
Reliability-Aware Data Placement
for Heterogeneous Memory Architecture

Manish Gupta1 Vilas Sridharan2 David Roberts3 Andreas Prodromou1

Ashish Venkat1 Dean Tullsen1 Rajesh Gupta1

1CSE Dept. 2RAS Architecture 3AMD Research
University of California San Diego Advanced Micro Devices, Inc.

{manishg, aprodrom, asvenkat, tullsen, rgupta}@cs.ucsd.edu {Vilas.Sridharan,David.Roberts}@amd.com

ABSTRACT
System reliability is a first-class concern as technology con-
tinues to shrink, resulting in increased vulnerability to tradi-
tional sources of errors such as single event upsets. By track-
ing access counts and the Architectural Vulnerability Factor
(AVF), application data can be partitioned into groups based
on how frequently it is accessed (its “hotness”) and its like-
lihood to cause program execution error (its “risk”). This is
particularly useful for memory systems which exhibit het-
erogeneity in their performance and reliability such as Het-
erogeneous Memory Architectures – with a typical configu-
ration combining slow, highly reliable memory with faster,
less reliable memory. This work demonstrates that current
state of the art, performance-focused data placement tech-
niques affect reliability adversely. It shows that page risk
is not necessarily correlated with its hotness; this makes it
possible to identify pages that are both hot and low risk, en-
abling page placement strategies that can find a good balance
of performance and reliability.

This work explores heuristics to identify and monitor both
hotness and risk at run-time, and further proposes static, dy-
namic, and program annotation-based reliability-aware data
placement techniques. This enables an architect to choose
among available memories with diverse performance and re-
liability characteristics. The proposed heuristic-based reliability-
aware data placement improves reliability by a factor of 1.6x
compared to performance-focused static placement while lim-
iting the performance degradation to 1%. A dynamic reliability-
aware migration scheme, which does not require prior knowl-
edge about the application, improves reliability by a factor of
1.5x on average while limiting the performance loss to 4.9%.
Finally, program annotation-based data placement improves
the reliability by 1.3x at a performance cost of 1.1%.

1. INTRODUCTION
Transient faults due to single event upsets (SEUs) are of

critical concern in the reliability of computer systems [5,
15, 41]. Technology scaling and reduced operating voltages
have increased the susceptibility of semiconductor devices
to SEUs [18,67]. These faults can result in spurious bit flips
that can corrupt the architectural state leading to catastrophic
system crashes [3, 47], unexpected loss of data, and critical
security vulnerabilities and exposures [14, 36, 66].

Prior research has proposed the use of error correction
codes (ECC) to handle such errors for conventional DDRx

memory [10,21]. ECC has enabled efficient technology scal-
ing for conventional DDRx memory, packing more bits per
unit area while maintaining a sustainable rate of uncorrectable
errors [52,59,60]. Despite advances in the capacity of DDRx
memory, the ever-evolving bandwidth requirements of emerg-
ing manycore CPU, GPU, and accelerator architectures have
prompted architects to explore alternative memory technolo-
gies and ways to organize memory/compute systems [65].

The 3D die-stacking technology has enabled the stacking
of DRAM chips directly on compute units using Through-
Silicon Vias (TSVs) [4,11,27,29,39,57]. These die-stacked
memory organizations provide 4X-8X higher bandwidth than
conventional DDRx memory [7, 9]. However, die-stacked
memory is limited in terms of capacity, higher cost, and
higher power dissipation [17]. In order to obtain the dual
benefits of high bandwidth and greater capacity, architects
have proposed a memory organization that combines differ-
ent types of memory into a single Heterogeneous Memory
Architecture (HMA) [22, 40]. For example, an HMA sys-
tem could employ on-package die-stacked memory to pro-
vide high bandwidth, and yet enable greater capacity via
an off-package DDRx memory. Many data placement tech-
niques have been proposed for such architectures in order to
maximize performance in spite of the latency and throughput
differences of the component memories [2, 7, 23, 32].

Prior work on these heterogeneous memory systems have
focused on the two axes of heterogeneity: capacity and per-
formance. However, these systems are also highly heteroge-
neous in their reliability characteristics, i.e., error rate and
fault tolerance. Data placement strategies that only con-
sider the first two axes of heterogeneity can have a dramati-
cally negative effect on reliability. Die-stacked memory has
higher fault rate owing to higher bit density and new failure
modes (e.g., TSV failure) [43, 44]. Moreover, die-stacked
memory typically employs weaker error correction than con-
ventional DDRx memory due to cost and complexity con-
straints [24]. This paper makes the case for a reliability-
aware data placement strategy that enables sustained opera-
tion on an HMA system at peak bandwidth, and simultane-
ously mitigates risk due to transient faults.

This paper shows that a naïve performance-focused data
placement technique which places frequently accessed mem-
ory pages (hot pages) in die-stacked memory results in lower
overall reliability. Figure 1 shows the performance and re-
liability characteristics of a variety of placement techniques
that place different proportions of hot pages in die-stacked

1

memory – the loss in reliability to achieve full performance
can be quite extreme. By analyzing memory pages for their
hotness and vulnerability, we devise effective reliability-aware
placement strategies for HMA.

To quantify the vulnerability of memory pages we use Ar-
chitectural Vulnerability Factor (AVF) analysis [42]. The
AVF of a memory page is defined as the probability that
a transient fault will result in an observable program error.
Hence, a page with higher AVF (high-risk) is more likely
to result in incorrect program execution than a page with
lower AVF (low-risk). A key result of this research is that
page hotness (access rate) is not necessarily correlated with
AVF. In fact, we show that applications can have as much as
39% of their memory pages that are both hot and low-risk.
This property raises the possibility of devising placement
schemes that preserve both reliability and performance on
a heterogeneous memory architecture – that is, we can oper-
ate in the top right region of Figure 1, a region inaccessible
to purely performance-focused placements. Consequently,
we make the following contributions:

• By quantitative categorization of application data into
quadrants in the hotness-risk spectrum, we show that
applications can have as much as 39% of their memory
footprint in the hot and low-risk category.

• We establish simple heuristics to allow for low-cost
hotness and risk monitors for data in memory, and fur-
ther develop a heuristic-based static data placement
technique that improves reliability by 1.6x, sacrificing
only 1% in performance.

• The reliability-aware dynamic migration schemes we
propose eliminates the need for prior profiling and im-
prove reliability by 1.5x on average, while limiting per-
formance loss to 4.9%.

• We demonstrate the efficacy of program annotation-
based data placement. We show that by annotating
only a handful of program structures, typically 1 - 6,
we improve reliability by 1.3x on average, while in-
curring a marginal performance loss of 1.1%.

2. BACKGROUND
In this section, we review several key reliability terms, for-

mulas, and derive specific equations important to this work.
Furthermore, we discuss relevant background on Heteroge-
neous Memory Architecture (HMA). While this work uses
the specific example of the AMD HBM and DDRx mem-
ory, we note that the reliability-aware techniques developed
in this work are general to any memory architecture which
exhibits heterogeneity in terms of both performance and reli-
ability. For example, these techniques are applicable to sys-
tems that integrate non-volatile and other emerging mem-
ory technologies into the hierarchy since they exhibit het-
erogeneity along both axes.

2.1 FIT-Rate, AVF, and SER
FIT-Rate. A device’s Failure-in-Time (FIT-Rate) or raw

failure rate due to single event upsets (SEUs) depends on
circuit characteristics and the neutron flux in its environ-
ment. For example, the Cielo super computer, located in Los
Alamos, New Mexico, is exposed to six times higher neutron
flux than Hopper, located in Oakland, California [12]. The

7.5 8.0 8.5 9.0 9.5 10.0
Performance (IPC)

400

600

800

1000

1200

1400

Re
lia

bi
lit

y
(M

TT
F)

Figure 1: Reliability vs. Performance for HMA averaged over astar,
cactusADM, mix1 benchmarks (methodology in Section 4) running on
a 16 core multicore. Individual points reflect different proportions of
hot pages placed in the faster stacked RAM.

circuit characteristics that affect FIT rates are cross-section
area, the amount of charge required to toggle a bit (cause
fault), and charge collection efficiency [55]. Shrinking tech-
nology results in a smaller amount of charge to toggle a bit
and a reduced cross-section area. With every new process
technology, the number of bits per unit area increases expo-
nentially resulting in a rise in raw FIT rates due to SEUs [18].

Architectural Vulnerability Factor (AVF). AVF of a hard-
ware structure is defined as the probability that a transient
fault will result in an observable program error. Mukher-
jee, et al. propose a technique to estimate AVF of a proces-
sor [42]. That work tracks and groups the bits of a hardware
structure into two categories: (a) those necessary for archi-
tecturally correct execution (ACE bits), and (b) the remain-
ing as un-ACE bits. A fault in an ACE bit will result in a
program-observable error in the absence of error-correction
techniques, while a fault in un-ACE bits will go unnoticed.
For example, all branch predictor bits are un-ACE because a
fault in the predictor bits does not impact correctness. Fur-
thermore, a bit can be ACE for only a fraction of the total
program execution time and un-ACE for the rest of the time.
For example, a physical register (R1) written at the begin-
ning of the execution, read half-way, and dead thereafter is
in ACE state for only half of the total execution time. The
AVF for R1 is the fraction of the total execution time it is
in ACE state. Similarly, the AVF of a hardware structure Mi
with bit size BMi over a period of N cycles is expressed using
the following equation.

AV FMi =
∑

N
n=0(ACE bits in Mi at cycle n)

BMi ×N
(1)

Soft Error Rate (SER). SER of a hardware structure Mi
is the product of its FIT rate and AVF (see Equation 2). SER
is the probability of an uncorrectable error resulting in incor-
rect program execution.

SERMi = FITMi ×AV FMi (2)

Equation 2 scales the FIT for transient uncorrectable er-
rors with AVF. The FIT and AVF values in the equation cap-
ture the probability of a transient uncorrectable error and of
the application reading the erroneous bit, respectively. In
Equation 2, then, the probability of incorrect program exe-
cution scales down with the incidence of erroneous bits that
are never read or overwritten before being read.

