
Harnessing ISA Diversity: Design of a Heterogeneous-ISA Chip Multiprocessor

Ashish Venkat Dean M. Tullsen
University of California, San Diego

{asvenkat,tullsen}@cs.ucsd.edu

Abstract
Heterogeneous multicore architectures have the potential

for high performance and energy efficiency. These architec-
tures may be composed of small power-efficient cores, large
high-performance cores, and/or specialized cores that accel-
erate the performance of a particular class of computation.
Architects have explored multiple dimensions of heterogeneity,
both in terms of micro-architecture and specialization. While
early work constrained the cores to share a single ISA, this
work shows that allowing heterogeneous ISAs further extends
the effectiveness of such architectures.

This work exploits the diversity offered by three modern
ISAs: Thumb, x86-64, and Alpha. This architecture has the
potential to outperform the best single-ISA heterogeneous
architecture by as much as 21%, with 23% energy savings and
a reduction of 32% in Energy Delay Product.

1. Introduction
Architects have proposed heterogeneous chip multiprocessors
for both general-purpose computing and embedded applica-
tions. These architectures exploit heterogeneity in two fun-
damental dimensions. While some architectures make use of
specialized hardware to accelerate the performance of certain
workloads [1, 2, 3, 19], others employ a different set of mi-
croarchitectural parameters [4, 15, 16, 22, 23, 24] in order to
create energy-efficient processors for mixed workloads. The
latter constrain the cores to execute a single instruction set
architecture (ISA), maximizing efficiency by allowing a thread
to dynamically identify, and migrate to, the core to which it
is most suited during a particular phase and under the current
environmental constraints. This paper demonstrates that not
only is that constraint unnecessary, but limiting an architecture
to a single ISA restricts the potential heterogeneity, sacrificing
performance and efficiency gains.

A critical step in the design of a heterogeneous-ISA archi-
tecture is choosing a diverse set of ISAs. While ISAs seem to
converge over time (RISC ISAs adding complex operations,
CISC ISAs translated to RISC µops internally), there remains
sufficient diversity in existing modern ISAs to provide useful
heterogeneity. We examine some key aspects that character-
ize ISA diversity. These include code density, decode and
instruction complexity, register pressure, native floating-point
arithmetic vs emulation, and SIMD processing.

In this paper, we harness the diversity offered by three
ISAs: ARM’s Thumb [5], x86-64 [17], and Alpha [12]. By co-
designing the hardware architectures and the ISAs to provide
the best aggregate architecture, we arrive at a more effective
and efficient design than one composed of homogeneous cores,
or even heterogeneous cores that share a single ISA.

The design of a heterogeneous-ISA chip multiprocessor
involves navigating a complex search space, made larger by
the additional dimension of freedom. A major contribution
of this work is such a design space exploration geared at find-
ing an optimal heterogeneous-ISA CMP for general-purpose
mixed workloads. Observing the results of the design space
exploration, we provide architects with a set of tools to enable
ISA-microarchitecture co-design and thereby better streamline
their search processes.

To reap the full benefits of the heterogeneity, especially
the heterogeneity available in the form of ISA diversity, it is
important that an application is able to migrate freely between
the cores. However, migration in a heterogeneous-ISA envi-
ronment is a well known difficult problem [14, 31, 37]. This is
because the runtime state of a program is kept in ISA-specific
form, and migration to a different ISA involves expensive pro-
gram state transformation. DeVuyst, et al. [11] demonstrate
that migration between ISAs can be achieved at acceptable
cost on a CMP; however, that work does not explore the archi-
tectural advantages to multiple ISAs on a single CMP. This
research employs several ideas from that work, but also several
new optimizations to reduce the overhead of migration. In this
paper, we present a detailed compilation methodology and an
effective runtime strategy that works for a diverse set of ISAs.
We observe that even a single application can gain up to 11.2%
performance benefit by migrating between heterogeneous-ISA
cores during different phases of its execution.

Finally, we evaluate the proposed heterogeneous-ISA CMP
against both homogeneous and single-ISA heterogeneous
CMPs, under varying power and area budgets. Consequently,
we make the following major observations:
• Co-design of ISA and microarchitectural parameters is criti-

cal. In the optimal designs, cores employing different ISAs
tend to naturally diverge, and to diverge in consistent direc-
tions.

• ISA heterogeneity is not only beneficial across applications,
but also within individual applications across phases.

We find that heterogeneous-ISA CMPs can improve single-
thread performance by an average of 20.8% and provide 15.8%
more throughput on multi-programmed mixed workloads, as
compared to a single-ISA heterogeneous CMP. Additionally,
heterogeneous-ISA CMPs can help achieve an average reduc-
tion of 29.8% in Energy Delay Product.

The rest of this paper is organized as follows. Section 2
describes related work. Section 3 evaluates the diversity of-
fered by the ISAs chosen for this work. Section 4 lays out
our design methodology. We present our compilation and
runtime methodologies in Section 5. Section 6 describes our
experimental methodology. Section 7 evaluates the proposed

978-1-4799-4394-4/14/$31.00 c© 2014 IEEE

architecture, and draws lessons and guidelines from the design
space exploration. Section 8 concludes.

2. Related Work

Prior research has shown that heterogeneous CMPs are capa-
ble of higher performance and energy efficiency than homo-
geneous processors. Single-ISA heterogeneous CMPs were
introduced by Kumar, et al. [22, 24]. The motivation behind
the single-ISA constraint is that it allows threads to migrate
freely between cores dynamically as their behavior or oper-
ating conditions change. Recent commercial offerings that
resemble this architecture include ARM’s big.LITTLE proces-
sor [15] and NVidia’s Kal-El processor [4].

Yet another class of heterogeneous CMPs make use of spe-
cialized hardware to accelerate the performance of certain
types of workloads. These include the integrated CPU-GPU
architectures such as Intel’s Sandy Bridge [1] and AMD’s Fu-
sion [2]. However, these architectures do not allow migration
between core types at arbitrary places in the code. Current
industry offerings of heterogeneous-ISA CMPs include MP-
SoCs in the embedded market [34], GPUs, and accelerators
in the HPC market [3]. IBM’s Cell microprocessor [19] is
a heterogeneous-ISA CMP geared towards general-purpose
computing, but similarly, a too-specialized SPE ISA and lack
of a common address space make dynamic task migration
infeasible.

Several studies [9, 18, 33] have evaluated the role of ISA
in RISC and CISC processors. They show that these ISAs
are rather similar in terms of their impact on performance
and energy efficiency. However, these studies focus on less
diverse ISAs (e.g., PowerPC, ARM, and x86) and homoge-
neous hardware assumptions. This work differs in two critical
ways. First, it examines ISAs with true diversity, and couples
heterogeneous ISAs with heterogeneous hardware. We show
that there is significant synergy in combining the two, which
enables the overall architecture to fully exploit the differences
between the ISAs.

DeVuyst, et al. [11] first established the viability of
heterogeneous-ISA CMPs by showing that migration cost
could be reduced by orders of magnitude over prior ap-
proaches, exploiting the shared memory space of CMPs and
eliminating the need for memory transfer. That work focuses
on the migration mechanism, and does not address any of the
architectural implications covered in this work. They examine
migration between ARM and MIPS cores, and present com-
piler techniques to minimize the amount of program state kept
in ISA-specific form to enable fast migration. They describe a
runtime mechanism that performs binary translation until an
equivalence point is reached, after which the program state
can be transformed to the required ISA. The Tui system [31]
describe a process migration strategy for heterogeneous-ISA
machines in the context of wide area computing. The main
idea of that work is to transform the runtime program state to
an intermediate form and then re-compile it to the required
ISA, at the time of migration. We borrow some techniques
from both these works; however, our compiler methodology

and runtime strategy is geared towards a more diverse set of
ISAs, which makes the problem significantly harder and re-
quires additional techniques and optimizations presented in
this paper.

