[71] M. DeVuyst, D. Tullsen, and S.-W. Kim, “Runtime Paralleliza-
tion of Legacy Code on A Transactional Memory System,” in
HiPEAC 2011.

[72] M. Herlihy, J. Eliot, and B. Moss, “Transactional Memory:
Architectural Support For Lock-free Data Structures,” in
Proceedings of the 20th Annual International Symposium on
Computer Architecture, 1993.

[73] N. Shavit and D. Touitou, “Software Transactional Memory,” in
Proceedings of the 14th Annual ACM Symposium on Principles
of Distributed Computing, 1995.

[74] Y. Ni, A. Welc, A.-R. Adl-Tabatabai, M. Bach, S. Berkowits,
J. Cownie, R. Geva, S. Kozhukow, R. Narayanaswamy,
J. Olivier, S. Preis, B. Saha, A. Tal, and X. Tian, “Design and
Implementation of Transactional Constructs for C/C++,” in
Proceedings of the 23rd ACM SIGPLAN Conference on Object-
Oriented Programming Systems Languages and Applications,
2008.

[75] N. G. Bronson, C. Kozyrakis, and K. Olukotun, “Feedback-
Directed Barrier Optimization in a Strongly Isolated STM,”
in Proceedings of the 36th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, 2009.

[76] A. Estebanez, D. R. Llanos, and A. Gonzalez-Escribano,
“A Survey on Thread-Level Speculation Techniques,” ACM
Comput. Surv., Jun 2016.

[77] R. Guo, H. An, R. Dou, M. Cong, Y. Wang, and Q. Li,
“LogSPoTM: a Scalable Thread Level Speculation Model
Based on Transactional Memory,” in 2008 13th Asia-Pacific
Computer Systems Architecture Conference, 2008.

[78] R. Odaira and T. Nakaike, “Thread-Level Speculation on Off-
the-Shelf Hardware Transactional Memory,” in 2014 IEEE
International Symposium on Workload Characterization, 2014.

[79] J. Salamanca, J. N. Amaral, and G. Araujo, “Using Hardware-
Transactional-Memory Support to Implement Thread-Level
Speculation,” IEEE Transactions on Parallel and Distributed
Systems, 2018.

[80] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen,
and N. P. Jouppi, “McPAT: An Integrated Power, Area, and
Timing Modeling Framework for Multicore and Manycore
Architectures,” in Proceedings of the 42nd Annual IEEE/ACM
International Symposium on Microarchitecture, 2009.



[81] Intel Corporation, Intel® 64 and IA-32 Architectures Optimiza-
tion Reference Manual. Mar 2009.

[82] X. Ren, L. Moody, M. Taram, M. Jordan, D. M. Tullsen,
and A. Venkat, “I See Dead μops: Leaking Secrets via
Intel/AMD Micro-Op Caches,” in Proceedings of the 48th
Annual International Symposium on Computer Architecture,
2021.

[83] M. Taram, X. Ren, A. Venkat, and D. Tullsen, “SecSMT:
Securing SMT processors against Contention-Based covert
channels,” in Proceedings of the 31st USENIX Security
Symposium, 2022.

[84] M. Lipasti, B. Mestan, and E. Gunadi, “Physical Register
Inlining,” in Proceedings of the 31st Annual International
Symposium on Computer Architecture, 2004.

[85] N. L. Binkert, R. G. Dreslinski, L. R. Hsu, K. T. Lim, A. G.
Saidi, and S. K. Reinhardt, “The M5 Simulator: Modeling
Networked Systems,” IEEE Micro, 2006.

[86] K. Koizumi, K. Hiraki, and M. Inaba, “H3VP: History Based
Highly Reliable Hybrid Value Predictor,” 1st Championship
Value Prediction, 2018.

[87] A. Seznec, “Exploring Value Prediction with the EVES
Predictor,” 1st Championship Value Prediction, 2018.

[88] J. L. Henning, “SPEC CPU2006 Benchmark Descriptions,”
SIGARCH Computer Architecture News, Sept 2006.

[89] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder,
“Automatically Characterizing Large Scale Program Behavior,”
in Proceedings of the 10th International Conference on Archi-
tectural Support for Programming Languages and Operating
Systems, Oct 2002.

[90] H. Patil, C. Pereira, M. Stallcup, G. Lueck, and J. Cownie,
“PinPlay: A Framework for Deterministic Replay and Repro-
ducible Analysis of Parallel Programs,” in Proceedings of
the 8th Annual IEEE/ACM International Symposium on Code
Generation and Optimization, 2010.

[91] C. Lattner and V. Adve, “LLVM: A Compilation Framework
for Lifelong Program Analysis & Transformation,” in Proceed-
ings of the 2nd Annual IEEE/ACM International Symposium
on Code Generation and Optimization, Mar 2004.