2

2.2 Heterogeneous Memory Architecture
A Heterogeneous Memory Architecture consists of mul-

tiple memory modules (e.g., an HMA system could com-
bine on-package die-stacked DRAM with off-package con-
ventional DDRx memory). The genesis of HMA is a result
of the high bandwidth and capacity requirement of emerg-
ing workloads running on a highly parallel manycore CPU,
GPU, and accelerator architectures, prompting hardware ar-
chitects to mix-and-match 3D high-bandwidth memories with
conventional off-package DDRx.

Off-package memory is a 2D arrangement of DRAM chips,
where each chip renders a fixed number of bits every clock
cycle (e.g., 4 bits are rendered in an x4 arrangement and 8
bits are rendered in an x8 arrangement). A collection of x8
DRAM chips operating in lockstep renders a 64-bit word
on the data bus, with each chip contributing an 8-bit sub-
set. An additional 8-bit chip provides single-bit correction
and double-bit detection (ECC). Moreover, in an x4 DRAM
arrangement, a stronger symbol-based correction can be en-
abled using the ChipKill [10] technology which distributes
ECC bits across different DRAM chips.

Die-stacked memory with a single DRAM chip is capa-
ble of rendering a 128-bit word every clock cycle, thereby
providing higher bandwidth. However, direct implemen-
tation of ECC- and ChipKill-based Reliability, Availability
and Serviceability (RAS) have proven to be inefficient for
die-stacked memory owing to significant bandwidth loss and/or
area overhead [25]. Sim, et al. [58] propose a modification to
the conventional ECC-based design for die-stacked DRAM
to provide ChipKill-level RAS at a moderate cost in perfor-
mance, but they incur a high capacity overhead due to the
duplication of dirty blocks in adjacent banks. Micron’s Hy-
brid Memory Cube (HMC) [49] provides strong reliability
for its 3D die-stacked memory. However, it requires spe-
cial DRAM chips and custom memory controller designs.
Although considerable progress has been made in terms of
low-cost innovative solutions for improving the reliability of
die-stacked memories [24,28,43], the gap between the relia-
bility characteristics of die-stacked and off-package DRAM
has continued to widen [45], thereby suggesting that the het-
erogeneity in reliability will continue to exist between dif-
ferent memories in an HMA system.

3. EXPERIMENTAL METHODOLOGY
In the following subsections, we describe our simulation

framework and workloads used in this study. We also ex-
plain the usage of real-world memory failure data from a
field study on a large-scale system.

3.1 Simulation Framework
In this subsection, we describe our simulation framework

which estimates both performance and reliability using Ra-
mulator [35], a trace-driven DRAM simulator that provides
cycle-accurate performance models for different memory stan-
dards such as DDR3/4, LPDDR3/4, GDDR5, and HBM. The
trace file includes the number of intervening non-memory
instructions, program counter, memory address, and request
type (instruction/data, read/write, etc) for every memory re-
quest. We generate memory traces using SimPoints [54] and
PinPlay [34] to capture the representative regions of an ap-

Processor Values
Number of cores 16
Core Frequency 3.2GHz
Issue width 4-wide out-of-order
ROB size 128 entries
Caches Values
L1 I-cache (private) 32KB, 2-way set-associative
L1 D-cache (private) 16KB, 4-way set-associative
L2 cache (shared) 16MB, 16-way set-associative
Low-reliability Memory Values (HBM)
Capacity 1GB
Bus frequency 500Mhz (DDR 1.0GHz)
Bus width 128 bits
Channels 8
Rank 1 Rank per Channel
Banks 8 Banks per Rank
ECC SEC-DED [21]
High-reliability Memory Values (DDR3)
Capacity 16 GB
Bus frequency 800 MHz (DDR 1.6 GHz)
Bus width 64 bits
Channels 2
Ranks 1 Rank per channel
Banks 8 Banks per Rank
ECC single-ChipKill [10]

Table 1: System Configurations.

plication. Furthermore, to only capture the main memory
activity, we perform cache filtering using Moola [53].

We extend Ramulator to simulate two levels of heteroge-
neous memory and compute the AVF of the data in mem-
ory at a 4 KB page granularity. We specifically target a 16-
core system that resembles AMD’s Opteron with a hetero-
geneous memory architecture that consists of AMD’s High
Bandwidth Memory (HBM) and conventional DDRx mem-
ory as on-package and off-package memories, respectively.
The detailed system configuration is outlined in Table 1.

3.2 FIT-Rate Analysis
We use memory FIT rates from an AMD field study on

a large-scale system (Jaguar) located at Oak Ridge National
Laboratory [60]. The Jaguar system consists of 18,688 two-
socket nodes. Each socket contains a 6-core AMD Opteron
processor. The system has 2.69 million DRAM devices [48].
The average FIT Rate for various DRAM components (bit,
row, column, word, bank, rank) are reported over a period
of 11 months, for both transient and permanent faults. We
use the transient FIT rate data as an input to an event-based
DRAM fault simulator, i.e., FaultSim [44]. FaultSim’s event-
based design and real-world failure statistics make it a fast
and accurate tool for our reliability studies. We configure
FaultSim for our memory architecture and run 100K and 1
million fault simulations for SEC-DED and ChipKill respec-
tively to ensure high precision levels. In each simulation, a
fault is injected in a bit, word, column, row, or bank based
on their FIT rates, a selected error-correction scheme is ap-
plied, and the outcome is recorded as detected, corrected, or
uncorrected error. An error occurs when the failed bit is used
in the software. We use the probability of uncorrected errors

3

Bench/Mix mix1 mix2 mix3 mix4 mix5
mcf 3x 2x 1x
lbm 2x 3x 1x
milc 2x 1x
omnetpp 1x 2x
astar 2x 1x
sphinx 1x 2x
soplex 2x 3x 3x
deaIII 3x 1x 1x 3x
libquantum 2x 1x 3x
leslie3d 2x 1x 3x
gcc 1x 2x 1x
GemsFDTD 2x 2x 1x 1x
bzip 1x 1x 2x 3x
bwaves 1x
cactusADM 2x 2x 1x 5x

Table 2: Mixed workload description.

a
st

a
r

x
a
la

n
cb

m
k

o
m

n
e
tp

p

ca
ct

u
sA

D
M

m
ix

5

ze
u
sm

p

lu
le

sh

m
ix

3

m
ix

4

x
sb

e
n
ch

m
ix

2

m
ix

1

lb
m

m
ilc

0

5

10

15

20

25

A
V

F(
%

)

Figure 2: Average AVF of memory for the SPEC [19] benchmarks,
ProxyApps [20], and mix workloads using only DDRx memory. The
AVF of memory varies from 1.7% (astar) to 22.5% (milc).

due to transient faults to measure the failure probability of
our HMA architecture.

3.3 Workloads
We evaluate our reliability-aware techniques using seven

benchmarks from the SPEC CPU2006 [19] benchmark suite.
We also use two benchmarks from the US Department of
Energy (DoE) for evaluating HPC systems: XSBench [61]
and LULESH [1]. We create homogeneous workloads from
these nine benchmarks, where 16 copies of the same bench-
mark are run in parallel. Each copy has its own memory
pages and different copies of the same workload don’t share
pages. Additionally, we mix benchmarks from high, medium,
and low AVF applications to create five realistic datacenter
workloads as shown in Table 2.

4. MOTIVATION
In this section, we motivate the use of AVF to evaluate

the vulnerability of a memory page, and then quantitatively
show that page vulnerability and hotness have a weak corre-
lation.

4.1 AVF Analysis of Memory Pages
The AVF of a bit is the fraction of time that bit is in Archi-

tecturally Correct Execution (ACE) state (see Equation 1).
While in an ACE state, any extraneous changes to the bit’s
value will result in incorrect execution. Figure 3 (a) shows
a bit in memory written and read twice during program ex-

WR1 RD1 RD2 WR2
Particle
strike

tR1 tR2

ttotal

WR1 RD1WR2
Particle strike
(masked by WR2)

tR1

WR1 RD1WR2 RD2 WR1 RD1 WR2 RD2

(a) (b)

(c) (d)

Figure 3: Architectural vulnerability factor (AVF) of four different
cache lines in memory. While (a) shows an unmasked error, (b) illus-
trates how a write from CPU to memory overwrites its state masking
the effect of particle strike. Figure (c) and (d) show that two lines of
memory could have the same hotness levels, but different AVF depend-
ing upon the sequence of reads and writes.

ecution. After the bit is written for the first time, by request
WR1, it is in the ACE state until it is read by request RD1.
Any transient error (particle strike) in between WR1 and
RD1 could result in incorrect execution. Hence, the AVF
of the bit goes up by a fraction of (tRD1/ttotal). The bit is
read again by RD2 which further adds (tRD2/ttotal) to the ef-
fective AVF. The bit is in non-ACE state from RD2 to WR2.
The AVF of this bit in memory for the entire execution can
be given by the following equation.

AV Fi =
tRD1 + tRD2

ttotal
(3)

Figure 3(b) shows a particle strike in between two writes,
which will be masked as the correct value for RD1 will be
over-written by WR2. Hence, the bit in Figure 3 (b) is in
non-ACE state between WR1 and WR2. Two bits with the
same number of reads and writes could potentially have very
different AVFs, as shown by Figure 3 (c) and (d). However,
a page placement policy that only takes into account page
hotness will place these pages into die-stacked memory with
equal likelihood, potentially hurting the overall RAS goals
of the system.

In this work, we perform AVF analysis on memory at a
cache line granularity because memory reads and writes oc-
cur at cache line granularity. We sum the AVF of individual
cache lines to compose the AVF of a page and divide it by
the size of the hardware structure as per Equation 1. Fig-
ure 2 shows the AVF of applications in increasing order. The
figure demonstrates that the AVF varies significantly among
applications. Thus, motivating potential reliability benefits
from AVF-aware application-specific data placements.