Several researchers have proposed design-space exploration
methodologies for heterogeneous CMPs. Strozek, et al. [32]
describe a process flow for automatic synthesis and evalu-
ation of heterogeneous CMPs based on runtime profiles of
certain embedded applications, given different area and power
budgets. Intel’s QuickIA [10] research prototype allows re-
searchers to explore heterogeneous architectures consisting
of multiple generations of Intel processors and FPGAs. The
search methodology we employ in this paper is similar to
the one described by Kumar, et al. [23]. However, our goal
is to not only identify the optimal heterogeneous-ISA multi-
core designs, but also to lay out the first principles for ISA-
microarchitecture co-design in such an architecture.

There has been some early work on operating systems and
runtime support for heterogeneous-ISA CMPs. Li, et al. [28]
suggest multiple policies and mechanisms, at the operating
system level, for symmetric multiprocessing in an overlapping-
ISA CMP. For the scope of this work, we assume similar
operating system support.

3. ISA Diversity

To keep both the design-space exploration and the compiler
development tractable, we select our target ISAs a priori –
considering more ISAs and even considering the possibility of
custom ISAs would only increase the potential gains. This sec-
tion describes our three target ISAs – Thumb, Alpha, and x86-
64 – with respect to several axes of diversity. These include
code density, dynamic instruction count, register pressure, and
support for specialized operations.

Code Density. High code density reduces the number of
instruction cache misses, uses less energy and memory band-
width for instruction fetch, and conserves power by enabling
the use of smaller microarchitectural structures. Weaver, et
al. [38] evaluate a wide range of ISAs for code density. They
find that RISC ISAs with fixed-length instructions such as
Alpha and SPARC show the lowest code density, while embed-
ded ISAs like Thumb and AVR32 exhibit the highest density
owing to a technique called code compression. This tech-
nique packs two 16-bit instructions into one 32-bit instruction,
which is then unpacked at the decode stage and executed as
two instructions. CISC ISAs such as x86-64 and VAX are
placed in the middle of the code density spectrum by virtue of
variable-length instruction encoding.

Dynamic Instruction Count. While code compression
achieves about 32.5% memory savings in Thumb, it increases
the dynamic instruction count by 30% [21]. This is a direct
consequence of using simpler 2-operand instructions to fit
Thumb’s 16-bit instruction. Thumb instructions also lack the
shift-modifier and predication support that ARM instructions
enjoy. Alpha employs 3-operand instructions, but is a load-
store architecture, meaning that no arithmetic instruction can
directly operate on memory. While x86-64 also restricts in-

structions to the 2-operand format, it implements a number of
complex addressing modes that allow instructions to directly
operate on memory. x86-64 instructions are decoded into one
or more simpler RISC-like µops, thereby increasing the num-
ber of dynamic instructions (µops) by about a factor of 1.3 [8]
(as compared to the native x86-64 instruction count).

Register Pressure. Thumb uses a reduced register set, al-
lowing only eight 32-bit programmable registers for integer
operations. Thus, all 64-bit integer computation is performed
using software emulation. Software emulation is discussed in
greater detail in Section 5. Alpha, on the other hand, has two
banks of thirty-two 64-bit programmable registers, for integer
and floating-point computation. x86-64 offers sixteen 64-bit
registers for integer operations and sixteen 128-bit registers
for floating-point and SIMD operations.

The number of programmable registers is inversely propor-
tional to the amount of register pressure, and thus the number
of register spills, for any ISA. Therefore, Thumb suffers from
extremely high register pressure, while Alpha enjoys low reg-
ister pressure. Interestingly, x86-64 enjoys the lowest register
pressure among the three ISAs, despite the fact that it has a
smaller architectural register file than Alpha. This is a mani-
festation of the following addressing modes and optimizations:
Absolute memory addressing allows instructions to directly
access memory operands, eliminating the need to allocate reg-
isters for temporary storage of loaded values. Sub-register
addressing allows programmers to address 48 sub-registers
to store/operate on smaller data types, which can be further
exploited by aggressive sub-register coalescing strategies to
reduce the number of register spills. Program counter rela-
tive addressing enables position-independent code without the
overhead (both in performance and allocated registers) of a
Global Offset Table. Lastly, register-to-register spills allow
programmers (compilers) to spill general-purpose registers to
XMM registers, thereby minimizing the number of register
spills into memory.

Figure 1 shows Thumb instructions and x86-64 µops
normalized to Alpha instructions, for the SPEC2006 inte-
ger benchmarks, compiled using the LLVM/Clang frame-
work [26, 25]. The average number of dynamic instructions
on Thumb is 43.4% more than that of Alpha. This is due,
in large part, to the high register pressure in Thumb. In fact,

!"

!#$"

!#%"

!#&"

!#'"

("

(#$"

(#%"

(#&"

(#'"

$"

)*+,-./01" 23456" 7,3*/6" 8395+0394:"

;*491-/6"

<3,4:"

=96,*>10396"

?
3
*.

4
:+
@/
5
"=
9
6,
*>
10
3
9
"A
4
0
3
6"

<->.B"):C-4" D'&E&%"

Figure 1: Instruction mix (normalized to Alpha) for SPEC2006

Thumb makes 91.1% more memory references than Alpha.
Other factors include 64-bit emulation and the use of simpler
2-operand instructions.

x86-64 makes 8.3% fewer memory references than Alpha
due to lower register pressure. However, we observe that there
is a very small (0.8%) reduction in the number of stores, while
the number of loads drops by 10.8%. The compiler generally
seeks to spill variables that won’t be updated for a long period
of time. Therefore, the number of reads from the spill area is
much higher than the number of writes.

Interestingly, Alpha makes 10.9% fewer memory references
on the high ILP benchmarks bzip2 and hmmer, in which case
the compiler does not find enough opportunity to utilize the
complex addressing modes and optimizations offered by x86-
64. The 2-operand restriction contributes to the 24.7% more
arithmetic instructions on x86-64, resulting in an overall in-
crease in the number of dynamic instructions of 15.4%.

Floating-point and SIMD Support. One consequence of
code compression is that floating-point instructions are not
supported in Thumb. Floating-point operations are emulated
in software. While emulation results in slower execution,
Thumb cores don’t need to include floating-point instruction
windows, register files, and functional units, resulting in up to
19.5% reduction in peak power and 30% savings in area. In a
heterogeneous-ISA architecture, any program or phase with
significant floating-point activity will likely quickly switch to
an ISA that executes natively.

x86-64 also provides SIMD support through its SSE/AVX
extensions, making vectorization of loops and basic blocks
possible. Alpha’s MVI extension allows for only pack, unpack,
max, and min operations. Due to the very primitive nature of
the MVI extension, we forgo SIMD units in Alpha cores.

To illustrate the benefits of heterogeneity, even on a single
application, we examine the performance of bzip2 during two
different phases of its execution (in Figure 2), under varying
power constraints. We identify program phases using Sim-
Point [29]. The detailed methodology is described in Section 6.
We see two key results in this graph. First, we see that the most
effective ISAs differ between phases of the same application;
e.g., at 15 W, Phase 1 prefers x86 and Phase 2 prefers Alpha.
Second, we see that even in a single phase, the best ISA varies
depending on the design constraints or the operating condition
of the processor. For example, in Phase 2, we might prefer
Alpha unless we are operating unplugged or perhaps in a low
battery state, in which case we’d prefer Thumb because at low
power budgets, Thumb provides the highest performance.

