
DRAM-CAM: General-Purpose Bit-Serial
Exact Pattern Matching

Lingxi Wu ,Member, IEEE,
Rasool Sharifi,Member, IEEE,

Ashish Venkat,Member, IEEE, and
Kevin Skadron, Fellow, IEEE

Abstract—Exact pattern matching is a widely used kernel in many applications.

A DRAM-based processing-in-memory (PIM) architecture, Sieve, was recently

proposed to alleviate the bottleneck stage of sequence matching in genomics. This

paper observes that other exact-pattern-matching-intensive workloads can benefit

from a similar architecture. We extend Sieve with several cost-effective

modifications, such as a population count logic, chip-level parallelism support, and

a hardware data transposition unit, making a general-purpose DRAM-CAM and

key-value store that outperforms both CPU and various PIM solutions.

Ç

1 INTRODUCTION

Exact pattern matching is a widely used computation kernel. A
common software implementation is a lookup or hash table, but
large data sets do not fit into the last-level cache (LLC) and exhibit
poor locality. Furthermore, the computation per pattern lookup is
also too small to mask the high memory-access latency, resulting in
frequent processor stalls [1], making the task memory-bound. An
alternative is a coarse-grained index that fits in the LLC, in which a
key is mapped to a bucket of potential matches, with linear or
binary search within a bucket. However, our prior results [1] show
poor temporal locality in which buckets are accessed.

To address these limitations, data-centric architectures leverag-
ing content addressable memory (CAM) have been proposed [2],
[3]. This paper describes how to implement CAM functionalities
inside DRAM, which offers several advantages over non-volatile
memory (NVM) and SRAM alternatives. Even a highly compact
3T3R PCM NV-CAM cell is over 3X larger than a DRAM cell, and
SRAM is much less dense and more power-hungry.

The proposed architecture, DRAM-CAM, is built on Sieve [1], a
recently-proposed processing-in-memory (PIM) key-value acceler-
ator designed originally for massively-parallel k-mer matching
(searching for short DNA sequence patterns of size k), but more
generally suitable for a variety of key-value applications. Sieve pro-
vides an average of 326X/32X speedup and 74X/48X energy sav-
ings over multi-core-CPU/GPU baselines for k-mer matching,
using a column-wise data layout for patterns, allowing element-
parallel, bit-serial matching (each bit position is checked across a
large number of bitlines, i.e. data items). Sieve and SIMDRAM [4]
showed that this offers better matching throughput than a tradi-
tional, row-wise data layout. This allows Sieve to integrate
low-overhead bit-wise logic inside row buffers, coupled with sub-
array-level parallelism, to simultaneously compare thousands of
patterns in each row cycle without incurring expensive data move-
ment. Although a similar in-situ approach has been explored in

prior proposals such as Ambit [5] and SIMDRAM, their multi-row
activation-based approach, which relies on charge-sharing, is more
energy-intensive and slower than the sequential single row activa-
tion and digital comparisons employed in Sieve [1], due to the
overhead of row-copy operations involved to set up operand rows
in the “Bitwise” group for pattern matching [4], [5]. Furthermore,
column-wise data layout and single-row activation allow Sieve to
exploit an Early Termination Mechanism (ETM) that prevents
unnecessary DRAM row activation if all columns have encoun-
tered a mismatch. Therefore, even if the slow multi-row activation
mechanism is replaced with rapid timing-constraint-violating
DRAM commands that leave multiple rows open to perform fast
row-wide logic operations, as described in ComputeDRAM [6],
Sieve still performs better by a large margin due to the benefit of
ETM, which is not possible in a row-wise data mapping. Further-
more, combining ComputeDRAM with a vertical data layout is
unlikely to outperform Sieve, because of the much larger overhead
of setting up queries for the target subarrays [1].

In this paper, we add several features that enable a wider range
of pattern-matching applications, including population-count logic
to count matches (in Sieve, a given k-mer will have at most one
match), hardware support for faster transposition of data into col-
umn-wise format, and optimizations for greater parallelism. Evalu-
ation shows that DRAM-CAM provides up to three orders of
magnitude of speedup and energy reduction over the CPU base-
lines, and on average outperforms the closest PIM competitor by
3.7X.