4.2 Hotness-Risk Correlation
In order to obtain the upper bound on performance for

HMA systems, we first explore a profile-guided static page
placement that profiles each workload to obtain page-granularity
hotness statistics, and subsequently selects and places the
top 1GB of hot pages in HBM, with the remaining pages go-
ing into the DDRx memory.

Figure 5 shows the results of performance-focused static
placement. We observe that all workloads show an increase
in performance (IPC on left y-axis) with performance-focused
placement for HMA relative to only DDRx memory. On
average, applications show 1.6x boost in performance over
only DDRx memory. However, we also observe a drastic in-

4

0 20 40 60 80 100
AVF (%)

0

200

400

600

800

1000

H
O

T
T
N

E
S
S
 (

A
cc

e
ss

e
s)

Hot & low AVF
(0.8 GB)

Mean hotness

Mean AVF

(a) lbm.

0 20 40 60 80 100
AVF (%)

0

100

200

300

400

500

600

700

H
O

T
T
N

E
S
S
 (

A
cc

e
ss

e
s) Hot & low AVF

(1.25 GB)

Mean hotness

Mean AVF

(b) milc.

0 20 40 60 80 100
AVF (%)

0

500

1000

1500

2000

2500

H
O

T
T
N

E
S
S
 (

A
cc

e
ss

e
s)

Hot & low AVF
(0.51 GB)

Mean hotness

Mean AVF

(c) astar.

0 20 40 60 80 100
AVF (%)

0

1000

2000

3000

4000

5000

6000

H
O

T
T
N

E
S
S
 (

A
cc

e
ss

e
s)

Hot & low AVF
(1.66 GB)

Mean hotness

Mean AVF

(d) mix1.
Figure 4: Page distribution of the entire memory footprint for four different workloads. Different workloads have different span across mean hotness
and AVF. For the mix1 workload, there are 29.4% (1.66GB) of the total pages (5.64GB) that are both hot and low-risk. These pages are ideal candidates
for memories with higher FIT rates and/or weaker correction.

lb
m

m
ix

1

m
ilc

m
ix

2

om
ne

tp
p

m
ix

4

as
ta

r

xs
be

nc
h

m
ix

3

lu
le

sh

ze
us

m
p

m
ix

5

xa
la

nc
bm

k

ca
ct

us
A

D
M

av
g

H
G

av
g

m
ix

av
g0.0

0.5

1.0

1.5

2.0

2.5

IP
C

 (
N

or
m

al
iz

ed
 t

o
on

ly
 D

D
R

x)

IPC (Only DDRx)

IPC (Perf-focused)

0

100

200

300

400

500

600

SE
R

 (
N

or
m

al
iz

ed
 t

o
on

ly
 D

D
R

x)

SER (HMA)

SER (Only DDRx)

Figure 5: Performance-focused Data Placement for HMAs result in
1.6x boost in performance (IPC) and 287x increase in soft error rate
(SER) relative to only DDRx memory.

0K
10K
20K
30K
40K
50K
60K
70K
80K

Pa
ge

 h
ot

ne
ss

(#
 o

f
ac

ce
ss

es
)

Correlation coeff=0.08

Page hotness

0

20

40

60

80

100

Pa
ge

 A
V

F
(%

)Page AVF

Figure 6: Page vulnerability (AVF) and page hotness (access counts) for
1000 most hot pages of a workload (mix1). Page AVF and hotness have
a weak correlation (ρ = 0.08).

crease in soft error rate (SER on right y-axis) – 287x relative
to only DDRx memory, potentially severely impacting sys-
tem scalability. Thus, placing hot pages in stacked memory
greatly exposes the system to the less reliable memory. If
hotness and AVF are highly correlated, as these results seem
to indicate, then we are forced to make difficult trade-offs
between reliability and performance.

To understand the relationship between page hotness and
vulnerability (risk), we measure both metrics on a single
memory architecture that uses only DDRx memory. We
place the entire memory footprint of a workload in DDRx
memory and run the simulation using our modified Ramu-
lator. We estimate page hotness using raw access counts
(reads and writes) and page vulnerability by AVF analysis
as described in Section 4.1.

Figure 6 shows the top 1000 hottest pages of a workload
(mix1) arranged in decreasing order of their hotness. The
left y-axis represents the page hotness measured using raw
access counts and the right y-axis represents the page vulner-
ability measured as AVF percentage. The graph shows that

most of the hot pages have AVF at around 80%. However,
there are pages (in the top 1000 hot pages) which have AVF
below 60% and as low as 5%. Hence, we conclude from
Figure 6 that page hotness and AVF have a weak correlation.
The correlation coefficient between hotness and AVF for the
entire memory footprint is 0.08. Thus, there exists an oppor-
tunity of identifying hot pages with low-AVF (low-risk).

In order to quantify this opportunity, we divide the entire
memory footprint into hot & cold pages and high- & low-
AVF pages. We split the memory footprint of each workload
around mean hotness and mean AVF values as shown by the
scatter plots in Figure 4. Each memory page of the work-
load is plotted as a point on the scatter plot with its AVF
along the x-axis and hotness along y-axis. The horizontal
line represents mean hotness (access count) and the vertical
line divides the memory footprint into low-AVF (low-risk)
and high-AVF (high-risk) pages. These two lines divide the
memory footprint into four sections: (i) hot and high-risk,
(ii) hot and low-risk, (iii) cold and high-risk, (iv) cold and
low-risk. We observe the presence of pages in all four quad-
rants in all workloads, although lbm is an outlier with few
pages in the upper left. In general, we find a considerable
number of pages in the upper left quadrant (hot and low-
risk). For the mix1 workload, we find 1.66 GB of pages to
qualify as hot and low-risk pages. Such pages are ideal can-
didates for high-bandwidth low-reliability memory, such as
HBM, to allow for a performance-focused and reliability-
aware operation. For workloads we study in this work, we
find that hot and low-risk pages account for anywhere be-
tween 9% and 39% of the entire memory footprint.

5. ORACULAR DATA PLACEMENT
An ideal data placement for an HMA system operates near

the IPC of a performance-focused placement and near the
SER of only DDRx memory. In this section, we explore
oracular page placement schemes for HMAs with respect
to both hotness (using raw access counts) and risk (using
AVF). Specifically, we explore two oracular data placement
schemes: (1) a highly reliability-focused scheme that mini-
mizes SER by placing only low-risk pages in HBM, and (2)
a more balanced scheme that aims at simultaneously mini-
mizing SER while maintaining high IPC, by placing pages
in the hot and low-risk quadrant in HBM. Finally, we sug-
gest proxies for AVF estimation and evaluate data placement
schemes based on these AVF proxies which do not require

5

lb
m

m
ix

1
m

ilc
m

ix
2

om
ne

tp
p

m
ix

4
as

ta
r

xs
be

nc
h

m
ix

3
lu

le
sh

ze
us

m
p

m
ix

5
xa

la
nc

bm
k

ca
ct

us
A

D
M

av
g

H
G

av
g

m
ix

av
g0.0

0.2

0.4

0.6

0.8

1.0

1.2
IP

C
 (

N
or

m
al

iz
ed

to
 p

er
f-

fo
cu

se
d)

IPC (Perf-focused)

IPC (Reliability-focused)

0.0

0.5

1.0

1.5

2.0

SE
R

 (
N

or
m

al
iz

ed
to

 p
er

f-
fo

cu
se

d)

SER (Perf-focused)

SER (Reliability-focused)

Figure 7: Naïve Reliability-focused data placement for HMAs reduces
the SER by 5x, but suffers from 17% loss in performance relative to
performance-focused data placement.

the full complex calculation of per-cache-line AVF over a
page lifetime.

5.1 Reliability-focused Data Placement
In contrast to performance-focused data placement, a naïve

reliability-focused data placement scheme profiles each work-
load to obtain page-granularity AVF statistics and subsequently
places all low-risk pages (i.e., pages with AVF below a cer-
tain threshold) in HBM with the remaining pages going into
DDRx memory. These pages correspond to the leftmost
quadrants on the scatter plots shown in Figure 4. Note that an
AVF-focused placement does not take hotness into account
and could potentially end up selecting pages from both the
top-left and bottom-left quadrants.

Figure 7 shows the performance (IPC on left x-axis) and
reliability (SER on right x-axis) of reliability-focused data
placements for all workloads. On average, we observe that
the soft error rate is reduced by 5x, but the performance de-
grades by 17% relative to performance-focused data place-
ment (described in Section 4.2). This performance loss is
due primarily to the placement of cold and low-risk pages
in HBM, and the number of such pages depends on the indi-
vidual bandwidth requirement and hotness span across pages
for each workload.

We further note that the workloads in Figure 7 are ar-
ranged in decreasing order of their MPKI (Misses Per Kilo
Instructions). Therefore, workloads in the left half of the
graph are bandwidth-intensive and the ones on the right half
are latency-sensitive. Moving hot pages from HBM to off-
package DDRx memory affects the performance of bandwidth-
intensive workloads more than latency-sensitive workloads,
thereby explaining the greater performance loss of work-
loads in the left half of Figure 7. Outliers include lbm and
milc that lose only 6% and 1% in performance respectively,
due to reliability-focused data placement. This is due to uni-
form access counts to most pages, as shown in Figure 4,
making their performance relatively insensitive to which pages
get moved to HBM.