4. Design Space Exploration

The possible design space of a heterogeneous-ISA CMP is
characterized by a diverse set of ISAs and a multitude of
microarchitectural parameters. Navigating such a design space
is a difficult problem. That difficulty can be reduced and
pruned if we understand some of the principles that govern
the effective co-design of heterogeneous-ISA, heterogeneous
hardware architecture processors. To do this, we execute an
exhaustive design space exploration of an architecture with

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0 5 10 15 20 25

P
e

rf
o

rm
a

n
c
e

 (
N

o
rm

a
liz

e
d

 I
P

C
)

Peak Power (W)

Thumb
Alpha

x86-64
 0

 0.5

 1

 1.5

 2

 0 5 10 15 20 25

P
e

rf
o

rm
a

n
c
e

 (
N

o
rm

a
liz

e
d

 I
P

C
)

Peak Power (W)

Thumb
Alpha

x86-64

Figure 2: Performance comparison under different peak power budgets for two different execution phases of bzip2

Design Parameter Design Choices
ISA Thumb, Alpha, x86-64
Execution Semantics In-order, Out-of-order
Issue width 1, 2, 4
Branch Predictor local, tournament
Reorder Buffer Size 64, 128 entries
Architectural Register File ISA-specific
Physical Register File (Integer) 96, 160
Physical Register File (FP/SIMD) 64, 96
Integer ALUs 1, 3, 6
Integer Multiply/Divide Units 1, 2
Floating-point ALUs 1, 2, 4
FP Multiply/Divide Units 1, 2
SIMD Units 1, 2, 4
Load/Store Queue Sizes 16, 32 entries
Instruction Cache 32KB 4-way, 64KB 4-way
Private Data Cache 32KB 4-way, 64KB 4-way
Shared Last Level (L2) Cache 4-banked 4MB 4-way, 4-banked 8MB 8-way

Table 1: Design space of a Heterogeneous-ISA architecture

fairly limited, tractable options, and observe the characteristics
of the best designs.

The design space we explore in this work includes the three
ISAs - Thumb, Alpha, and x86-64, along with a set of micro-
architectural parameters that represent a wide range of perfor-
mance and power control points. The goal of the design-space
exploration is to find the optimal 4-core heterogeneous-ISA
CMP for varying power and area budgets, and considering
all permutations of applications in the workload sharing the
cores.

Table 1 enumerates the variables in our design space. The
Cartesian product of this design space consists of 750 thousand
single core combinations, making it not practically feasible
to perform an exhaustive search. To reduce the size of the
Cartesian product, we prune the design space by establishing
correlations between different variables. While some corre-
lations can be inferred by intuition, others are dictated by
specific ISA characteristics: (1) Size of the reorder buffer can
be correlated to the physical register file size, as they together
establish the window size. (2) The number of functional units
varies with the issue width. (3) Thumb cores need not include
a floating-point instruction window, retirement units, register
files or functional units. (4) Neither alpha nor thumb need
include SIMD functional units.

Design Parameter Design Choices
ISA Thumb, Alpha, x86-64
Execution Semantics In-order, Out-of-order
Branch Predictor local, tournament
Reorder Buffer-Register File 64-96-64, 128-160-96 entries

1-1-1-1-1-1, 1-3-2-2-2-2, 2-3-2-2-2-2,
Issue Width-Functional Units 4-3-2-2-2-2, 4-6-2-4-2-4
Load/Store Queue Sizes 16, 32 entries

32K/4-32K/4-4M/4,
Cache Hierarchy 32K/4-32K/4-8M/8,

64K/4-64K/4-4M/4,
64K/4-64K/4-8M/8

Table 2: Pruned design space for faster navigation

The resulting pruned design space, as shown in Table 2, con-
tains 120 in-order cores and 480 out-of-order cores. However,
the number of possible 4-core configurations in the pruned de-
sign space is still very high (129.6 billion configurations). To
further make this problem tractable, we use the following re-
sults from prior research on single-ISA heterogeneous architec-
tures – modeling using private LLCs versus a shared n-banked
LLC in an n-core configuration, results in the same perfor-
mance ordering with respect to all n-core configurations [23],
as well as different scheduling/migration strategies [35]

Therefore, we model cores using 1MB 4-way or 2MB 8-way
private last-level caches, instead of a single shared 4MB or
8MB cache, respectively. Thus, the combined performance
of a 4-core configuration with private LLCs can be computed
using the sum of the performances of the individual cores.
While the design space exploration still involves finding the
optimal 4-core configuration out of 129.6 billion different
configurations, we can now find the best design with 600
simulations of the single-core permutations, and a software
search of the 130 billion sums.

5. Compiler and Runtime Environment

The programming environment for a heterogeneous CMP is
dictated by one of the first design choices: separate address
space [3, 4] vs unified address space [15, 22]. We contend that
the full benefits of a heterogeneous multicore architecture can
be reaped only through dynamic core selection, which requires
process migration. Separate address space constraints impose

a significant cost to process migration in terms of program
state transfer. Therefore, we choose the unified address space
model in our design. However, this presents a unique challenge
to compilation and process migration, because the memory
layout and runtime state of a program is always architecture-
specific.

To attack the process migration problem, we borrow a num-
ber of compiler and runtime techniques from prior work by
DeVuyst, et al. In particular, our compiler generates a fat bi-
nary with multiple target-specific code sections and common
target-independent data sections. Furthermore, our runtime en-
vironment employs dynamic binary translation till we reach an
equivalence point, at which program state can be successfully
transformed. However, the ISAs we have chosen for this work
are significantly more diverse and therefore present additional
challenges that are not just limited to compiler and runtime
support.

First, we deal with both 32-bit and 64-bit ISAs that each
expose a different organization of the virtual address space
and page table hierarchies. This necessitates the use of a com-
mon address translation scheme and long mode emulation on
the 32-bit Thumb ISA. Second, the complexity of creating
common target-independent data sections increases with both
the number and diversity of ISAs. We take a cleaner approach
here by using a common intermediate representation and en-
capsulate the lowest common denominator size and alignment
rules in intermediate-level types. Third, to reap full benefits
of ISA heterogeneity, it is critical that we don’t turn off any
target-specific compiler optimization. Therefore, unlike prior
work, we can no longer rely on a map of source-level variable
names to transform every live CPU register or memory loca-
tion, at the time of migration. We instead take advantage of a
powerful architecture-independent intermediate representation
that can act as a bridge between the ISAs, and provide hints
for faster and more frequent program state transformation. As
a result, in this work we introduce a compilation infrastructure
that is significantly more flexible (capable of working with
more diverse ISAs) and provides higher performance, both in
steady state (native mode execution) and at migration points.

In this section, we first present a memory management strat-
egy to facilitate a unified address space, and then describe a
compilation and runtime strategy to address additional chal-
lenges presented by heterogeneous-ISA process migration.

5.1. Memory Management

Address Translation. A common address translation mech-
anism is required to ensure a unified address space in a
heterogeneous-ISA environment. From Table 3, Alpha
emerges as the lowest common denominator due to its 8KB
page size. While it is possible to use software virtualization
for 8KB page management on Thumb and x86-64, it neces-
sitates the use of multiple page table structures, one for each
ISA. Furthermore, software virtualization cannot enable 64-bit
virtual address translation on the 32-bit Thumb architecture.
Therefore, we use a common page table structure and an MMU
based on the 4-level page table walker of x86-64, for all the
three ISAs.