2 BACKGROUND

Sieve Architecture. This work focuses on Sieve Type-3, shown in
Fig. 1, which leverages subarray-level parallelism, with logic inte-
grated into each local row buffer. Bit cells within each subarray are
divided into three regions (Fig. 1c). No physical modification is
made to the bit cells. Region-1 stores the interleaved reference
and query patterns (keys), transposed onto columns. Region-2
(optional) stores the offsets to the starting address of each reference
pattern’s payload. Region-3 stores the payloads (values). Data in
Regions 2/3 are stored in row-major format.

Region-1 is further broken down into smaller pattern groups
and a batch of query patterns are replicated in each pattern group
in the middle (red in Fig. 1c). Note each batch contains different
queries, and individual queries are replicated across pattern
groups in a subarray. Pattern groups are needed because the trans-
mission delay of long wires prevents us from broadcasting a query
bit to all a row’s matchers. The exact size of a pattern group is
determined by the number of matchers that a query bit can reach
in one DRAM row cycle, and the number of query patterns per
batch is determined by the chip’s prefetch size. After a batch of
query patterns finishes matching in a subarray, they are replaced
by a new batch via write commands. Batching also minimizes the
overhead of PCIe transactions and amortizes the DRAM write
commands for setting up queries to all pattern groups. To avoid
broadcasting queries to every subarray, Sieve utilizes a coarse-
grained index on the CPU that maps query patterns to a candidate
subarray, so only one subarray is consulted for each individual
query.

The matcher circuit, shown in Fig. 1a, is made of an XNOR gate,
an AND gate, and a one-bit latch, and operates on the digital out-
put of a sense amplifier. The XNOR gate checks if the reference bit
and the query bit are equal. The bit latch stores the result of the
XNOR operation, indicating if a reference and a query have
matched exactly up to the current bit position. The value in each
bit latch is initialized to 1 (default to match). The AND gate

� The authors are with the Department of Computer Science, University of Virginia,
Charlottesville, VA 22904 USA. E-mail: {lw2ef, as3mx, venkat, skadron}@virginia.
edu.

Manuscript received 13 July 2022; accepted 5 August 2022. Date of publication 23
August 2022; date of current version 16 September 2022.
This work was supported by CRISP, one of six centers in JUMP, an SRC pro-
gram sponsored by DARPA.
(Corresponding author: Lingxi Wu.)
Digital Object Identifier no. 10.1109/LCA.2022.3201168

IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 21, NO. 2, JULY-DECEMBER 2022 89

1556-6056 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on October 03,2022 at 03:55:53 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-6427-6709
https://orcid.org/0000-0001-6427-6709
https://orcid.org/0000-0001-6427-6709
https://orcid.org/0000-0001-6427-6709
https://orcid.org/0000-0001-6427-6709
mailto:lw2ef@virginia.edu
mailto:as3mx@virginia.edu
mailto:venkat@virginia.edu
mailto:skadron@virginia.edu

compares the previous matching result stored in the bit latch with
the current result from the XNOR gate and updates the bit latch
accordingly, with the running match progress. Further details are
in [1]. The Early Termination Mechanism (ETM) interrupts further
row activation by checking if the entire row of latches is storing
zeros. Matching continues if at least one latch stores 1.

Exact Pattern Matching Workloads. We select the same applica-
tions from [2] (Table 1), minus Vortex, which is deprecated and not
open source, and ReverseIndex, which does not map well to DRAM-
CAM. String Match processes a key file of strings and a file of
hashed (encrypted) strings to find which keys occur in the
encrypted file. Histogram counts frequencies of pixel values in the
RGB channels of a bitmap. Word Count generates the frequency for
each word in a text file. Apriori performs associative rule mining,
building a candidate itemset, and counts itemset frequencies in a
transaction database. Our results (Sec. 4) suggest DRAM-CAM’s
bit-serial nature favors workloads with shorter patterns (several
hundred bits or less). The Reverse Index is a “bad fit” because each
pattern (URL links) is too long for DRAM-CAM to handle. DRAM-
CAM also favors kernels that can issue large batches of pattern
search requests to fully leverage parallelism in the DRAM
hierarchy.