5.2 Balanced Data Placement
In order to optimize for both performance and reliability,

we next explore a balanced data placement scheme that se-
lects and places hot and low-risk pages in HBM. Figure 8
shows the performance (IPC on left x-axis) and reliability
(SER on right y-axis) of such a balanced scheme for all

lb
m

m
ix

1
m

ilc
m

ix
2

om
ne

tp
p

m
ix

4
as

ta
r

xs
be

nc
h

m
ix

3
lu

le
sh

ze
us

m
p

m
ix

5
xa

la
nc

bm
k

ca
ct

us
A

D
M

av
g

H
G

av
g

m
ix

av
g0.0

0.2

0.4

0.6

0.8

1.0

1.2

IP
C

 (
N

or
m

al
iz

ed
to

 p
er

f-
fo

cu
se

d)

IPC (Perf-focused)

IPC (Balanced)

0.0

0.5

1.0

1.5

2.0

SE
R

 (
N

or
m

al
iz

ed
to

 p
er

f-
fo

cu
se

d)

SER (Perf-focused)

SER (Balanced)

Figure 8: Balanced data placement for HMAs reduces the SER by 3x,
but suffers from 14% performance loss relative to performance-focused
data placement.

10
20
30
40
50
60
70
80
90

100

W
r
it

e
 r

a
t
io

 (
%

) Correlation coeff=-0.32Page WR ratio

0

20

40

60

80

100

P
a
g
e
 A

V
F
 (

%
)Page AVF

(a) Top 1000 hot pages.
0 20 40 60 80 100

Write ratio (%)

0K

200K

400K

600K

800K

1000K

#
 o

f p
ag

es

(b) Histogram.
Figure 9: (a) The graph shows the write ratio for the corresponding
pages in Figure 4d. The graph suggests that there is a negative correla-
tion between page AVF and write ratio (ρ =−0.32). (b) The histogram
shows number of pages with write ratio categorized into bins – 1-20%,
21-40%, and so on. The workload has mostly read heavy pages. How-
ever, there are 125K and 200K pages which are write heavy as shown
in the final two bins.

workloads. We observe that the SER is reduced by 3x, but
the performance drops by an average of 14%. This perfor-
mance result is only slightly better than the naïve reliability-
focused placement, due in large part to restricting ourselves
to a single quadrant, even if not many pages exist in that
quadrant. Thus, this is still a conservative policy, never putting
high-risk pages in HBM.

Moreover, such a static policy relies on oracular knowl-
edge of AVF, but exact AVF estimation or prediction is a
hard problem. Walcott, et al. [64] use IPC as a heuristic
to estimate AVF of instruction queue, load-store queue, and
register files. They demonstrate that higher IPC leads to
lower AVF. However, that heuristic is not useful for evalu-
ating individual memory pages.

5.3 Heuristics for AVF Estimation
A memory page that has been written more often than read

is likely to have lower AVF than a page that has mostly reads.
Recall that most periods of data “deadness” end in a write,
so more writes indicate more dead intervals. A high ratio of
writes to reads indicates the likelihood of longer dead inter-
vals. Figure 9a shows the write ratio (Wr/Rd ratio) on the left
y-axis and AVF on the right y-axis of the top 1000 hot pages
for the mix1 workload. We see a much stronger correlation
between AVF and write ratio than we see between AVF and
hotness. We measure a negative correlation between write
ratio and AVF of -0.32, which is not a heavy correlation, but
strong enough to give us some opportunity to easily get a
rough approximation of AVF. Using this correlation infor-
mation, we classify a page with low writes relative to reads

6

lb
m

m
ix

1
m

ilc
m

ix
2

om
ne

tp
p

m
ix

4
as

ta
r

xs
be

nc
h

m
ix

3
lu

le
sh

ze
us

m
p

m
ix

5
xa

la
nc

bm
k

ca
ct

us
A

D
M

av
g

H
G

av
g

m
ix

av
g0.0

0.2

0.4

0.6

0.8

1.0

1.2
IP

C
 (

N
or

m
al

iz
ed

to
 p

er
f-

fo
cu

se
d)

IPC (Perf-focused)

IPC (Wr ratio)

0.0

0.5

1.0

1.5

2.0

SE
R

 (
N

or
m

al
iz

ed
to

 p
er

f-
fo

cu
se

d)

SER (Perf-focused)

SER (Wr ratio)

Figure 10: Wr ratio data placement for HMAs reduces the SER by 1.8x,
while experiencing 8.1% loss in performance relative to performance-
focused data placement.

as a high-risk page, and a page with high writes relative to
reads as low-risk. Therefore, we propose using write ratio as
a proxy for AVF to estimate the risk rating of memory pages.

5.4 AVF Heuristic-based Data Placement
In this section, we demonstrate the efficacy of two data

placement techniques based on (a) Wr ratio, and (b) Wr2

ratio. The former is measured as Wr/Rd and the latter is
measured as Wr2/Rd. While both serve as proxies for AVF,
the latter places an additional weight on page hotness. While
this may not be immediately obvious, consider that the Wr
ratio is unitless, but the Wr2 ratio has a unit of accesses. We
find pages with high Wr and Wr2 ratio (for the two respec-
tive heuristics), which place the identified pages in HBM
while the rest go into DDRx memory.

5.4.1 Top Wr Ratio Data Placement
Our AVF heuristic-based placement scheme leverages page-

level Wr ratio statistics obtained from prior profile runs in
order to fill the HBM memory with pages with high Wr ra-
tio, while placing the rest in off-package DDRx memory. As
shown in Figure 10, a top Wr ratio-based data placement re-
sults in an average improvement of 1.8x in SER, while sacri-
ficing 8.1% in performance, relative to performance-focused
data placement. Although the top Wr ratio-based data place-
ment does improve performance relative to a reliability-focused
data placement, it still sometimes selects cold, albeit low-
risk, pages for HBM, thereby limiting the potential perfor-
mance gains.

5.4.2 Top Wr2 Ratio Data Placement.
As discussed earlier, the Wr2 ratio still serves as a proxy

for AVF, but also biases more heavily towards pages with
a higher absolute number of writes, thereby avoiding cold
pages. For example, consider two pages p1 and p2 with
write-read ratios as 4:1 and 400:200 respectively. A Wr
ratio-based placement favors placing p1 in HBM over p2,
while a Wr2 ratio-based placement favors placing p2 in HBM
over p1, owing to the higher absolute number of accesses.
From Figure 11, we observe an average reduction of 1.6x in
SER, with the performance gap narrowing to just 1%, when
compared to performance-focused data placement.

While the techniques we describe in this section are oracu-
lar (assume full knowledge of data access before placement),
in Section 7 we show the viability and effectiveness of a

lb
m

m
ix

1
m

ilc
m

ix
2

om
ne

tp
p

m
ix

4
as

ta
r

xs
be

nc
h

m
ix

3
lu

le
sh

ze
us

m
p

m
ix

5
xa

la
nc

bm
k

ca
ct

us
A

D
M

av
g

H
G

av
g

m
ix

av
g0.0

0.2

0.4

0.6

0.8

1.0

1.2

IP
C

 (
N

or
m

al
iz

ed
to

 p
er

f-
fo

cu
se

d)

IPC (Perf-focused)

IPC (Wr2 ratio)

0.0

0.5

1.0

1.5

2.0

SE
R

 (
N

or
m

al
iz

ed
to

 p
er

f-
fo

cu
se

d)

SER (Perf-focused)

SER (Wr2 ratio)

Figure 11: Wr2 ratio for HMAs reduces the SER by 1.6x, at a marginal
performance loss of 1% relative to performance-focused placement.

static placement that is driven by minimal annotation of a
program’s hot and low-risk structures.

6. DYNAMIC MIGRATION MECHANISMS
While our heuristics allow AVF approximation without

full AVF modeling, any static technique is inherently limited
by pre-execution profiling. This section seeks to explore the
opportunity for dynamic reliability-aware migration mecha-
nisms. Specifically, we leverage insights developed in Sec-
tion 5 to transform a state-of-the-art performance-focused
migration mechanism into a reliability-aware migration mech-
anism. We also examine the applicability of a recently pro-
posed algorithm for memory activity tracking to reduce hard-
ware cost in our scenario.

6.1 Performance-focused Migration
We model our performance-focused migration mechanism

based on the HMA architecture proposed by Meswani, et
al. [40]. The migration scheme employs a set of hardware
counters that keep track of raw access counts (reads and
writes combined) for each page in memory. At the end of
pre-defined intervals, these counters are used to generate mi-
gration pairs to replace cold pages from on-package HBM
with hot pages in off-package DDRx memory. The hotness
criteria is determined using a threshold – any page with raw
access counts greater than the set threshold value is deemed
to be hot and therefore, eligible for migration.

Migration Interval. Migrating pages at run-time has a
performance cost. The cost of migrating a page from one
memory to another is governed by the slowest memory in
the system. Therefore, it is important to select migration
intervals carefully. We perform a sweep over the interval
length to evaluate its impact on performance. We select three
different workloads for our evaluation. Each workload is
characterized by different memory intensities (low, medium
and high), and different memory access patterns. Our results
(shown in Figure 13) reveal that an interval length of 100ms
leads to the best performance, in agreement with the identi-
fied interval by Meswani, et al. [40].

To eliminate cold start effects in our simulations (which
emulate a period in the middle of execution), we assume a
good pre-measurement placement, in this case one that starts
with the top hot pages from our oracular static placement
scheme in HBM, before we begin execution of a simpoint.
While this is a good overall placement, it is not necessarily
the best per-interval placement. The set of top hot pages

7

lb
m

m
ix

1

m
ilc

m
ix

2

om
ne

tp
p

m
ix

4

as
ta

r

xs
be

nc
h

m
ix

3

lu
le

sh

ze
us

m
p

m
ix

5

xa
la

nc
bm

k

ca
ct

us
A

D
M

av
g

H
G

av
g

m
ix

av
g0.0

0.5

1.0

1.5

2.0

2.5
IP

C
 (

N
or

m
al

iz
ed

)

IPC (Only DDR)

IPC (Perf-focused mig)

0

100

200

300

400

500

600

SE
R

 (
N

or
m

al
iz

ed
)

SER (Perf-focused mig)

SER (Only DDRx)

Figure 12: Performance-focused migrations improve IPC by 1.52x rel-
ative only DDRx memory. However, the soft error rate is increases by
268x relative to only DDRx memory.

mix1 astar milc
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

IP
C

 (
N

o
rm

a
liz

e
d
 t

o
 O

n
ly

 D
D

R
)

1.0ms

10.0ms

100.0ms

1000.0ms

Figure 13: Interval sweep to determine suitable migration frequency.

changes considerably from interval to interval, triggering an
average of 47,014 migrations every interval.