ISA Thumb Alpha x86-64
Page Table 2-level 3-level 4-level
Hierarchy
Page Size 4KB, 64KB 8KB 4KB, 2MB, 1GB
Page Table 16KB first-level, and 8KB 4KB
Size 1KB second-level
TLB Update Hardware page Low-level firmware Hardware page
Mechanism table walker (PALcode) table walker

Table 3: Memory Management on Thumb, Alpha and x86-64

Long mode emulation on Thumb. Long mode (64-bit)
computation in Thumb is performed using software emulation.
Most compilers already support this to perform arithmetic and
memory operations on the “long long” data type. The general
procedure is to use multiple 32-bit registers to construct 64-bit
values and compute on them.

To support memory operations using 64-bit pointers (virtual
addresses), we extend the Thumb ISA to include special in-
structions: LD64 and ST64. These instruct the MMU to look
for the higher-order 32-bits of its 64-bit virtual address input
in a special register R8. However, the memory footprint of
most general-purpose workloads seldom exceeds 4GB. In fact,
we observe that no SPEC CPU2006 benchmark acquires more
than 4GB of memory. Therefore, wherever possible, we use
the regular load/store instructions with 32-bit pointers, which
are zero-extended by the MMU during address translation.

5.2. Compilation Strategy

Common Intermediate Representation. In this work, we
leverage the LLVM compiler framework [26] and the Clang
front-end [25] to generate a common intermediate represen-
tation (LLVM bitcode), and perform target-specific backend
compilation thereafter. To keep the front-end compilation
ISA-agnostic, we make use of the target-triple functionality
of Clang to specify the data types of a generic target, for all
ISAs.

Target-Independent Type Legalization. To minimize the
amount of program state to be transformed, we enforce com-
mon rules for promotion, truncation, expansion, and type con-
version. We allow certain exceptions during type legalization
that interfere with ISA diversity – e.g., vector widening/scalar-
izing on x86-64, and long mode/floating-point emulation on
Thumb. For the most part, target-independent type legalization
ensures a consistent view of global data and bitcode-level vari-
ables across all ISAs, during every stage of compilation. This
is critical for generating a single version of target-independent
global data sections.

Intermediate Name Propagation. Once the intermediate
representation has been generated, we provide each bitcode-
level variable with a unique name. During the subsequent
code generation and optimization passes, we ensure that each
target-level machine operand (both registers and fixed stack
slots) is associated with its corresponding intermediate name,
if any. This gives us the ability to distinguish between bitcode-
level and target-level variables, which plays a key role at the
time of transform generation.

Stack Frame Organization. To avoid handling pointer
inconsistencies at the time of program state transformation,

we enforce a common stack frame organization (see Figure 3).
In doing so, we do not add any additional instructions, since
we at most change the relative position of a stack object from
the stack/frame pointer. To ensure stack consistency across
ISAs, we use similar techniques as described by DeVuyst, et
al. [11].

Generation of Runtime Transforms. Towards the end of
the multi-ISA compilation, we generate a set of transforms
that can be applied by the runtime environment, at the time
of migration. Each transform is a routine that reconstructs the
target-specific program state of a basic block (both live regis-
ters and stack objects), in the required ISA-form. Accordingly,
a live register or a stack object can be transformed if one of
the following conditions hold:
• Its value is known at compile time - e.g., constant literals.
• Its value can be found at a specific location - e.g, glob-

als, immutable objects (aggregates, alloca variables, and
variables whose addresses have been taken).

• Its intermediate name refers to a live register or stack object
on the ISA from which we migrated.

• Its value can be computed using the already transformed live
registers and stack slots. This involves a reverse traversal of
the def-use chain to find a sequence of instructions that can
re-compute the required value.
We generate transforms at compile-time rather than run-

time because performing reverse data-flow analysis to deter-
mine the value of every live register and stack object imposes
a significant cost to migration. Prior research [11] suggests
that we can achieve fast stack transformation by just matching
the live register and stack contents between the ISAs involved,
and copy-in their values accordingly. We found that such a
strategy results in very few transformable basic blocks, if the
ISAs exhibit significant diversity. Specifically, we observed
that the transforms derived using the reverse data-flow analysis
reduced the run-time distance to the next transformable basic
block by an order of magnitude.

Theoretically, it is possible to transform any live register
and stack object in the program, using such a reverse data-flow
analysis. However, due to the limited amount of informa-
tion available at compile-time, we cannot handle program
constructs such as uncountable loops, indirect branches, and
conditional branches. Therefore, we restrict this analysis to
control flow graphs that do not contain φ -nodes (merge points).
Note that φ -nodes could still be transformable using methods
described above, other than reverse data-flow analysis.

Runtime Environment. Our runtime environment has two
major components: a dynamic binary translation (DBT) en-
gine and a program state transformer. The DBT engine itself
consists of six individual translators, based on the tiny code
generators of QEMU [6]. At the time of migration, dynamic
binary translation is performed until an equivalence point is
reached, after which it is safe to use the compiler-generated
transforms to convert program state from one ISA to another.
Each compiler-generated transform is recursive in nature. Af-
ter transforming the program state of the current basic block,
it walks up the stack using the return address and invokes the
caller’s transform. On their return path, the transforms fix up

!"#$#%&'()*+,&-..+(//

0,1+(2/3,4&-..+(//

5*++(,)&

6+27(

8*)493,4&-+4*7(,)/

:9;&96&<)21=

>+27(&?93,)(+

<)21=&?93,)(+

52@@((&<;3@@&-+(2

>+27(&?93,)(+&<2A(

077*)2B@(&8BC(1)/

?2..3,4

D912@/&2,.&)(7;9+2+3(/

0,1973,4&-+4*7(,)/

52@@(+E/&

6+27(

Figure 3: Common Stack Frame Layout across all ISAs

the callee-saved register spill area, which ultimately culmi-
nates in the construction of the target CPU register state.

6. Experimental Methodology
In this section, we describe our experimental methodology for
the two major contributions of this work: (1) design space
exploration for a heterogeneous-ISA CMP, and (2) compiler
and runtime strategy for a diverse set of ISAs.

6.1. Design Space Exploration

Our four-core design space consists of 600 homogeneous pro-
cessors, 1.5 billion single-ISA heterogeneous processors, and
128.3 billion heterogeneous-ISA chip multiprocessors, that
can be each designed out of 600 distinct CPU cores.

Although prior work on ISA characterization [9, 18, 33]
chooses to model cores based on actual commercial offerings
for each ISA, we seek to remove any non-ISA biases and start
each design with a clean slate. Thus, we assume the same
basic pipeline design (number of stages and latency), based
on the Alpha 21264 [20], across all ISAs (with the exception
of instruction decode, which will be the primary stage(s) that
depend on the ISA). Additionally, we assume a total-store-
order (strictest of all) memory consistency model for all ISAs.

All cores are modeled using 32nm technology and the clock
rate is fixed at 1.67GHz. Owing to ISA diversity and the
multitude of micro-architectural parameters we consider in
this work, the heterogeneous-ISA CMPs are distributed over
significant peak power (8.32-80.69 W) and area (32.97-129.87
mm2) ranges. We use the gem5 [7] simulator to model CPU
core performance, and McPAT [27] to model power and area.

Our design methodology selects the optimal multicore con-
figuration over the entire set of workloads (all possible per-
mutations), for different peak power and area budgets. The
design space explorations are optimized for two types of work-
loads: (1) multi-programmed mixed workloads, and (2) single-
threaded workloads. The former helps us evaluate the through-
put of a conventional CMP, the latter gives us insight into a
“Dark Silicon” implementation, where it is expected that only
one core (out of a heterogeneous cluster) will be powered up
at once [13, 22, 36]. In the latter case, a thread will always

be assigned it’s best core, but in the former case, it will de-
pend on the threads with which it is co-scheduled. We will
also examine both the case where threads are placed based
on overall execution characteristics (assuming minimal migra-
tion), and the case where threads can migrate to other cores
at phase changes. That is, in the first case we find the best
assignment of applications to cores, in the second, we find the
best assignment of phases to cores.