3 DRAM-CAM ARCHITECTURE

DRAM-CAM retains the core architectural designs of Sieve, and
serves as a PCI-attached accelerator with an offload model. We
introduce several hardware components and runtime optimiza-
tions pertaining to DRAM-CAM.

Population Count Logic (PCL). A population count logic (PCL)
unit returns the total number of matches for each query. The PCL
accumulates the number of ones from the row of latched bits at the
subarray level, then aggregated at the controller level for the total
number of hits. In many use cases, aggregating hits for each query
accounts for nearly the entirety of the workload. Integrating PCL at
the subarray level is difficult since it needs to process a large bit
vector in a timely fashion with minimal hardware overhead.

Our PCL design, shown in Fig. 2, works on 1024 bits by process-
ing chunks of 64 bits. To count the 1s in a group of 64 bits, we
explore two options: lookup table (LUT) and Wallace-tree-architec-
ture compressor tree circuit [7]. The first level of the LUT-based
PCL requires 16 four-input LUTs that take four bits from the
latches and output the number of ones in binary. The remaining
levels of this PCL are like an adder tree, aggregating ones from all

LUTs. One optimization is to insert registers between levels to
form a pipelined PCL, which reduces latency but increases area
and power overhead (see Table 2). The compressor-tree PCL is
based on [7], which uses 57 3:2 compressors and 8 half-adders in
ten cascading stages. The 3:2 compressor has the same truth table
as a full adder. Each compressor processes 3 bits, outputting the
number of ones in its sum and carry bits as sumþ 2� carry.

Data Transposition Unit (DTU). If the reference patterns are
reused across different executions, transposing the data in software
is a one-time cost amortized over a long period of use. However,
some workloads require input data to be transposed on the fly and
written to the DRAM-CAM prior to matching, which places the
data transposition operation on the critical path. We integrate a
simplified data transposition unit (DTU) from SIMDRAM [4] into
DRAM-CAM. The DRAM-CAM DTU requires only one 4KB
SRAM transposition buffer. DRAM-CAM’s DTU works at a rate of
transposing one cache line worth of data (512 bits) in one cycle. We
estimate that such hardware DTU is 381.3X faster than a software
one (estimated using a modified DRAMSim2; see Sec. 4), and adds
an insignificant (<0.1%) amount of execution time. Once the CPU
with the help of a dedicated runtime environment (future work)
instructs the DRAM-CAM device to load the reference pattern sets
(e.g., image data for Histogram) from disk using DMA, data
first arrive at this SRAM buffer, then transposed row by row by
simple custom logic and written into DRAM-CAM using DRAM
commands.

Chip-level Parallelism (CLP). Sieve chips in a rank respond to
queries in a lockstep manner due to the shared chip select signal
(CS), a design carried over from a traditional DDR architecture.
Chip-level parallelism (CLP) can be achieved to a certain degree by
providing each chip with a dedicated chip select wire. Note this
solution does not make each chip truly autonomous, because the
data line (DL) still has to be shared inside a rank due to limited
high-frequency data pin count, which is prohibitively expensive to
scale. DRAM-CAM chips receive their input queries once the
shared DL is available, thus only pattern matching is parallelizable,
while query input is serialized. The downside of CLP is that the
number of entries in the index table will be increased since chips
need to be indexed. However, the granularity of the indexing
scheme can be adjusted if needed to keep the index within L2
capacity.

Runtime Optimizations. To leverage the parallelism of DRAM,
we want to leverage as many subarrays as possible, which reduces
congestion and maximizes parallelism. DRAM-CAM starts offload-
ing patterns by choosing a random subarray for pattern storage,
and after it is filled with subarray width patterns, randomly choo-
ses the next subarray from a different channel/rank/bank for

Fig. 1. Sieve illustration. (a) Matcher logic. (b) Matching logic in each row buffer.
(c) Subarrays are partitioned into three regions for patterns, payload offsets, and
payloads.

Fig. 2. Population count logic.