Hotness Threshold. The total number of migrations is
also a function of the defined hotness threshold, i.e. how
hot a page has to be in order to be eligible for migration to
HBM. One of the insights from our static exploration is that
there is significant variation in page hotness across different
workloads. Hence, choosing a hardwired value as a thresh-
old cannot serve every application fairly. We use dynamic
mean page hotness levels during each interval to determine
the threshold to be used during migration. All pages in slow
memory above mean page hotness are marked as candidates
for migration to faster high-bandwidth memory.

Performance and Reliability. Figure 12 shows the IPC
(left y-axis) and SER (right y-axis) for our performance-
focused migration scheme. We observe that the dynamic
migration scheme is only 5.8% slower (1.52x vs. 1.6x),
and achieves a minor reduction of 1.11x in SER relative
to our static oracular performance-focused data placement.
The performance degradation comes from both the migra-
tion cost and the inability to react quickly to execution changes
due to a long measurement interval. Note that subsequent
results in this section will be normalized to these values (dy-
namic performance-based migration) since that represents
the current state of the art for dynamic schemes.

6.2 Reliability-aware Migration
In this section, we propose minor modifications to the

performance-focused migration mechanism, in order to trans-
form it into a reliability-aware mechanism, by leveraging in-
sights from Section 5.3. By simply splitting the hardware
counters into two sets, one for reads and one for writes, it is
possible to measure a page’s hotness (reads + writes) as well
as its risk, defined as Wr/Rd. Since we have a precise mea-
surement for page hotness, we no longer need to calculate

lb
m

m
ix

1
m

ilc
m

ix
2

om
ne

tp
p

m
ix

4
as

ta
r

xs
be

nc
h

m
ix

3
lu

le
sh

ze
us

m
p

m
ix

5
xa

la
nc

bm
k

ca
ct

us
AD

M
av

g
HG

av
g

m
ix

av
g0.0

0.2

0.4

0.6

0.8

1.0

1.2

IP
C

(N
or

m
al

iz
ed

to
 p

er
f-f

oc
us

ed
)

IPC (Perf-focused)

IPC (FullCounters)

0.0

0.5

1.0

1.5

2.0

SE
R

(N
or

m
al

iz
ed

to
 p

er
f-f

oc
us

ed
)

SER (Perf-focused)

SER (FullCounters)

Figure 14: Reliability-aware dynamic migration (FullCounters): On
average reliability-aware migration using FullCounters reduces the
soft error rate 1.8x at a cost of 6.0% relative to performance-focused
migrations.

Wr2/Rd. We use mean hotness and risk values as thresholds
to divide memory pages accessed during the interval into hot
and cold, and high-risk and low-risk, respectively. Similar
to the performance-focused migration scheme, to eliminate
cold start effects, we assume an initial placement of the top
hot and low-risk pages from our static oracular placement
in HBM, before we begin the execution of a simpoint. Fur-
ther, at each interval, our mechanism attempts to exchange
all cold or high-risk pages currently residing in HBM with
hot and low-risk pages from DDRx memory. We refer to
this reliability-aware migrations mechanism as Full Counter-
based (FC-based) mechanism.

Figure 14 shows the IPC (left y-axis) and SER (right y-
axis) for reliability-aware migrations using Full Counters (FC)
relative to performance-focused migrations. We observe vary-
ing levels of performance loss across different workloads.
The milc workload shows a slight speedup because it incurs
fewer migrations than a performance-focused scheme. On
average, we observe a reduction of 1.8x in SER, at a perfor-
mance loss of 6% when compared to performance-focused
migrations. Therefore, we show that at a very nominal cost
in performance, a heuristic-based run-time risk estimation
technique such as our migration scheme can substantially
improve the reliability of an HMA system.

6.3 Hardware Cost Analysis
In this section, we discuss the hardware cost of the pro-

posed dynamic reliability-aware migration scheme that uses
Full Counters (FC). Our FC-based reliability-aware migra-
tion mechanism maintains two sets of counters for each page
in memory to count the number of reads and writes. Our ex-
ploration reveals that 6-bit counters are sufficient to hold the
largest access counts we observe. For generality, we em-
ploy 8-bit counters in our design. We further assume the
counters to be saturating, so they do not overflow after an
access count exceeds the maximum possible value. Given
our assumptions, the activity tracking (identifying migration
candidates) part of this mechanism requires 16 bits per 4K
pages. In our example 17 GB HMA, (1 GB HBM and 16
GB DDRx – See Table 1), we have a total of 4.25M pages,
for which we need 8.5 MB to store our Full Counters. This
implies that our reliability-aware migration scheme requires
an additional storage of 4.25 MB for activity tracking than a
fully performance-focused migration scheme.

8

Sta$c	(Oracle)	 Heuris$c	(Oracle)	 Dynamic	Migra$ons	

Reliability-focused	
[Sec$on	5.1]	

Balanced	
[Sec$on	5.2]	

Wr	ra$o	
[Sec$on	5.4.1]	

Wr2	ra$o	
[Sec$on	5.4.2]	

Reliability-aware	
(Full	Counters)	
[Sec$on	6.2]	

Reliability-aware	
(Cross	Counter)	
[Sec$on	6.4]	

Program	
Annota$ons	
[Sec$on		7]	

IPC	 SER	 IPC	 SER	 IPC	 SER	 IPC	 SER	 IPC	 SER	 IPC	 SER	 IPC	 SER	

17%	 5.0x	 14%	 3.0x	 8.1%	 1.8x	 1%	 1.6x	 6%	 1.8x	 4.9%	 1.5x	 1.1%	 1.3x	

Table 3: Summary of static, heuristic, dynamic migration, and programmer annotation based data placement. All static placements/migration
schemes are normalized to that of the performance-focused static placement/migration scheme. IPC and SER numbers show the IPC degradation
and SER improvement relative to respective performance-focused placement.

6.4 Hardware Cost Optimization
In this section, we explore techniques to reduce the over-

all hardware cost of our reliability-aware migration scheme,
by combining our FC-based tracking mechanism with a low
cost hotness tracking approach based on the “Majority Ele-
ment Algorithm” (MEA) [50].

6.4.1 Dynamic Migrations via Cross Counters
To design a cost-effective migration mechanism, we first

deconstruct our dynamic reliability-aware mechanism into
two distinct component units that optimize two different as-
pects – performance and reliability. While a performance
unit replaces cold pages residing in HBM with hot pages
from slower DDRx memory to provide higher overall band-
width, the reliability unit replaces high-risk pages residing in
HBM with low-risk pages from DDRx memory to improve
the overall soft error rate. To this end, we propose the “Cross
Counters” (CC) reliability-aware migration mechanism that
implements a combination of MEA and Full Counters.

MEA is shown to be a more cost-effective hotness track-
ing approach since it favors recency by tracking relative up-
dates to a limited set of most recently used pages, in com-
parison to a Full Counter-based approach that keeps track of
raw access counts for every addressable page in the system.
We model our MEA-based counter mechanism based on the
MemPod architecture proposed by Prodromou, et al. [50].
Specifically, using a 32-entry MEA map and a 64 KB remap
table cache, our performance unit can identify up to 32 glob-
ally hot pages every 50µs.

Despite the potential for overall hardware cost reduction,
an MEA-based tracking approach (or any modification thereof)
does not efficiently (in terms of both performance and hard-
ware cost) capture absolute read and write counts over large
intervals, which is especially important for a reliability-aware
mechanism that tracks page risk. Therefore, we continue to
use Full Counter-based tracking in our reliability unit, albeit
only for a small fraction of the pages in HBM. These coun-
ters operate as described in the previous reliability-aware dy-
namic mechanism, tracking both read and write counts.

6.4.2 Hardware Cost of Cross Counters
In contrast to our FC-based reliability-aware migration

scheme, our CC-based scheme employs Full Counters for
only risk tracking in HBM. Specifically, our CC-based scheme
uses 16-bit counters to track risk in all 262K pages in our ex-
ample 1 GB HBM, thereby significantly reducing the hard-
ware cost of Full Counters to just 512 KB. The MEA-based
tracking mechanism we model from prior work requires no

more than 100 KB of storage to track hotness of the most re-
cently used pages, and a 64 KB cache for its remap table that
keeps track of recently migrated pages. Overall, our Cross
Counters-based migration mechanism requires 676 KB of
additional storage, a significant reduction from the 4.25 MB
additional storage required by our FC-based mechanism.

6.4.3 Cross Counters Implementation
In order to determine the appropriate migration interval

for the MEA-based tracking mechanism, we first perform an
interval sweep similar to the one we perform for our FC-
based tracking mechanism (see Figure 13). However, in this
case, we use smaller intervals set at 50 and 100 µs, since
prior work shows that MEA-based migration mechanisms
work well with smaller intervals that allow them to push a
small number of pages frequently to HBM [50]. Our interval
sweep reveals an optimal migration interval of 50µs for an
MEA-based mechanism with 32 counters and 4 KB pages,
which is in agreement with the migration interval identified
by prior work. We call this interval the MEA-interval.

On the other hand, FC-based migration mechanisms have
been shown to work well with larger intervals. This is due
to the fact that they attempt to migrate a very large number
of pages at once [40]. In our specific case of run-time risk
estimation where we inspect the dynamic Wr ratio, it is im-
portant to accumulate a considerable number of reads and
writes to make accurate assessments, which is only possible
via larger intervals. In our Cross Counter-based migration
scheme, we set the two managing units to operate at differ-
ent intervals. The performance unit (MEA) migrates a very
small set of hot pages to HBM every 50µs (MEA-interval).
The reliability unit, on the other hand, performs run-time
risk estimation for every page in HBM, every 100ms (FC-
interval).