We use SimPoint [29] to identify program phases. Specifi-
cally, we obtain multiple simulation points for a program’s ex-
ecution on Alpha, with an interval size of 100 million dynamic
instructions. We modify the atomic CPU (instruction emula-
tion mode) of gem5 to emit the start and end basic blocks for
each simulation point, and their cumulative frequency, which
serve as the start and end markers for the corresponding pro-
gram phase on the other two ISAs, namely thumb and x86-64.
Our workloads include a total of 72 different program phases
on the 10 applications we benchmark.

6.2. Compiler Methodology

We use the SPEC CPU2006 integer and floating-point C bench-
marks to evaluate the proposed architecture. We exclude
h264ref and perlbench from this set because they use ISA-
specific programming constructs (e.g., inline assembly), either
directly or through library function calls. All benchmarks are
compiled at the -O3 optimization level, using the multi-ISA
compilation methodology described in section 5. We perform
all experiments that evaluate the performance of our compiler
and runtime methodology on cores that are modeled after
Cortex A-15 for Thumb, the 21264 processor for Alpha, and
Core-i7 for x86-64. We use the following metrics to evaluate
our compilation methodology.

Steady State Performance. The primary goal of multi-ISA
compilation is to enable seamless execution migration between
different ISAs at minimal cost. Through consistent compila-
tion and deterministic transform generation, we manage to be
migration-safe in 45% of the basic blocks. However, since we
enforce many consistency rules during the multi-ISA compila-
tion, it is important to study its effect on steady-state perfor-
mance. To evaluate the steady-state performance degradation,
we simulate each program phase of a benchmark compiled for
both single-ISA execution and multi-ISA execution.

Distance to Next Equivalence Point. This distance repre-
sents the number of dynamic instructions to be translated by
the DBT engine, before we can transform the program state to
enable native execution. We modify gem5’s atomic CPU to
find if a given instruction is an equivalence point, using com-
piler metadata. We then run each benchmark to completion
and record the average distance to the next equivalence point.

Migration Cost. Migration cost consists of two major com-
ponents: dynamic binary translation and program state trans-
formation. On every ISA, we take 10 samples of the bench-
mark’s dynamic execution state, each at a 100 million instruc-
tion interval, after fast-forwarding execution for the first one
billion instructions [30]. We then simulate heterogeneous-ISA
migration scenarios for each sample, by performing dynamic
binary translation until an equivalence point is reached, and

program state transformation at that point.
Overall Speedup Due to Migration. To compute the

overall speedup due to migration, we employ a phase based
scheduling strategy, where migration happens only when phase
transitions demand switching to a different core. To identify
phase transitions, we rely on SimPoint metadata and profiling
information from oracle experiments. This models a system
where the compiler is directing migration (or at least migration
preferences), or a runtime or hardware system that had been
observing execution long enough to accurately detect phase
behavior.

7. Results
This work seeks to identify the best heterogeneous designs
for a given workload. This not only enables us to quantify
the potential gains for ISA heterogeneity, but also identify
trends and insights from the actual designs that get tagged
as optimal. Because the nature of the design exploration is
relatively independent of the cost of migration, only results
later in this section account for the specific costs of migration,
and the extent to which they mitigate the potential gains.

7.1. Evaluation of the Heterogeneous-ISA Architecture

Processor designs today are as likely to be constrained by
power dissipation as they are by area. Thus, in this section, we
examine the top-performing designs under both area and power
constraints. In addition to finding the best heterogeneous-ISA
design, we also find the best homogeneous design (best single
configuration for any ISA) and best single-ISA heterogeneous
design (best heterogeneous design for which all cores have
the same ISA). We consider designs optimized for both multi-
programmed workload throughput and single-thread perfor-
mance.

Multi-programmed workloads. Figure 4 compares
three architectures: homogeneous, single-ISA heteroge-
neous, and heterogeneous-ISA CMPs, all optimized for multi-
programmed workload performance under different peak
power and area constraints. We make several important obser-
vations here. First, there are significant gains available from
ISA heterogeneity, matching or exceeding the gains from hard-
ware heterogeneity. Second, hardware heterogeneity alone is
less effective under tight constraints (all cores have to be small)
or liberal constraints (all cores free to be big), because both
endpoints tend toward homogeneous designs. Heterogeneous-
ISA designs, in contrast, are still effective in those regions,
because we can still gain from ISA heterogeneity even when
the hardware is homogeneous.

There are two reasons for this advantage. First, different
code regions have a natural affinity for one ISA or another,
irrespective of the hardware implementation. Second, the
ISA options give the architect more opportunities to create
area-effective or power-effective cores.

For instance, at a peak power budget of 20W, the single-ISA
heterogeneous CMP manages to employ only 3 out-of-order
cores with smaller 32KB L1 caches, while the heterogeneous-
ISA CMP sports all out-of-order cores with 64KB L1 caches.

!"

!#$"

!#%"

!#&"

!#'"

("

(#$"

(#%"

(#&"

$!" %!" &!")*+,-,./0"

!
"
#
#
$
%
"
&

'#()&'*+#,&-./&

12-23/*/245" 6,*3+/7869" 6,*3+/7869":;,.<"-,3=>?2*5@"

!"

!#$"

!#%"

!#&"

!#'"

("

(#$"

(#%"

(#&"

%'" &%" '!")*+,-,./0"

!
"
#
#
$
%
"
&

'(#)&*++,-&

1/./234/*/356789:" 1/./234/*/356789:";<,.="-,42>?3*6@"

Figure 4: Multi-programmed Workload Performance comparison under different peak power and area budgets

!"

!#$"

!#%"

!#&"

!#'"

("

(#$"

$!" %!" &!")*+,-,./0"

!
"
#$

%
&'
()
*
+,
-
.
+

.)%/+."0)#+123+

12-23/*/245" 6,*3+/7869" 1/./:23/*/2457869"

!"

!#$"

!#%"

!#&"

!#'"

("

(#$"

%'" &%" '!")*+,-,./0"

!
"
#$

%
&'
()
*
+,
-
.
+

/#)%+0$$12+

12-23/*/245" 6,*3+/7869" 1/./:23/*/2457869"

Figure 5: Energy-Delay-Product comparison for multi-programmed workloads under different peak power and area budgets

This is possible because the area-efficient and power-efficient
Thumb cores free up space that is put to good use by the other
cores. We find that heterogeneous-ISA CMPs can provide
15.8% better throughput on multi-programmed workloads than
the best single-ISA heterogeneous CMPs.

Furthermore, we can achieve a greater speedup if appli-
cations are allowed to migrate between the cores at phase
boundaries. This is well-documented in the case of single-ISA
heterogeneous CMPs [22, 24]. On a heterogeneous-ISA CMP,
this effect is further enhanced due to ISA affinity. We observe
an additional speedup of 11.2% due to migration alone on
a heterogeneous-ISA CMP, in contrast to the 4.6% speedup
due to migration on a single-ISA heterogeneous CMP. In all
subsequent experiments in this paper, migrations are always
enabled.

In order to evaluate energy efficiency, we instead optimize
the design space exploration to find energy-efficient cores by
identifying the processor configurations that minimize energy-
delay product (EDP). Figure 5 compares the energy efficiency
for the three architectures under different peak power and area
budgets. Heterogeneous-ISA CMPs achieve an average energy
savings of 21.5% and an average reduction of 27.8% in the
EDP over single-ISA heterogeneous CMPs, with absolutely
no loss in performance – that is, we gain performance and
decrease energy simultaneously when we employ multi-ISA
heterogeneity.