TABLE 1
Mapping Exact Matching Kernels Onto DRAM-CAM

Benchmark Index ETM PCL DTU CLP Input Payloads DRAM-CAM patterns DRAM-CAM computing

String Match Yes Yes No No Yes Key file None Encrypted file Search keys in the encrypted file
Histogram No Yes Yes Yes No 8-bit pixels None Image binary pixel values Aggregate hits for each pixel pattern
Word Count No Yes Yes Yes No Unique words None Words from text file Aggregate hits for each input word
Bitcount Yes No No No Yes 32-bit binaries Num of set bits 32-bit binaries Retrieve number of set bits
Apriori No No Yes No No Itemsets bit vectors None 1-hot encoded transactions Check if transactions contain an itemset

90 IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 21, NO. 2, JULY-DECEMBER 2022

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on October 03,2022 at 03:55:53 UTC from IEEE Xplore. Restrictions apply.

pattern placement. Further optimization is to replicate small refer-
ence pattern sets multiple times by storing them in unused subar-
rays, which allows applications to use them for greater parallelism.
To support this optimization, the main changes occur in the index
table, where one additional busy bit for each entry is needed to
indicate if the subarray is currently being used or not. When a new
query arrives, the index table chooses a subarray whose busy bit is
0 that stores the same reference patterns. If all candidate subarrays
are busy, we choose a random one to wait upon. Pattern distribu-
tion (PD) offers 22% to 7.4X speedup while pattern replication (PR)
offers 4X to 29.4X speedup over an unoptimized pattern storage
scheme (Fig. 3). PR generally offers better performance than PD,
because it allows DRAM-CAM to utilize subarray-level parallelism
on top of bank-level parallelism.

Application Mapping. While some kernels map to DRAM-CAM
naturally, such as String Match (SM) and Bitcount (BC), others are
not so straightforward and require algorithmic changes. Histogram
(HG) and Word Count (WC) differ most from their CPU counter-
parts, where the input images or text files are transposed into
DRAM-CAM prior to the matching process. Then a standardized
input set such as all 8-bit pixel patterns or unique English words
are passed as input to aggregate hits. For Aprior (AP), the entire
transaction database is transcribed using one-hot encoding, with
each column representing a transaction and each row representing
an item. To check if a candidate itemset is a subset of a transaction,
the ith row corresponding to the ith 1 of the bit vector is opened.
Table 1 shows more details of mapping each kernel onto DRAM-
CAM. One interesting discovery is that the best way to utilize ETM
in natural language (e.g.,Word Count) is to match the patterns back-
ward, due to the significant prefix overlapping.

4 EVALUATION

The experimental setup and evaluation methodology are identical
to those of [1]. The baseline DRAM energy is estimated by feeding
memory traces to DRAMSim2, configured to match our worksta-
tion. The CPU energy is measured using the Intel PMC-power tool,
then scaled down by 30% to exclude the interference from other
system components, consistent with the methodology from DRISA
[8] For application performance modeling, we use a trace-driven,
in-house simulator that has a custom DRAMSim2 as the front end.
We use the Micron DDR4 4Gb 8B x16 chip as the building block.
We assume a pipelined implementation of DRAM-CAM, where
the host (CPU) performs pre-processing and post-processing, while
DRAM-CAM is responsible for pattern matching. We use Verilog
to implement different versions of the population count circuit.
Then, we estimate power/area/latency using Synopsys in 90nm.
Finally, we use scaling factors from [9] to scale down results to
22nm. See the original Sieve paper [1] for more methodology

details. Table 3 reports the CPU hardware setup. We measure the
portion that can be offloaded to DRAM-CAM, which is 98.97% for
String Match, 75.88% for Histogram, 92.99% for Word Count, 100%
for Bitcount, and 63.00% for Apriori. Table 2 summarizes perfor-
mance characteristics for PCL. The compressor-based PCL has
lower area and power, while the pipelined LUT-based PCL is the
fastest. We propose to fit PCL in the center strip of each DRAM
chip, and each PCL is time-shared among subarrays of a bank.
This setup increases the latency slightly. Decoupling CS signals
to enable chip-level parallelism requires negligible hardware
changes. For the data transposition unit, the primary component is
a 4KB SRAM buffer. We estimate its area to be 0.015 mm2, and it
consumes 2.22 uW.