In our implementation, migrations are orchestrated by the
performance unit. Based on the hotness criteria established
by MEA, the performance unit migrates hot pages into HBM
from DDRx memory. However, the performance unit also
queries the reliability unit to check if there are high-risk
pages waiting to be moved to DDRx memory. If such pages
exist, migrations are performed in both directions – the per-
formance unit migrates identified hot pages from DDRx mem-
ory to HBM, and the reliability unit migrates identified high-
risk pages in the other direction. In case no pending high-
risk pages exist (for example during the first FC-interval),
the performance unit continues to migrate hot pages every
MEA-interval, but the reliability unit only makes the coun-
ters available every FC-interval. At FC-interval, both perfor-
mance and reliability units work together to move cold and

9

lb
m

m
ix

1
m

ilc
m

ix
2

om
ne

tp
p

m
ix

4
as

ta
r

xs
be

nc
h

m
ix

3
lu

le
sh

ze
us

m
p

m
ix

5
xa

la
nc

bm
k

ca
ct

us
A

D
M

av
g

H
G

av
g

m
ix

av
g0.0

0.2

0.4

0.6

0.8

1.0

1.2
IP

C
 (

N
or

m
al

iz
ed

to
 p

er
f-

fo
cu

se
d)

IPC (Perf-focused)

IPC (CrossCounters)

0.0

0.5

1.0

1.5

2.0

SE
R

 (
N

or
m

al
iz

ed
to

 p
er

f-
fo

cu
se

d)

SER (Perf-focused)

SER (CrossCounters)

Figure 15: Reliability-aware dynamic migration (CrossCounter): On
average reliability-aware migration using CrossCounters reduces the
soft error rate 1.5x at a cost of 4.9% relative to performance-focused
migrations.

lb
m

m
ix

1
m

ilc
m

ix
2

om
ne

tp
p

m
ix

4
as

ta
r

xs
be

nc
h

m
ix

3
lu

le
sh

ze
us

m
p

m
ix

5
xa

la
nc

bm
k

ca
ct

us
A

D
M

av
g

H
G

av
g

m
ix

av
g0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

IP
C

 (
N

or
m

al
iz

ed
to

 p
er

f-
fo

cu
se

d)

IPC (Perf-focused)

IPC (Program Annotation)

0.0

0.5

1.0

1.5

2.0

SE
R

 (
N

or
m

al
iz

ed
to

 p
er

f-
fo

cu
se

d)

SER (Perf-focused)

SER (Program Annotation)

Figure 16: Program annotation reduces SER by 1.3x at a cost of 1.1%
relative to perf-focused migration oracular placement.

high-risk pages out of HBM.
Figure 15 shows the IPC (left y-axis) and SER (right y-

axis) results for the CC-based reliability-aware migration mech-
anism. On average, we observe that the SER is reduced
by 1.5x, at a performance loss of 4.9% when compared to
performance-focused migrations. In contrast, an FC-based
reliability-aware migration mechanism incurs a 6% loss in
performance, but achieves an overall SER reduction of 1.8x
(See Table 3). The relative increase in SER is a direct con-
sequence of allowing hot and potentially high-risk pages to
migrate to HBM at the smaller MEA-intervals. However, if
a page gets classified as high-risk at a later FC-interval, it is
migrated back to DDRx memory, thereby mitigating risk as
much as possible, at a coarser granularity.

While this policy works well with high-risk pages that are
hot over short bursty intervals and tend to stay in DDRx
memory for most of the execution, workloads such as as-
tar have a great number of high-risk pages that stay hot for
the entire execution. For such workloads, we keep bring-
ing pages in and then removing them after an interval, once
we have the opportunity to measure risk, resulting in some
reliability exposure and greater migration overhead.

Furthermore, since MEA counters favor the temporal be-
havior of an access pattern, we observe significant perfor-
mance improvement in workloads with striding patterns. For
example, we observe an 11% performance improvement with
the cactusADM workload compared to FC-based migrations.
However, owing to CC’s coarse-grained risk mitigation, we
observe a 20% increase in SER for that workload. On aver-
age, CC effectively reduces the soft error rate by 1.5x at less

m
ix

2

m
ix

3

m
ix

1

m
ix

4

a
st

a
r

m
ilc

lb
m

lu
le

sh

ze
u
sm

p

x
a
la

n
cb

m
k

o
m

n
e
tp

p

x
sb

e
n
ch

ca
ct

u
sA

D
M

m
ix

50

2

4

6

8

10

#
 a

n
n
o
ta

te
d
 s

tr
u
ct

u
re

s

1 1 1 1 1 1 1 1

4
5

6 6

39 45

Figure 17: Number of annotated program structures. For most work-
loads annotating only a handful of program structures provides 1GB of
potentially hot and low-risk pages.

than 4.9% loss in performance, with a minimal hardware
cost of 676 KB, when compared to a fully performance-
focused migration mechanism.

7. RELIABILITY-AWARE PROGRAM
ANNOTATIONS

This section explores the viability of risk mitigation via
program annotations that allow pinning of hot and low-risk
data structures in HBM, with no significant performance degra-
dation and hardware cost. These program annotations can
be made by identifying data structures that are frequently
accessed and yet do not remain live for a substantial dura-
tion of the program’s execution. In our implementation, the
program’s ELF loader instructs the memory controller to pin
annotated data structures to HBM, and further mark them as
“pinned pages”, so that they are unaffected by the migration
policies implemented in the system.

As shown in Figure 16, it is possible to achieve a signifi-
cant reduction of 1.3x in SER by minimal annotation of pro-
gram structures, at a mere 1.1% degradation in performance,
and with no additional hardware overhead, when compared
to a fully performance-focused static oracular data place-
ment. In fact, as shown in Figure 17, we can achieve this
level of SER reduction with as few as 1 program annotation
for most workloads and with an average of 8 annotations
across all workloads. Note that this is highly influenced by
two outliers, cactusADM and mix1 that need 39 and 45 anno-
tations respectively. We note that the annotations themselves
can be performed either using domain expertise, and/or with
the help of profile-guided compilation. In this work, we take
advantage of prior profiling to perform minimal program an-
notation.

These results suggest that with careful program annota-
tion, we can achieve a significant reduction in SER, close
to that of a heuristics-based static oracular data placement.
Supplementing such an annotation-driven static data place-
ment scheme with a reliability-aware migration mechanism
could potentially further improve the overall reliability of the
system.

8. RELATED WORK
Naithani, et al. demonstrate that reliability-aware schedul-

ing for heterogeneous multicores increases system reliability
by as much as 60.2% when applications are scheduled using
application vulnerability among available core choices [46].
Jiao, et al. propose techniques that consider the effect of
data to predict and reduce SEUs in functional units [30, 31].

10

Venkat, et al. demonstrate that heterogeneity in multicores
can be exploited not only for improved performance [63] but
also for increased security [62].

Gupta, et al. present an aging-aware mechanism to han-
dle the accumulation of permanent faults for an HMA sys-
tem by tuning the access rate as the system ages [16]. How-
ever, they don’t consider the effect of data vulnerability on
transient errors. Gottscho, et al. propose Software-Defined
ECC (SWD-ECC). SWD-ECC uses information theory to
heuristically recover from detectable unrecoverable errors
(DUEs) [13]. Flikker [38] lowers the refresh rate for low-
risk data for DDRx memory. Flikker requires low-risk data
to be annotated using programmer hints, a strategy we use in
this paper for more optimal data placement, in terms of both
performance and reliability.

The motivation for HMA configurations stem from the
need for more capacity and bandwidth than what current
die-stacked DRAM technology can provide [65]. The die-
stacked portion of HMAs is typically managed as either a
large, high-bandwidth Last Level Cache (LLC), or as Part-
of-Memory (PoM), in which case the stacked capacity is
available to the software. Several studies explore cache or-
ganizations for HMAs [9, 26, 37, 51]. When organized as
a cache, stacked DRAM introduces new challenges when
compared to traditional SRAM caches. Qureshi, et al. [51]
demonstrate that traditional optimizations tailored for SRAM
memories are not applicable for DRAM caches and result
in degraded performance, requiring engineers to revisit and
reconsider cache optimizations with DRAM technology in
mind. A critical DRAM cache optimization is the design of
intelligent tag stores that avoid multiple cache accesses for
tag and data.

While die-stacked DRAM caches are shown to signifi-
cantly improve the performance of latency-limited applica-
tions, they only marginally improve capacity-limited appli-
cations. When the stacked capacity is instead exposed to the
application in a PoM configuration, capacity-limited appli-
cations also benefit in performance. Recent works [8, 40,
50, 56] propose mechanisms to manage stacked memory in
a PoM configuration. These proposals follow a similar ap-
proach to the memory management problem: Identify data
that are predicted to be hot (frequently accessed) in the near
future and move it to fast memory. Since stacked memory is
PoM, these mechanisms need to move some data out of fast
and into slow memory before replacing it with the predicted
hot data. CAMEO [8] attempts to strike a balance between
managing stacked memory as a cache/PoM hybrid.

Meswani, et al. [40] propose a migration mechanism that
employs HW as well as SW to manage HMAs. Predicting
future hot data (4KB pages) is done via a set of access coun-
ters keeping an access count per page. At predefined time
intervals, the pages with the highest access counts exceed-
ing a set threshold are migrated (swapped) into fast mem-
ory. MemPod [50] is a recently proposed HW-based mecha-
nism for memory management in PoM configurations. The
proposed architecture clusters fast and slow memory chan-
nels into independently-operating memory “Pods” and only
permits intra-Pod migrations. While flexibility is still tech-
nically restricted, MemPod’s architecture offers enough op-
tions for pages to migrate leading to better fast memory uti-

lization. MemPod’s prediction for future hot data is done
via the “Majority Element Algorithm” (MEA) algorithm [6,
33]. In this paper, we cross-breed both the above techniques
(HMA and MemPod) to implement a cost-effective Cross
Counters-based reliability-aware migration mechanism.