Thus we see that the energy efficiency gains of ISA hetero-
geneity actually exceed the potential performance gains (for

the performance-optimized experiments). Maximizing hetero-
geneity in this way can be particularly effective in a power-
constrained environment. In a homogeneous-ISA general-
purpose processor, Thumb is not a serious candidate, because
it performs so poorly for certain codes; however, as part of a
heterogeneous solution, it shines for certain code regions.

Single-threaded workloads. To evaluate designs opti-
mized for single-threaded workloads, under different peak
power budgets, we assume the dynamic multicore topology
described by Esmaeilzadeh, et al. [13], in which idle cores are
turned off to reduce power consumption. Figure 6 shows per-
formance and EDP measurements for the three architectures
constructed when searching the design space for multicore
architectures that provide optimal performance or energy effi-
ciency over our benchmark set. We apply lower peak power
constraints in this scenario, since we are optimizing for the
single-powered-core execution scenario.

We observe that in a highly peak power constrained environ-
ment, the heterogeneous-ISA CMP still manages to achieve
a speedup of 16.9% over a single-ISA heterogeneous CMP,
and as the peak power budget becomes slightly higher (at 15
W), it provides a consistent speedup of 18.8%. However, the
maximum speedup that a single-ISA heterogeneous CMP can
provide over a homogeneous CMP in such a topology, is just
1.5%. So again we see that ISA heterogeneity continues to
provide gains in regions where hardware heterogeneity is less
effective.

Figure 7 shows the performance and EDP evaluation on de-

!"

!#$"

!#%"

!#&"

!#'"

("

(#$"

(#%"

)" (!" ()" *+,-.-/01"

!
"
#
#
$
%
"
&

'#()&'*+#,&-./&

23.340+0356" 7-+4,0897:" 20/0;340+0356897:"

!"

!#$"

!#%"

!#&"

!#'"

("

(#$"

)" (!" ()" *+,-.-/01"

!
"
#$

%
&'
()
*
+,
-
.
+

.)%/+."0)#+123+

23.340+0356" 7-+4,0897:" 20/0;340+0356897:"

Figure 6: Single Thread Performance and EDP evaluation using the dynamic multicore topology

!"

!#$"

!#%"

!#&"

!#'"

("

(#$"

(#%"

(#&"

(#'"

$"

%'" &%" '!")*+,-,./0"

!
"
#
#
$
%
"
&

'(#)&*++,-&

12-23/*/245" 6,*3+/7869" 1/./:23/*/2457869"

!"

!#$"

!#%"

!#&"

!#'"

("

(#$"

%'" &%" '!")*+,-,./0"

!
"
#$

%
&'
()
*
+,
-
.
+

/#)%+0$$12+

12-23/*/245" 6,*3+/7869" 1/./:23/*/2457869"

Figure 7: Single Thread Performance and EDP evaluation under different area budgets

signs optimized for single-threaded workloads, under different
area budgets. Such designs are typically composed of multi-
ple small cores and one large core optimized to provide high
single thread performance. When highly power constrained,
single-ISA heterogeneous CMPs use three small Alpha in-
order cores and one powerful out-of-order core. Combining
again the dual benefits of ISA affinity and the area benefits of
Thumb, the best heterogeneous-ISA CMPs provide more bal-
anced cores (to better exploit ISA affinity) yet still enable the
same large Alpha core as the single-ISA design. That configu-
ration contains two small Thumb cores, the same out-of-order
Alpha core, and a medium-end x86-64 core. We observe that
a heterogeneous-ISA CMP can improve single-thread perfor-
mance by 20.8% over a single-ISA heterogeneous CMP, or
achieve 23% more energy savings and 31.8% reduction in
EDP, again with no loss in performance.

7.2. Framework for ISA-Microarchitecture co-design

In this section, we present inferences from our design space
exploration that can serve as a framework for future ISA-
microarchitecture co-design in the context of a heterogeneous-
ISA CMP. We consider the best designs from all experiments
carried out in the previous section. Figure 8 shows the fre-
quency of occurrence of different micro-architectural parame-
ters in a heterogeneous-ISA design. We analyze the influence
of ISA on each of these micro-architectural parameters.

Execution Semantics. We find that out-of-order execution
semantics is favorable in general. However, due to conserva-
tive peak power budgets in some designs, we select inorder

!"# $!"# %!"# &!"# '!"# (!!"#

)*+,-./-#

012+,3+,-./-#

(#

$#

%#

&%#

($'#

(&#

4$#

5,6#

789:#

5,;<=#

>,1-*<?/*2#

4$@A#

&%@A#

B
C
/
;1
D
,
*
#

E
/
?
<
*
D
;F
#

)F
F1
/
#G

8.
2:
#

H
0
A
#E
8I
/
#

5E
J
#E
8I
/
#

K
1
*
;D
,
*
<
=#

1
*
82
F#

A
-<
*
;:
#

L
-/
.
8;
2,
-#

5(
#M
<
;:
/
#

E
8I
/
#

!"#$%#&'()*+)*''%""#&'#)

,
-'
"*
./
"'
0
-1
#
"%
/
2)
3
/
"/
4
#
1#
")

>:1?N# O=P:<# C'&+&%#

Figure 8: Inferences from the Design Space Exploration

cores 10.8% of the time on Alpha, and 25% of the time on
x86-64. Due to the enormous peak power and area benefits
of Thumb, we always select out-of-order Thumb cores be-
cause they are so cheap. This impacts a number of our results,
because it means even our smallest designs always have an
out-of-order core available.

Issue Width. In general, higher fetch width enables higher
issue width. Since the instruction fetch units of Thumb and
Alpha dissipate less power than x86-64, we seldom choose a
small issue width for these ISAs. In fact, only 2.7% of our de-
signs choose a single-issue Alpha core and none of our designs
use a single-issue core for Thumb. Because code compression
ensures our minimum fetch bandwidth is 2 instructions with
Thumb, a scalar Thumb processor would always have fetch
and issue out of balance.

ROB Size. We find that the number of ROB entries and
register file size are highly influenced by the register pressure
of an ISA. The low register pressure of x86-64 (see Section 3)
results in small ROBs and physical register files being config-
ured. Conversely, the high register pressure of Thumb has the
opposite effect, while Alpha finds a middle ground between
the two.

Load/Store Queue Size. Although we do not see a direct
correlation between load/store queue sizes and ISA traits, ISAs
more likely to be configured out-of-order and with wide issue,
not surprisingly, also demand large LSQs.

Number of Functional Units. Because the x86-64 cores
we model have more basic functional unit types (integer,
floating-point, and SIMD), the cost of going from the low
to the high configuration is higher, and that step is taken less
often.

Branch Predictor. Interestingly, all ISAs almost always
choose the tournament branch predictor. This implies that it is
always worthwhile to invest transistors on the branch predictor.
ISA traits such as predication support have little influence on
the selection of branch predictor type.

L1 Cache Size The size of L1 cache largely depends on the
working set of applications, rather than a specific trait of an
ISA. In general, all ISAs favor higher L1 cache sizes.

7.3. ISA Affinity

To determine the ISA affinity of each application, we simulate
both single-threaded and multi-threaded workloads on two
types of designs: (1) optimized for performance, and (2) op-
timized for EDP. In all scenarios, designs are constrained by
a peak power budget of 40 W. Each scenario provides some
interesting insights. The design optimized for single-threaded
performance is the true indicator of ISA affinity, since only
one application is in execution at a time, and each application
is allowed to freely migrate between the cores. In case of
multi-programmed workloads, due to contention between ap-
plications, some applications may execute on ISAs of second
preference. On designs optimized for energy efficiency, appli-
cations may choose to execute on ISAs that provide energy
efficiency but don’t maximize performance.