Performance Improvement Over CPU. Fig. 3 reports the speedup
and energy saving over a CPU baseline of various DRAM-CAM
configurations, including the performance of our unoptimized
(UNOPT) setup, which is closest to the original Sieve architecture
while enabling these other applications, and the benefit of three
optimizations: pattern distribution (PD), pattern replication (PR),
and chip-level parallelism (CLP). For applications that need PCL,
we model LUT with the pipeline. The optimizations are highly
effective when the reference pattern set is small, because it can be
distributed and replicated many times to leverage the massive
internal parallelism of DRAM. Additionally, chip-level parallelism
offers approximately 2.9X speedup when applicable, but it does
not help when a query needs to visit all subarrays to aggregate
hits. String Match (SM) shares the most similarities with k-mer
matching and benefits the most from such an accelerator. Word
Count (WC) only experiences modest speedup. In fact, UNOPT is
1.5X slower than CPU. There are two reasons: (1) long string pat-
terns and high match rates cause frequent and long sequences of
DRAM row openings, and (2) a large input set (reference patterns)
that limits optimization potential. This is in contrast to Apriori
(AP), which also stores large reference sets and long patterns. but
only opens a few rows (<10). DRAM-CAM outperforms Bitcount
(BC) on the CPU, because it stores a much larger lookup table (32-
bit vs. 8-bit patterns).

The baseline DRAM-CAM (UNOPT) tends to show the best
energy efficiency because the dynamic power consumption of
DRAM-CAM depends on the number of banks that are used for
pattern matching, and the UNOPT setup uses only a small percent-
age (0.7% � 50%) of banks, resulting in up to 126.4X lower power
than the CPU baseline. There is a tradeoff between greater parallel-
ism and higher energy. PD shows worse energy saving than
UNOPT, even though it offers better speedup, because UNOPT
uses all subarrays of a smaller set of banks, but leverages subarray-
level parallelism (SALP) to its full potential, thus making up the
performance loss due to increased bank conflicts. On the other
hand, PD usually utilizes fewer subarrays from a larger set of

Fig. 3. Comparison with CPU baseline.

TABLE 3
Workstation Configuration

CPUModel Intel(R) Xeon(R) E5-2658 v4

L1 /L2 /L3 $ 32 KB / 256 KB / 35 MB
Main Memory DDR4-2400 MHz (32 GB/2 Chan)

TABLE 2
Population Count Logic Characteristics

LUT no Pipeline LUT Pipeline Compressor Tree

Area ðnm2Þ 201 554 148
Delay ðnsÞ 0.76 0.34 0.84
Power ðuWÞ 0.03 0.06 0.02

Fig. 4. Comparison to other in-DRAM accelerators.

IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 21, NO. 2, JULY-DECEMBER 2022 91

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on October 03,2022 at 03:55:53 UTC from IEEE Xplore. Restrictions apply.

banks, resulting in sublinear speedup w.r.t. bank count. PR usually
shows better energy saving than PD, except for the SM benchmark,
by exploiting more SALP. SM has a small input set, and PD utilizes
only two banks (low power). PR offers 16X speedup, but needs 128
banks, However, HG, WC, and AP have larger data sets, and PD
requires the same amount of banks as PR, meaning they have simi-
lar dynamic power consumption. Since PR significantly reduces
the execution time of those benchmarks, it offers better energy effi-
ciency for those benchmarks. Finally, CLP increases power con-
sumption minimally, but the performance improvement is
significant, so the energy savings approach or surpass UNOPT.