Sim, et al. [56] propose a hardware memory management
mechanism designed to operate without high area overheads
for bookkeeping structures. Memory is grouped into “seg-
ments” with only one fast memory location per segment.
Memory pages can only migrate to the fast location of their
segment, replacing the currently-residing page. This seg-
mented approach significantly restricts the flexibility of this
migration mechanism, occasionally leading to counterpro-
ductive operation – multiple hot pages in the same segment
will keep evicting each other from fast memory, while the
fast memory of a cold segment does not contribute towards
improving performance. However, restricting migrations in
this fashion requires very small bookkeeping structures, and
removes the complexity of finding a fast memory location
based on possibly more complex algorithms.

9. CONCLUSIONS
This paper presents low-cost heuristics to mark risky pages

to better manage a heterogeneous memory system, balancing
both performance and overall reliability. Our static heuristic-
based reliability-aware policy that selects hot and low-risk
pages for high-bandwidth low-reliability memory reduces
SER by 1.6x compared to a conventional performance-focused
data placement policy at a cost of 1% in performance. We
devise two dynamic data migration policies. We show that
monitoring hotness via Full Counters and risk via run-time
heuristics results in 1.8x reduction in soft error rate at a per-
formance loss of 6% and an additional hardware overhead
of 4.25 MB, as compared to a performance-focused dynamic
migration policy. To reduce the hardware overhead, we pro-
pose “Cross Counters”, that use full counters for risk estima-
tion in HBM and MEA counters to track hotness throughout
the system. We demonstrate that Cross Counters reduce the
soft error rate by 1.5x at a performance loss of 4.9% with
a nominal hardware overhead of 676 KB, as compared to a
performance-focused dynamic migration policy. We further
show that it is possible to achieve a significant reduction of
1.3x in SER with minimal program annotation. These results
open up new opportunities for optimization of performance,
capacity, and reliability.

Acknowledgements
The authors would like to thank the anonymous reviewers
for their helpful insights. This research was supported by
the U.S. Department of Energy (DoE). This work is also
supported by the NSF Expedition in Computing grant CCF-
1029783 and NSF grant CNS-1652925. Any opinions, find-
ings, and conclusions or recommendations expressed herein
are those of the authors and do not necessarily reflect the
views of the DoE or NSF. AMD, the AMD Arrow logo,
and combinations thereof are trademarks of Advanced Micro
Devices, Inc. Other product names used in this publication
are for identification purposes only and may be trademarks
of their respective companies.

11

10. REFERENCES
[1] Hydrodynamics Challenge Problem, Lawrence Livermore National

Laboratory. Technical Report LLNL-TR-490254.

[2] Neha Agarwal, David Nellans, Mark Stephenson, Mike O’Connor,
and Stephen W. Keckler. Page placement strategies for gpus within
heterogeneous memory systems. ASPLOS, 2015.

[3] R. Baumann. Soft Errors in Commercial Semiconductor Technology:
Overview and Scaling Trends. IEEE 2002 Reliability Physics
Tutorial Notes, Reliability Fundamentals, 2002.

[4] Bryan Black, Murali Annavaram, Ned Brekelbaum, John DeVale, Lei
Jiang, Gabriel H. Loh, Don McCaule, Pat Morrow, Donald W.
Nelson, Daniel Pantuso, Paul Reed, Jeff Rupley, Sadasivan Shankar,
John Shen, and Clair Webb. Die Stacking (3D) Microarchitecture. In
MICRO, Washington, DC, USA, 2006. IEEE Computer Society.

[5] Franck Cappello et al. Toward Exascale Resilience. Int. J. High
Perform. Comput. Appl., 2009.

[6] Moses Charikar, Kevin Chen, and Martin Farach-Colton. Finding
frequent items in data streams. Theoretical Computer Science, 2004.

[7] Moinuddin K. Qureshi Chiachen Chou, Aamer Jaleel. BATMAN:
Maximizing bandwidth utilization of hybrid memory systems. Tech
Report, TR-CARET-2015-01(1):297–310, March 2015.

[8] Chiachen Chou, Aamer Jaleel, and Moinuddin K. Qureshi. Cameo:
A two-level memory organization with capacity of main memory and
flexibility of hardware-managed cache. In Proceedings of the 47th
Annual IEEE/ACM International Symposium on Microarchitecture,
MICRO-47, pages 1–12, Washington, DC, USA, 2014. IEEE
Computer Society.

[9] Chiachen Chou, Aamer Jaleel, and Moinuddin K. Qureshi. BEAR:
Techniques for Mitigating Bandwidth Bloat in Gigascale DRAM
Caches. In ISCA, New York, NY, USA, 2015. ACM.

[10] T. J. Dell. A White Paper on the Benefits of Chipkill-correct ECC for
PC server Main Memory. IBM, Technical Report, November, 1997.

[11] Xiangyu Dong, Yuan Xie, Naveen Muralimanohar, and Norman P.
Jouppi. Simple but Effective Heterogeneous Main Memory with
On-Chip Memory Controller Support. In Proceedings of the 2010
ACM/IEEE International Conference for High Performance
Computing, Networking, Storage and Analysis, SC, Washington, DC,
USA, 2010. IEEE Computer Society.

[12] Flux Calculator. http://www.seutest.com/fluxcalculator.htm.

[13] Mark Gottscho. Opportunistic Memory Systems in Presence of
Hardware Variability. PhD thesis, University of California, Los
Angeles, 2017.

[14] Sudhakar Govindavajhala and Andrew W. Appel. Using memory
errors to attack a virtual machine. In Proceedings of the 2003 IEEE
Symposium on Security and Privacy, SP ’03, pages 154–,
Washington, DC, USA, 2003. IEEE Computer Society.

[15] Manish Gupta, Daniel Lowell, John Kalamatianos, Steven Raasch,
Vilas Sridharan, Dean Tullsen, and Rajesh Gupta. Compiler
techniques to reduce the synchronization overhead of gpu redundant
multithreading. In Proceedings of the 54th Annual Design
Automation Conference 2017, DAC ’17, pages 65:1–65:6, New York,
NY, USA, 2017. ACM.

[16] Manish Gupta, David Roberts, Mitesh Meswani, Vilas Sridharan,
Dean Tullsen, and Rajesh Gupta. Reliability and Performance
Trade-off Study of Heterogeneous Memories. In MEMSYS, New
York, NY, USA, 2016. ACM.

[17] Per Hammarlund, Alberto J. Martinez, Atiq A. Bajwa, David L. Hill,
Erik Hallnor, Hong Jiang, Martin Dixon, Michael Derr, Mikal
Hunsaker, Rajesh Kumar, Randy B. Osborne, Ravi Rajwar, Ronak
Singhal, Reynold D’Sa, Robert Chappell, Shiv Kaushik, Srinivas
Chennupaty, Stephan Jourdan, Steve Gunther, Tom Piazza, and Ted
Burton. Haswell: The fourth-generation intel core processor. IEEE
Micro, 2014.

[18] Jörg Henkel, Lars Bauer, Nikil Dutt, Puneet Gupta, Sani Nassif,
Muhammad Shafique, Mehdi Tahoori, and Norbert Wehn. Reliable
On-chip Systems in the Nano-era: Lessons Learnt and Future Trends.
DAC ’13, New York, NY, USA, 2013. ACM.

[19] John L. Henning. Spec cpu2006 benchmark descriptions. SIGARCH
Comput. Archit. News.

[20] Mike Heroux, Rob Neely, and Sriram Swaminarayan. ASC
Co-design Proxy App Strategy. 2016.

[21] M. Y. Hsiao. A Class of Optimal Minimum Odd-weight-column
SEC-DED Codes. 1970.

[22] Intel. Knightslanding. In Proceedings of the 47th Annual IEEE/ACM
International Symposium on Microarchitecture, MICRO-47, pages
1–12, Washington, DC, USA, 2014. IEEE Computer Society.

[23] Pradeep Ramachandran Jayesh Gaur, Mainak Chaudhuri and
Sreenivas Subramoney. Near-optimal access partitioning for memory
hierarchies with multiple heterogeneous bandwidth sources. HPCA,
2017.

[24] Hyeran Jeon, Gabriel H. Loh, and Murali Annavaram. Efficient RAS
support for die-stacked DRAM. In 2014 International Test
Conference, ITC 2014, Seattle, WA, USA, October 20-23, 2014,
pages 1–10, 2014.

[25] Hyeran Jeon, Gabriel H Loh, and Murali Annavaram. Efficient ras
support for die-stacked dram. In Test Conference (ITC), 2014 IEEE
International, pages 1–10. IEEE, 2014.

[26] Djordje Jevdjic, Gabriel H Loh, Cansu Kaynak, and Babak Falsafi.
Unison cache: A scalable and effective die-stacked DRAM cache. In
MICRO. IEEE, 2014.

[27] Djordje Jevdjic, Stavros Volos, and Babak Falsafi. Die-stacked dram
caches for servers: Hit ratio, latency, or bandwidth? have it all with
footprint cache. In ISCA, New York, NY, USA, 2013. ACM.

[28] Xun Jian, Vilas Sridharan, and Rakesh Kumar. Parity helix: Efficient
protection for single-dimensional faults in multi-dimensional
memory systems. In High Performance Computer Architecture
(HPCA), 2015 IEEE 21st International Symposium on, HPCA ’16,
2016.

[29] Xiaowei Jiang, Niti Madan, Li Zhao, Mike Upton, Ravishankar Iyer,
Srihari Makineni, Donald Newell, Yan Solihin, and Rajeev
Balasubramonian. CHOP: Adaptive filter-based DRAM caching for
CMP server platforms. 2010.

[30] Xun Jiao, Yu Jiang, Abbas Rahimi, and Rajesh K. Gupta. Slot: A
supervised learning model to predict dynamic timing errors of
functional units. In Design, Automation & Test in Europe Conference
& Exhibition, DATE 2017, Lausanne, Switzerland, March 27-31,
2017, pages 1183–1188, 2017.