Figure 9 shows that each application exhibits a different
degree of ISA affinity, and most use all ISAs. In our exper-

!"#

$!"#

%!"#

&!"#

'!"#

(!!"#

!
"
#
$
%
&
'
(
)*
+,

#
)

)*+,-# ./0*.# 1'&2&%#

Figure 9: ISA affinity for different applications on designs op-
timized for (left to right) - (a) Single-thread performance, (b)
Multi-programmed workload performance, (c) Single-threaded
workload EDP, (d) Multi-programmed workload EDP

iments, benefits arise due to a combination of ISA factors,
some synergistic, some interacting negatively – trying to sepa-
rate those effects is difficult and not always intuitive. However,
we are able to make a few high level observations. (a) No
floating-point benchmark prefers execution on Thumb due to
floating-point emulation. (b) The floating-point benchmark
lbm prefers execution on Alpha instead of x86-64, because
Alpha requires about 34% fewer dynamic floating-point in-
structions. (c) The high ILP benchmarks bzip2, hmmer, and
sjeng prefer execution on Alpha over x86-64, because Alpha
offers lower register pressure during phases of high instruction-
level parallelism (see Section 3). (d) bzip2 prefers execution
on the 32-bit Thumb ISA during phases that involve 32-bit
unsigned integer arithmetic. Alpha incurs 27% more dynamic
instructions to emulate 32-bit arithmetic using 64-bit registers.
In such phases, x86-64 emerges as the ISA of second pref-
erence due to sub-register addressing. (e) The benchmarks
libquantum, milc, and sphinx3 take advantage of x86-64’s
SIMD functionality at different execution phases, and revert
back to Alpha/Thumb during the scalar phases.

Not immediately clear from the results so far is to what
extent the gains are a result of broad differences in feature sets
(e.g., SIMD vs no SIMD support) as opposed to the more sub-
tle differences. Further experiments show that the former are
a surprisingly small component. For example, if we consider
x86-64 with vs without SSE, that heterogeneity provides a gain
of 1.3% over the best single-ISA configuration – significantly
lower than the 15.8% speedup from a fully heterogeneous-ISA
design.

Finally, we note that there is little deviation in ISA affinity
due to contention amongst multi-programmed workloads, or
due to optimization for EDP instead of performance.

7.4. Compiler and Runtime Evaluation

The prior results, primarily concerned with the discovery of
the best core configurations, do not account for the cost of
reduced compiler effectiveness (which would affect steady
state performance) or of migration itself. Each of these would

!"#$%%&

!"#$%!&

!"#$%'&

!"#$%(&

!"#$%)&

!"#$%*&

!"#$%+&

!"#$%,&

!
"
#
$
%
&'
(
)'
*
+
,
-
#
./
'.
,
01
&"
/2
(
,
0'

-./0-&12&10345& 67+8+)&12&10345& 10345&12&-./0-&

67+8+)&12&-./0-& 10345&12&67+8+)& -./0-&12&67+8+)&

Figure 10: Number of dynamic instructions to be translated
before program state can be transformed

!"

#!"

$!"

%!"

&!"

'!"

(!"

!
"
#
$%
&
'
(
)*
+,

#
)-
,
./
)

)*+,-")."/01*/" 23(4(&")."/01*/")*+,-")."23(4(&"

/01*/")."23(4(&" /01*/").")*+,-" 23(4(&").")*+,-"

Figure 11: Average Migration Costs (includes both Binary
Translation and Program State Transformation)

degrade performance or efficiency gains over a single-ISA de-
sign (where migration is much faster). This section evaluates
those costs.

Steady State Performance. This examines the cost of
multi-ISA compilation on regular execution, compared to
single-ISA compilation. Due to the long-mode emulation on
Thumb, we observe a 4.6% average loss in performance; how-
ever, that does not actually impact our results – for code that
incurs that emulation, we typically do not select the Thumb
core for execution. x86-64 and Alpha show no performance
degradation at all, up to four decimal places of the IPC. Such
small degradation of performance comes from the fact that we
do not disable any optimization or ISA-specific behavior to
enable multi-ISA compilation. This is in contrast to the prior
work [11] which sacrifices 2-3% for multi-ISA compilation.

Fat Binary Overhead. The fat binary created by our com-
piler contains multiple code sections, but a core only loads its
own code to its private Icache. In fact, this can only impact
a shared cache. If we change our design to have a shared
16MB LLC, and incorporate the increased working set size,
we measure zero performance loss. At a 40 W peak power
budget, the best heterogeneous-ISA design achieves 47.5%
savings in instruction fetch energy over the best single-ISA
heterogeneous design, due to code density advantages.

!"#

$!"#

%!"#

&!"#

'!"#

(!!"#

!
"
#
$
%
&
'
(
)*
+,

#
)

)*+,-#).#/01*/# 2'&3&%#).#/01*/#)*+,-#).#2'&3&%#

/01*/#).#2'&3&%# /01*/#).#)*+,-# 2'&3&%#).#)*+,-#

Figure 12: Percentage make up of Binary Translation Cost in
the Overall Migration Overhead

!"

!#$"

!#%"

!#&"

!#'"

("

(#$"

(#%"

(#&"

$!" %!" &!")*+,-,./0"

!
"
#
#
$
%
"
&

'#()&'*+#,&-./&

12-23/*/245" 6,*3+/7869"

1/./:23/*/2457869";<=2"-,3:>?2*"@25.A" 1/./:23/*/2457869";<="-,3:>?2*"@25.A"

Figure 13: Overall Speedup due to migration.

Distance to Next Equivalence Point. Figure 10 shows the
average distance to the next equivalence point for all possible
migration scenarios. Due to the high frequency of equivalence
points for both Alpha and x86-64, fewer number of instruc-
tions (in the order of tens of thousands) are needed to reach an
equivalence point. On the other hand, migrating to Thumb can
require binary translation of millions of instructions before an
equivalence point is reached.

Migration Cost. Figure 11 shows the total overhead per
migration, assuming migration at random intervals in execu-
tion. We measure an average overhead of 4 milliseconds to
switch between ISAs, but that is heavily influenced by a few
outliers. In most cases, average migration cost is insignificant
if we assume we are not migrating more often than every cou-
ple hundred milliseconds. The migration overhead shows high
correlation to the distance to reach an equivalence point. This
implies that the migration overhead is typically dominated by
binary translation. Figure 12 shows the percentage of time
spent in binary translation during migration. For six out of ten
benchmarks, this number is more than 90%. The rest of them
have a very small migration cost (less than 100 microseconds),
and therefore binary translation is not a significant contribu-
tor. We also note that our binary translator is not yet heavily
optimized for performance.

Overall Speedup due to Migration. In this experiment,
we account for the cost of the actual migrations encountered in
an earlier experiment. That is, we incur the cost of migration

between two ISAs when a phase change causes a new core/ISA
combination to be preferred. Figure 13 shows the result of
this experiment. Here we see that we sacrifice negligible
performance (about 0.4-0.7%) for migration, meaning that
virtually all of the performance gain from heterogeneous ISAs
is retained. This comes from two factors. First, in most cases,
migration overhead is very low. Second, phase changes are
relatively infrequent, infrequent enough that even our few
cases of high migration overhead are not significant.