Comparison to Alternative PIM Designs. We compare DRAM-
CAM with several prior DRAM-based in-situ proposals. Fig. 4
reports the results, and the performance numbers are normalized
to CPU baselines. We assume all indispensable architectural fea-
tures such as population count logic are enabled for all architec-
tures, even though they are missing from some prior works, and
all appropriate hardware and software optimizations proposed in
this work are equally applied to prior works. Ambit adopts the tra-
ditional horizontal data layout (row-major) and triple-row-activa-
tion (TRA) based logical operation (XNOR) for pattern matching.
ComputeDRAM-H reduces TRA latency by half but retains the hori-
zontal data layout. ComputeDRAM-V/SIMDRAM switches to verti-
cal data layout (column-major) with TRA. In addition to charge-
sharing based in-situ accelerators, we also simulate variations of
DRISA, which combines analog bit-line functionality with digital
logic in the row-buffer. DRISA-H uses horizontal data layout while
DRISA-V uses vertical, and DRISA-V-Batch-Input is DRISA-V but
utilizes Sieve-style batched queries.

TRA-based pattern matching is inherently slow, even with the
modified version proposed in ComputeDRAM. Each row-wide
comparison takes multiple DRAM cycles, whereas in-row-buffer
logic takes only one. Moreover, exact matching needs to XNOR
operand rows, which requires two TRA operations. Second, while
for general-purpose computing, vertical data layout has shown bet-
ter performance, for exact matching, horizontal data layout is bet-
ter, because each query only needs to populate one row, whereas
vertical data layout has to populate a two-dimensional block of bits
(subarray width� query bit length) for each query in order to

support the bit-serial matching. Third, PIM generally favors short
patterns over longer patterns, and this is especially true for col-
umn-major layouts. Fourth, DRAM-CAM outperforms DRISA
because it has a more efficient way of setting up queries, plus early
termination (ETM). Note also that GRIM-filter [10], an HMC PIM
for short-sequence DNA alignment, may also support exact pattern
matching, an interesting direction for future work.

5 CONCLUSION

This work develops general CAM functionality inside DRAM,mak-
ing it capable of accelerating a wide range of exact pattern-matching
workloads while achieving significant energy reduction over the
CPU,with up to 6217X speedup and 5888X energy savings.

REFERENCES

[1] L. Wu et al., “Sieve: Scalable in-situ DRAM-based accelerator designs for
massively parallel k-mer matching,” in Proc. ACM/IEEE Annu. Int. Symp.
Comput. Archit., 2021, pp. 251–264.

[2] Q. Guo et al., “A resistive TCAM accelerator for data-intensive computing,”
in Proc. Annu IEEE/ACM Int. Symp.Microarchit., 2011, pp. 339–350.

[3] Q. Guo et al., “AC-DIMM: Associative computing with STT-MRAM,” in
Proc. ACM/IEEE Annu. Int. Symp. Comput. Archit., 2013, pp. 189–200.

[4] N. Hajinazar et al., “SIMDRAM: A framework for bit-serial SIMD process-
ing using DRAM,” in Proc. 26th ACM Int. Conf. Archit. Support Program.
Lang. Operating Syst., 2021, pp. 329–345.

[5] V. Seshadri et al., “Ambit: In-memory accelerator for bulk bitwise opera-
tions using commodity DRAM technology,” in Proc. Annu IEEE/ACM Int.
Symp. Microarchit., 2017, pp. 273–287.

[6] F. Gao et al., “ComputeDRAM: In-memory compute using off-the-shelf
DRAMs,” in Proc. Annu IEEE/ACM Int. Symp.Microarchit., 2019, pp. 100–113.

[7] R. Ramanarayanan et al., “Combined set bit count and detector logic,” U.S.
Patent US8214414B2, Sep. 2008.

[8] S. Li et al., “DRISA: A DRAM-based reconfigurable in-situ accelerator,” in
Proc. Annu IEEE/ACM Int. Symp. Microarchit., 2017, pp. 288–301.

[9] A. Stillmaker, Z. Xiao, and B. M. Baas, “Toward more accurate scaling esti-
mates of CMOS circuits from 180 nm to 22 nm,” ECE Dep., Univ. Califor-
nia, Davis, CA, USA, Tech. Rep. ECE-VCL-2011–4, 2012.

[10] K. JS et al., “Grim-filter: Fast seed location filtering in DNA read mapping
using processing-in-memory technologies,” BMC Genomic., vol. 19, pp. 23–40,
2018.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

92 IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 21, NO. 2, JULY-DECEMBER 2022

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on October 03,2022 at 03:55:53 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