[31] Xun Jiao, Abbas Rahimi, Yu Jiang, Jianguo Wang, Hamed Fatemi,
Jose Pineda de Gyvez, and Rajesh K Gupta. Clim: A cross-level
workload-aware timing error prediction model for functional units.
IEEE Transactions on Computers, preprint.

[32] Sudarsun Kannan, Ada Gavrilovska, Vishal Gupta, and Karsten
Schwan. Heteroos: Os design for heterogeneous memory
management in datacenter. In Proceedings of the 44th Annual
International Symposium on Computer Architecture, pages 521–534.
ACM, 2017.

[33] Richard M Karp, Scott Shenker, and Christos H Papadimitriou. A
simple algorithm for finding frequent elements in streams and bags.
ACM Transactions on Database Systems (TODS), 2003.

[34] Chi keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur
Klauser, Geoff Lowney, Steven Wallace, Vijay Janapa, and
Reddi Kim Hazelwood. Pin: building customized program analysis
tools with dynamic instrumentation. In In PLDI âĂŹ05: Proceedings
of the 2005 ACM SIGPLAN conference on Programming language
design and implementation, pages 190–200. ACM Press, 2005.

[35] Y. Kim, W. Yang, and O. Mutlu. Ramulator: A fast and extensible
dram simulator. IEEE Computer Architecture Letters, PP(99):1–1,
2015.

[36] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee,
Donghyuk Lee, Chris Wilkerson, Konrad Lai, and Onur Mutlu.
Flipping bits in memory without accessing them: An experimental
study of dram disturbance errors. In Proceeding of the 41st Annual
International Symposium on Computer Architecuture, ISCA ’14,
pages 361–372, Piscataway, NJ, USA, 2014. IEEE Press.

[37] Yongjun Lee, Jongwon Kim, Hakbeom Jang, Hyunggyun Yang,
Jangwoo Kim, Jinkyu Jeong, and Jae W Lee. A Fully Associative,
Tagless DRAM Cache. In ISCA. ACM, 2015.

[38] Song Liu, Karthik Pattabiraman, Thomas Moscibroda, and
Benjamin G. Zorn. Flikker: Saving DRAM Refresh-power Through
Critical Data Partitioning. ASPLOS, 2011.

[39] Gabriel H. Loh and Mark D. Hill. Efficiently Enabling Conventional

12

Block Sizes for Very Large Die-stacked DRAM Caches. In MICRO,
New York, NY, USA, 2011. ACM.

[40] M. R. Meswani, S. Blagodurov, D. Roberts, J. Slice, M. Ignatowski,
and G. H. Loh. Heterogeneous Memory Architectures: A HW/SW
Approach for Mixing Die-stacked and off-package Memories. In
HPCA, 2015.

[41] Sarah E. Michalak, Kevin W. Harris, Nicolas W. Hengartner,
Bruce E. Takala, Stephen Wender, and Others. Predicting the number
of fatal soft errors in Los Alamos National Laboratory’s ASC Q
supercomputer. Device and Materials Reliability, IEEE Transactions
on, 2005.

[42] Shubhendu S. Mukherjee, Christopher Weaver, Joel Emer, Steven K.
Reinhardt, and Todd Austin. A systematic methodology to compute
the architectural vulnerability factors for a high-performance
microprocessor. In Proceedings of the 36th Annual IEEE/ACM
International Symposium on Microarchitecture, MICRO 36, pages
29–, Washington, DC, USA, 2003. IEEE Computer Society.

[43] Prashant J. Nair, David A. Roberts, and Moinuddin K. Qureshi.
Citadel: Efficiently protecting stacked memory from large
granularity failures. In Proceedings of the 47th Annual IEEE/ACM
International Symposium on Microarchitecture, MICRO-47, pages
51–62, Washington, DC, USA, 2014. IEEE Computer Society.

[44] Prashant J. Nair, David A. Roberts, and Moinuddin K. Qureshi.
Faultsim: A fast, configurable memory-reliability simulator for
conventional and 3d-stacked systems. ACM Trans. Archit. Code
Optim., 12(4):44:1–44:24, December 2015.

[45] Prashant J. Nair, Vilas Sridharan, and Moinuddin K. Qureshi. XED:
Exposing On-Die Error Detection Information for Strong Memory
Reliability. ISCA, 2016.

[46] Ajeya Naithani, Stijn Eyerman, and Lieven Eeckhout.
Reliability-Aware Scheduling on Heterogeneous Multicore
Processors. In HPCA, 2015.

[47] Eugene Normand. Single Event Upset at Ground Level. IEEE
Transaction on Nuclear Science, 1996.

[48] ORNL. Oak Ridge ’Jaguar’ Supercomputer is World’s Fastest. Oak
Ridge National Laboratory, 2009.

[49] J. T. Pawlowski. Hybrid memory cube: Breakthroughdram
performance with a fundamentally re-architected dram subsystem.
Hot Chips, 2011.

[50] Andreas Prodromou, Mitesh Meswani, Nuwan Jayasena, Gabriel H.
Loh, and Dean M. Tullsen. MemPod: A Clustered Architecture for
Efficient and Scalable Migration in Flat Address Space Multi-Level
Memories. HPCA, 2017.

[51] Moinuddin K. Qureshi and Gabe H. Loh. Fundamental Latency
Trade-off in Architecting DRAM Caches: Outperforming Impractical
SRAM-Tags with a Simple and Practical Design. In MICRO,
Washington, DC, USA, 2012. IEEE Computer Society.

[52] Bianca Schroeder, Eduardo Pinheiro, and Wolf-Dietrich Weber.
Dram errors in the wild: A large-scale field study. In Proceedings of
the Eleventh International Joint Conference on Measurement and
Modeling of Computer Systems, SIGMETRICS ’09, pages 193–204,
New York, NY, USA, 2009. ACM.

[53] Charles F. Shelor and Krishna M. Kavi. Moola: Multicore cache
simulator. In 30th International Conference on Computers and Their
Applications CATA-2015, 2015.

[54] Timothy Sherwood, Erez Perelman, Greg Hamerly, and Brad Calder.
Automatically characterizing large scale program behavior. SIGOPS
Oper. Syst. Rev., 36(5):45–57, October 2002.

[55] Premkishore Shivakumar, Michael Kistler, Stephen W. Keckler,
Doug Burger, and Lorenzo Alvisi. Modeling the Effect of
Technology Trends on the Soft Error Rate of Combinational Logic.
In Proceedings of the 2002 International Conference on Dependable
Systems and Networks, DSN ’02, Washington, DC, USA, 2002. IEEE
Computer Society.

[56] Jaewoong Sim, Alaa R. Alameldeen, Zeshan Chishti, Chris
Wilkerson, and Hyesoon Kim. Transparent hardware management of
stacked dram as part of memory. In MICRO, Washington, DC, USA,
2014. IEEE Computer Society.

[57] Jaewoong Sim, Gabriel H. Loh, Hyesoon Kim, Mike O’Connor, and
Mithuna Thottethodi. A Mostly-Clean DRAM Cache for Effective
Hit Speculation and Self-Balancing Dispatch. In MICRO,
Washington, DC, USA, 2012. IEEE Computer Society.

[58] Jaewoong Sim, Gabriel H. Loh, Vilas Sridharan, and Mike
O’Connor. Resilient die-stacked dram caches. In Proceedings of the
40th Annual International Symposium on Computer Architecture,
ISCA ’13, pages 416–427, New York, NY, USA, 2013. ACM.

[59] Vilas Sridharan, Nathan DeBardeleben, Sean Blanchard, Kurt B.
Ferreira, Jon Stearley, John Shalf, and Sudhanva Gurumurthi.
Memory errors in modern systems: The good, the bad, and the ugly.
SIGARCH Comput. Archit. News, 43(1):297–310, March 2015.

[60] Vilas Sridharan and Dean Liberty. A study of dram failures in the
field. In Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis, SC ’12,
pages 76:1–76:11, Los Alamitos, CA, USA, 2012. IEEE Computer
Society Press.

[61] John R Tramm, Andrew R Siegel, Tanzima Islam, and Martin Schulz.
XSBench - The Development and Verification of a Performance
Abstraction for Monte Carlo Reactor Analysis. In PHYSOR 2014 -
The Role of Reactor Physics toward a Sustainable Future, Kyoto.

[62] Ashish Venkat, Sriskanda Shamasunder, Hovav Shacham, and
Dean M. Tullsen. Hipstr: Heterogeneous-isa program state
relocation. SIGPLAN Not., 51(4):727–741, March 2016.

[63] Ashish Venkat and Dean M. Tullsen. Harnessing isa diversity: Design
of a heterogeneous-isa chip multiprocessor. In Proceeding of the 41st
Annual International Symposium on Computer Architecuture, ISCA
’14, pages 121–132, Piscataway, NJ, USA, 2014. IEEE Press.

[64] Kristen R. Walcott, Greg Humphreys, and Sudhanva Gurumurthi.
Dynamic prediction of architectural vulnerability from
microarchitectural state. SIGARCH Comput. Archit. News,
35(2):516–527, June 2007.

[65] Wm. A. Wulf and Sally A. McKee. Hitting the Memory Wall:
Implications of the Obvious. SIGARCH Comput. Archit. News,
23(1):20–24, March 1995.

[66] Jun Xu, Shuo Chen, Zbigniew Kalbarczyk, and Ravishankar K. Iyer.
An experimental study of security vulnerabilities caused by errors. In
2001 International Conference on Dependable Systems and
Networks (DSN 2001) (formerly: FTCS), 1-4 July 2001, Göteborg,
Sweden, Proceedings, pages 421–432, 2001.

[67] J. F. Ziegler, H. W. Curtis, H. P. Muhlfeld, C. J. Montrose, and
B. Chin. IBM Experiments in Soft Fails in Computer Electronics
(1978&Ndash;1994). IBM J. Res. Dev., 1996.

13