8. Conclusion
This research explores the design space of heterogeneous-
ISA chip multiprocessors. It shows that adding an extra axis
of heterogeneity by considering multiple ISAs significantly
increases the performance and energy efficiency of a hetero-
geneous processor. Specifically, a heterogeneous design that
allows cores with distinct ISAs outperforms the optimal hetero-
geneous single-ISA design by as much as 20.8% and improves
energy efficiency over the most efficient single-ISA design by
23%.

Additionally, this paper builds on prior work in multi-ISA
compilation by reducing compiled-code overhead to virtually
zero, and by greatly decreasing the average distance to an
equivalence point (which drives the average cost for binary
translation, and thus migration).

Acknowledgements
The authors would like to thank the anonymous reviewers for
their helpful insights. This research was supported in part by
NSF Grants CCF-1219059 and CCF-1302682.

References
[1] 2nd Generation Intel Core vPro Processor Family. Technical report,

Intel, 2008.
[2] The future is fusion: The Industry-Changing Impact of Accelerated

Computing. Technical report, AMD, 2008.
[3] The Benefits of Multiple CPU Cores in Mobile Devices. Technical

report, NVidia, 2010.
[4] Variable SMP – A Multi-Core CPU Architecture for Low Power and

High Performance. Technical report, NVidia, 2011.
[5] ARM Limited. ARM7TDMI Technical Reference Manual.
[6] F. Bellard. QEMU, a Fast and Portable Dynamic Translator. In USENIX

Technical Conference, Apr. 2005.
[7] N. L. Binkert, R. G. Dreslinski, L. R. Hsu, K. T. Lim, A. G. Saidi, and

S. K. Reinhardt. The M5 Simulator: Modeling Networked Systems.
Micro, IEEE, 2006.

[8] E. Blem, J. Menon, and K. Sankaralingam. A Detailed Analysis of Con-
temporary ARM and x86 Architectures. Technical report, University
of Wisconsin - Madison, 2013.

[9] E. Blem, J. Menon, and K. Sankaralingam. Power Struggles: Revisiting
the RISC vs. CISC Debate on Contemporary ARM and x86 Architec-
tures. In International Symposium on High Performance Computer
Architecture, Feb. 2013.

[10] N. Chitlur, G. Srinivasa, S. Hahn, P. Gupta, D. Reddy, D. Koufaty,
P. Brett, A. Prabhakaran, L. Zhao, N. Ijih, et al. QuickIA: Exploring
Heterogeneous Architectures on Real Prototypes. In International
Symposium on High Performance Computer Architecture, Feb. 2012.

[11] M. DeVuyst, A. Venkat, and D. M. Tullsen. Execution Migration in a
Heterogeneous-ISA Chip Multiprocessor. In International Conference
on Architectural Support for Programming Languages and Operating
Systems, Mar. 2012.

[12] Digital Equipment Corporation. Alpha Architecture Reference Manual.

[13] H. Esmaeilzadeh, E. Blem, R. S. Amant, K. Sankaralingam, and
D. Burger. Dark Silicon and the End of Multicore Scaling. In In-
ternational Symposium on Computer Architecture, June 2011.

[14] A. Ferrari, S. J. Chapin, and A. Grimshaw. Heterogeneous Process
State Capture and Recovery through Process Introspection. Cluster
Computing, 2000.

[15] P. Greenhalgh. big.LITTLE Processing with ARM Cortex-A15 &
Cortex-A7. Technical report, ARM, 2011.

[16] M. Hill and M. Marty. Amdahl’s Law in the Multicore Era. Computer,
July 2008.

[17] Intel. Intel 64 and IA-32 Architectures Software Developer’s Manual.
[18] C. Isen, L. K. John, and E. John. A Tale of Two Processors: Revisiting

the RISC-CISC Debate. In Computer Performance Evaluation and
Benchmarking. 2009.

[19] J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns, T. R. Maeurer, and
D. Shippy. Introduction to the Cell multiprocessor. IBM Journal of
Research and Development, July 2005.

[20] R. E. Kessler. The Alpha 21264 Microprocessor. Micro, IEEE, 1999.
[21] A. Krishnaswamy and R. Gupta. Efficient Use of Invisible Registers in

Thumb Code. In International Symposium on Microarchitecture, Dec.
2005.

[22] R. Kumar, K. I. Farkas, N. P. Jouppi, P. Ranganathan, and D. M.
Tullsen. Single-ISA Heterogeneous Multi-core Architectures: The
Potential for Processor Power Reduction. In International Symposium
on Microarchitecture, Dec. 2003.

[23] R. Kumar, D. M. Tullsen, and N. P. Jouppi. Core Architecture Opti-
mization for Heterogeneous Chip Multiprocessors. In International
Conference on Parallel Architectures and Compilation Techniques,
Sept. 2006.

[24] R. Kumar, D. M. Tullsen, P. Ranganathan, N. P. Jouppi, and K. I. Farkas.
Single-ISA Heterogeneous Multi-core Architectures for Multithreaded
Workload Performance. In International Symposium on Computer
Architecture, June 2004.

[25] C. Lattner. LLVM and Clang: Next Generation Compiler Technology.
In The BSD Conference, May 2008.

[26] C. Lattner and V. Adve. LLVM: A Compilation Framework for Life-
long Program Analysis & Transformation. In International Symposium
on Code Generation and Optimization, Mar. 2004.

[27] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and N. P.
Jouppi. McPAT: an Integrated Power, Area, and Timing Modeling
Framework for Multicore and Manycore Architectures. In International
Symposium on Microarchitecture, Dec. 2009.

[28] T. Li, P. Brett, R. Knauerhase, D. Koufaty, D. Reddy, and S. Hahn.
Operating System Support for Overlapping-ISA Heterogeneous Multi-
Core Architectures. In International Symposium on High Performance
Computer Architecture, Jan. 2010.

[29] E. Perelman, G. Hamerly, M. Van Biesbrouck, T. Sherwood, and
B. Calder. Using SimPoint for Accurate and Efficient Simulation. In
ACM SIGMETRICS Performance Evaluation Review, June 2003.

[30] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. Automatically
Characterizing Large Scale Program Behavior. In International Con-
ference on Architectural Support for Programming Languages and
Operating Systems, Oct. 2002.

[31] P. Smith and N. C. Hutchinson. Heterogeneous Process Migration:
The Tui System. Software-Practice and Experience, 1998.

[32] L. Strozek and D. Brooks. Energy-and Area-Efficient Architectures
through Application Clustering and Architectural Heterogeneity. ACM
Transactions on Architecture and Code Optimization, 2009.

[33] S. Terpe. Why Instruction Sets No Longer Matter. 2011.
[34] Texas Instruments Inc. OMAP5912 Multimedia Processor Device

Overview and Architecture Reference Guide.
[35] K. Van Craeynest, A. Jaleel, L. Eeckhout, P. Narvaez, and J. Emer.

Scheduling Heterogeneous Multi-Cores through Performance Impact
Estimation (pie). In International Symposium on Computer Architec-
ture, June 2012.

[36] G. Venkatesh, J. Sampson, N. Goulding, S. Garcia, V. Bryksin, J. Lugo-
Martinez, S. Swanson, and M. B. Taylor. Conservation Cores: Reduc-
ing the Energy of Mature Computations. In International Conference
on Architectural Support for Programming Languages and Operating
Systems, Mar. 2010.

[37] D. G. Von Bank, C. M. Shub, and R. W. Sebesta. A Unified Model of
Pointwise Equivalence of Procedural Computations. ACM Transactions
on Programming Languages and Systems, 1994.

[38] V. M. Weaver and S. A. McKee. Code Density Concerns for New
Architectures. In International Conference on Computer Design, Oct.
2009.

